Mathematical Research Letters 8, 249-255 (2001)

CLASSIFICATION OF FINITE-DIMENSIONAL TRIANGULAR
HOPF ALGEBRAS WITH THE CHEVALLEY PROPERTY

PAVEL ETINGOF AND SHLOMO GELAKI

1. Introduction

Recall [AEG] that a triangular Hopf algebra A over C is said to have the
Chevalley property if the tensor product of any two simple A-modules is semisim-
ple, or, equivalently, if the radical of A is a Hopf ideal. There are two reasons
to study this class of triangular Hopf algebras: First, it contains all known ex-
amples of finite-dimensional triangular Hopf algebras; second, it can be, in a
sense, “completely understood”. Namely, it was shown in [AEG] that any finite-
dimensional triangular Hopf algebra with the Chevalley property is obtained by
twisting of a finite-dimensional triangular Hopf algebra with R—matrix of rank
< 2, which, in turn, is obtained by “modifying” the group algebra of a finite
supergroup. This provides a classification of such Hopf algebras.

The goal of this paper is to make this classification more effective and explicit,
i.e. to parameterize isomorphism classes of finite-dimensional triangular Hopf
algebras with the Chevalley property by group-theoretical objects, similarly to
how it was done in [EG2] in the semisimple case. This is achieved in Theorem
2.2, where these classes are put in bijection with certain septuples of data. In
the semisimple case, the septuples reduce to the quadruples of [EG2], and we
recover the result of [EG2]. In the minimal triangular pointed case, we recover
Theorem 5.1 of [G].

2. The main theorem

In this section we give an explicit description of the set of isomorphism classes
of finite-dimensional triangular Hopf algebras over C with the Chevalley prop-
erty. We will freely use the facts from the theory of Hopf superalgebras and
finite supergroups which were sketched in [AEG].

Definition 2.1. A triangular septuple is a septuple (G, W, H,Y, B,V,u) where
G is a finite group, W is a finite-dimensional representation of G, H is a sub-
group of G, Y is an H—invariant subspace of W, B is an H—invariant nonde-
generate element in S?Y, V is an irreducible projective representation of H of

dimension ]H|1/2, and u € G is a central element of order < 2 acting by —1 on
w.
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The notion of isomorphism of triangular septuples is obvious.

Given a triangular septuple, one can construct a finite-dimensional triangular
Hopf algebra A(G,W, H,Y, B, V,u) as follows.

Regard Y as a purely odd supervector space and consider the supergroup
H x Y. Consider the group algebra C[H x Y] of this supergroup. Let Jy be a
(minimal) twist for C[H| corresponding to (H, V') as in [EG2] (it is well defined
only up to gauge equivalence). Let Jp := eP/2, and define J := JpJy. Then
J is a twist for C[H x Y], and it is clear (since B is invariant) that the gauge
equivalence class of J is independent of the choice of Jy .

Regard W as an odd supervector space, and consider the supergroup G x W.
We have a natural inclusion of supergroups H x Y — G x W, hence J
can be regarded as a twist for the supergroup algebra C[G x W]. Now let
A(G,W,H,Y,B,V,u) be the finite-dimensional triangular Hopf algebra corre-
sponding to the pair (C[G x W], u) under the correspondence of Theorem 3.3.1
of [AEG]. According to [AEG], this Hopf algebra has the Chevalley property.

Our main result is the following theorem.

Theorem 2.2. The assignment (G,W,H,Y,B,V,u) — A(G,W,H,Y,B,V,u)
s a bijection between:
1. isomorphism classes of triangular septuples, and
2. isomorphism classes of finite-dimensional triangular Hopf algebras over C
with the Chevalley property.

Remark 2.3. It is clear that A(G,W, H,Y, B,V,u) is semisimple if and only
if W =0 (and hence Y = 0 and B = 0). Therefore, Theorem 2.2 implies,
in particular, that there is a natural bijection between isomorphism classes of
semisimple triangular Hopf algebras over C, and isomorphism classes of quadru-
ples (G, H,V,u). This was the main result of [EG2]. Thus, Theorem 2.2 is a
generalization of the main result of [EG2].

The rest of the section is devoted to the proof of Theorem 2.2.

We start with the following proposition, which is essentially contained in
[AEG].

Proposition 2.4. Any minimal triangular Hopf superalgebra A over C with
Drinfeld element 1 and the Chevalley property is isomorphic to C[Hx Y7 | where
H is a finite group, Y is a finite-dimensional representation of H (considered as
an odd vector space) and J = eB/2J, where B € (S*Y) | and J is a minimal
twist for H.

Proof. Let Ay := A/Rad(A) be the semisimple quotient of A. As was shown in
[G] and [AEG], this is a minimal triangular semisimple Hopf algebra with Drin-
feld element 1, and we have a sequence of Hopf superalgebra homomorphisms
A; — A — A, with the composition being the identity. Thus, by [EG1] and
[EG2], A, = C[H]’ with R—matrix J;,'J, where H is a finite group, and J is
a minimal twist for it, corresponding to an irreducible projective representation
V of H of dimension |H|'/2.
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Let us now consider the Hopf superalgebra 4”7 ~. We have a sequence of Hopf
superalgebra homomorphisms C[H] — A’ R C[H], and the composition is
the identity. The projection of the R-matrix R of A7 to C[H] ® C[H] is
1®1, so it is unipotent in X ® Z for any two .A—modules X, Z. Let (A7 '),
be the minimal part of A7 . Since any (Arl)m— module is contained in
an A—module (see e.g. [AEG]), we get that R is unipotent in any X ® Z,
where X,Z are (A7 '),,—modules. But this means that (A7 ), is local
(since (A7) /Rad((A7 '),,) is minimal triangular with R-matrix 1®1, hence
1—dimensional). Hence by [AEG], (A’ _1)m is AY, where Y is a vector space,
with some triangular structure Rp := e, where B € S?Y is a nondegenerate
element. Thus taking J' := ¢B/2, we get that (.Arl)‘]'_1 is supercocommuta-
tive, with triangular structure 1 ® 1. Then Kostant’s theorem [K| implies that
(.,4‘]_1)‘]/71 = C[H x Y]. Thus, A = C[H x Y]7"/ with triangular structure
(J'J)5J'J. This concludes the proof of the proposition. O

The following proposition will imply the converse of Proposition 2.4: For any
H,Y,B,J as above, the Hopf superalgebra A := C[H KX Y]eB/QJ is minimal
triangular.

Proposition 2.5. If (A, R 4) is a minimal triangular Hopf superalgebra, H is a
group acting on A by Hopf superalgebra automorphisms and J is a minimal twist
of H, then the Hopf superalgebra ((C[H]x A)”, J5' R 4J) is minimal triangular.

Proof. First note that since C[H]| is a Hopf subalgebra of C[H] x A, J is a twist
for C[H] x A, and hence R := J,;"R4J is a triangular structure on C[H] x A.
So all we have to prove is that R is minimal.

Let Z := (C[H| x A),, be the minimal part, and f:=Id®¢e: C[H] x A —
C[H]. Tt is straightforward to check that (Id ® f)(R) = Jy;'J; the minimal
R—matrix for C[H]’. Hence C[H| C Z. This implies that R4 = JayRJ ! €
ZR7Z (as J € Z® Z). So we get that A C Z as well. Since Z is an algebra, we
conclude that it is equal to C[H] x A as desired. O

Now let us turn to the proof of Theorem 2.2. Our job is to prove the following
two statements:

Proposition 2.6. Any finite-dimensional triangular Hopf algebra (A, R) over C

with the Chevalley property is of the form A(S) for a suitable triangular septuple
S.

Proposition 2.7. Let A(Sy), A(S2) be two isomorphic triangular Hopf algebras.
Then the septuples S1, So are isomorphic.

Proof of Proposition 2.6. Let (A, R) be a finite-dimensional triangular Hopf al-
gebra with the Chevalley property. By [AEG], the Drinfeld element u of A
satisfies u? = 1. Let (A, R) be the triangular Hopf superalgebra corresponding
to (A, R) under the correspondence given in [AEG, Theorem 3.3.1]. Recall that
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the Drinfeld element of A is equal to 1, and that u acts on A by parity. Clearly
A has the Chevalley property as well.

Let A,, be the minimal part of A. By Proposition 2.4, A,, = C[H x Y7,
where J = eB/2.J. Hence A7 s supercocommutative, and by Kostant’s the-
orem [K], A7 = C[G x W], where G is a finite group containing H as a
subgroup and Y C W is an H —invariant subrepresentation. Thus we have asso-
ciated to (A, R) a triangular septuple S = (G, W, H,Y, B, V,u). It is clear that
(A,R) = A(G,W,H,Y, B,V,u). The proposition is proved. O

Proof of Proposition 2.7. Let S; = (G;,W;, H;,Y;, B;, Vi, u;), i = 1,2, be two
triangular septuples, which yield isomorphic triangular Hopf algebras A; :=
A(S;). We want to show that Sy, Ss are isomorphic.

Let f : A1 — As be an isomorphism of triangular Hopf algebras. The Drinfeld
element of A; is u;, so we have f(u;) = us.

Let A; be the Hopf superalgebra with Drinfeld element 1 corresponding to
A; as in [AEG, Theorem 3.3.1]. Since f(u1) = wue, we find that f defines
an isomorphism f : A; — Ay of triangular Hopf superalgebras. Thus, f
defines an isomorphism of their minimal parts: f((A1)m) = (As2)m. Hence,
f(Corad((A1)m)) = Corad((Az).,). But by Proposition 2.5, (A;),, = C[H;
Y;]¢”"* i so Corad((A;)m) = C[H;]”i. We conclude that f restricts to an
isomorphism of triangular Hopf algebras f : C[H;]”* — C[H,]’2. Hence,
Jof®2(Jy)~! is a symmetric twist. So by [EG2], it is equal to A(z)(z~! @ 27 1)
for some invertible z € C[Hs|, and we have f = Ad(x) o7, where 7 is a group
isomorphism H; — Hs.

Without loss of generality, we can assume that x = 1 (otherwise we can apply
a gauge transformation by x to switch to a situation where z = 1). In this case,
we get f©2(J;) = Ja, which implies f*(V;) = Va, where the left hand side is the
usual pullback.

Now, by definition, we have f®2((Jy)y e J1) = (Jo)5 eP2Jo.  Thus,
f®2(eBr) = P2 ie. f®2(B;) = By. This means that f(Y7) = Y. This map has
to be consistent with the actions of H; on Y; and the map f : Hy — Hs, since f
is a homomorphism of algebras.

Finally, setting J; := eBi/2.J;, we have f®2(7)) = J». Therefore, f defines
an isomorphism of triangular Hopf superalgebras C[G; x W1] — C[Gy x Wa].

Summarizing, we see that f sets up an isomorphism between &1 and Ss, as
desired. The proposition and the theorem are proved. O

3. Minimal triangular pointed Hopf algebras

Here we apply Theorem 2.2 to classifying minimal triangular Hopf algebras
with the Chevalley property, and minimal triangular pointed Hopf algebras.

Proposition 3.1. The following hold:

1. The triangular Hopf algebra A = A(G,W, H,Y, B,V,u) is minimal if and
only if Y = W and G 1is generated by H,u. Thus, minimal triangular
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Hopf algebras over C with the Chevalley property correspond to triangular
septuples S such that W =Y and G =< H,u >.

2. The triangular Hopf algebra A = A(G,W, H,Y, B,V,u) is minimal pointed
if and only if Y = W, G is generated by H and u, and G is abelian. Thus,
minimal triangular pointed Hopf algebras over C correspond to triangular
septuples S such that W =Y, G =< H,u >, and G is abelian.

Proof. We start by proving part 1. The “only if” direction is clear. To prove
the “if” direction, consider the minimal part of the Hopf superalgebra A with
Drinfeld element 1, corresponding to A. By Proposition 2.5, it is C[H x W] (as
an algebra). The minimal part of A is clearly generated by w and the minimal
part of A, so it is everything.

Part 2 follows easily from part 1, if we remember from [AEG] that any minimal
triangular pointed Hopf algebra has the Chevalley property. O

Remark 3.2. Proposition 3.1 implies that for minimal triangular Hopf alge-
bras with the Chevalley property (unlike the nonminimal ones), there are finitely
many isomorphism classes in any given dimension. Indeed, in a “minimal” trian-
gular septuple, the only “continuous” parameter is the tensor B, or, equivalently,
the G-invariant inner product B~! on Y = W. But such a product, if exists, is
clearly unique up to an isomorphism. In particular, this implies that any mini-
mal triangular Hopf algebra with the Chevalley property is rigid, i.e. does not
have nontrivial deformations as a triangular Hopf algebra. Since it is suspected
that all finite-dimensional triangular Hopf algebras over C have the Chevalley
property (see [AEG], Question 5.5.1), it would be interesting to check whether
any minimal triangular Hopf algebra is rigid.

To conclude the paper, we recall that a classification of minimal triangular
pointed Hopf algebras was in fact obtained earlier in [G] (the additional condition
to be generated by grouplike and skewprimitive elements imposed in [G] is in
fact always satisfied, as was shown in [AEG]). There, the isomorphism classes of
such Hopf algebras were parameterized by somewhat different group-theoretical
data than here. So, let us identify these two kinds of data with each other. This,
in particular, will give another proof of Theorem 5.1 in [G], based on Theorem
2.2.

Recall the definitions of the two types of the parameterizing data.

Type 1 (this paper): A 5—tuple (G,W, H,V,u), where G is a finite abelian
group, H a subgroup of G, u an element of G of order 2, W a finite-dimensional
representation of G with an invariant inner product, and V a projective irre-
ducible representation of H of dimension |H |1/ 2 such that G =< H,u >, and
’U,‘W = —1.

Type 2 (|G, Section 4]): A triple (G, ¢,n), where G is a finite abelian group,
¢ a nondegenerate skew-symmetric bilinear form on G with values in C* (i.e.
©(g,h) = ¢(h,g9)7'), and n : g — n, a nonnegative integer function defined on
the set I, of elements g € G such that p(g,g) = —1, satisfying n, = n,-1 (the
other data in [G], up to isomorphism, can be uniquely expressed via (G, ¢, n)).
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Below we will describe how to pass from data of type 1 to data of type 2, and
back.

1. From Type 1 to Type 2: The group G is already given, so we need to
construct ¢ and n. To construct ¢, recall that the quadruple (G, H, V,u) defines
a minimal triangular structure on C[G], which is nothing but a nondegenerate
skew-symmetric form on G; so let it be . Finally, to construct n, recall that the
group G is abelian, and is identified with its dual via ¢, so the representation
W is representable as a direct sum @©4ngy¢(g,*), and we have ng,—1 = n, since
the representation is orthogonal. Furthermore, since p(u,g9) = ¢(g,9), and
ulw = —1, we get ¢(g,9) = —1if n, > 0.

2. From Type 2 to Type 1: Again, the group G is given, and we need
to construct the quadruple (W, H,V,u). To construct (H,V,u), we take the
quadruple (G, H,V,u) which corresponds to the triangular structure on CI[G]
defined by ¢. Finally, to construct W, we set W := @gng¢(g, *). It is clear that
this representation is orthogonal since ny = n,-1, and that u acts by —1 in W
since ¢(g,9) = —1 whenever n, > 0.

It is clear that the constructed two correspondences are inverses to each other.
We leave it to the reader to show that the data of type 1 and type 2 that
correspond to each other under this rule, define the same minimal triangular
pointed Hopf algebra.

4. Appendix: Erratum to “Some properties and examples of
pointed triangular Hopf algebras”, by S. Gelaki

In this appendix the second author wishes to report that Theorem 5.1 in the
version of [G] which appeared in MRL is incorrect as stated; namely, the defini-
tions of a datum D and the sets ® and S, (k) are too restrictive and consequently
there are more minimal triangular pointed Hopf algebras than claimed. However,
the mistake was insignificant and, accordingly, the correction is straightforward;
it follows the exact same lines of argument as in the original version. The cor-
rected version has been posted in arxiv.org (see math.QA/9907106).

The error in the original statement and proof of Theorem 5.1 resulted from a
mistake in Lemma 5.3 whose proof used a previous result of the second author,
incorrectly. Namely, it is not true that if A is a minimal triangular pointed Hopf
algebra, then P; ;(A) # 0 implies that g is an involution.

We now briefly point to the main corrections made. First, the subgroup
G5 of involutions of G, mentioned in the paragraph preceding Definition 4.1,
was replaced by the whole group G. That is, it is no longer assumed that for
g € Ir, g* = 1. Accordingly, in Definition 4.1 the requirement n, = Ng-1 Was
added, and Formula (4) and the definitions of the sets ® and S,(k), given in
the discussion preceding Theorem 4.4, were adjusted. Consequently, Theorem
4.4 was generalized and its proof was adjusted. With these new definitions, the
statement of Theorem 5.1 is now correct. Finally, Lemma 5.3 was corrected by
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dropping the wrong conclusion that g is an involution, and Lemmas 5.4 and 5.5
were adjusted. This corrected the proof of Theorem 5.1.
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