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POLYNOMIALS OVER CONVEX BODIES IN R

n
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This paper is dedicated to the memory of Donna L. Wright.

1. Introduction

Let Pd,n be the vector space of all polynomials of degree at most d in R
n. Let

K be a convex body of volume 1 in R
n and let 1 ≤ q ≤ ∞. Since Pd,n is finite

dimensional, the norms
(∫

K
|p|q

) 1
q

are all equivalent to each other. Recently
there has been considerable interest in the behaviour of the constants in these
equivalences as q varies when we consider arbitrary unit-volume convex bodies
K. See for example the work of Brudnyi and Ganzburg [BG], Gromov and
Milman [GM], Bourgain [Bour], Bobkov [Bobk] and Nazarov, Sodin and Volberg
[NSV].

In this paper, we wish to complete the analysis of the constants in these
equivalences as well as to extend these results to the vector-valued setting. For
a (real or complex) Banach space X with norm ‖·‖ and a polynomial p : R

n → X

of degree at most d, we define the functional p#(x) = ‖p(x)‖ 1
d . For a convex

body K in R
n of volume 1, we consider the usual Lq norms of p# over K;

that is, ‖p#‖q =
(∫

K
p#(x)qdx

) 1
q

=
(∫

K
‖p(x)‖ q

d dx
) 1

q

. When q = 0, we set

‖p#‖0 = exp
∫

K
log p#(x) dx and ‖p#‖∞ is the usual L∞ norm of p#.

Let 0 ≤ r ≤ q ≤ ∞. Hölder’s inequality gives a trivial inequality for the Lq

norms with (best possible) constant 1 and for the reverse inequality we have:

Theorem 1. Let p : R
n → X be a polynomial of degree at most d, let K be a

convex body in R
n of volume 1 and let 0 ≤ r ≤ q ≤ ∞. Then there exists an

absolute constant C independent of p, d, K, n, q, r and X such that

‖p#‖q ≤ C
[nB(n, q + 1)]

1
q

[nB(n, r + 1)]
1
r

‖p#‖r

where B denotes the classical Beta function.
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Recall that nB(n, q + 1) = − ∫ 1

0
uqd(1 − u)n; in the limiting cases q = 0

and q = ∞, the quantity [nB(n, q + 1)]
1
q is to be understood as 1/n and 1

respectively. In particular we note that the estimate in Theorem 1 is independent
of the norm ‖ · ‖ from X.

By standard estimates for the Beta function we obtain:

Corollary. Let p : R
n → X be a polynomial of degree at most d, let K be a

convex body in R
n of volume 1 and let 0 ≤ r ≤ q ≤ ∞. Then there exists an

absolute constant C independent of p, d, K, n, q, r and X such that

(a) if n ≤ r ≤ q then
‖p#‖q ≤ C ‖p#‖r ,

(b) if r ≤ n ≤ q then

‖p#‖q ≤ C
n

max(r, 1)
‖p#‖r ,

(c) if r ≤ q ≤ n then

‖p#‖q ≤ C
max(q, 1)
max(r, 1)

‖p#‖r .

Up to the numerical constant C, the constant on the right hand side of The-
orem 1 is optimal if one seeks an inequality valid for arbitrary convex bodies K.
One simply takes p(x) = xd

1 and K = {(x1, x
′) ∈ R

n : 0 ≤ x1 ≤ 1, |x′| ≤ 1−x1}.
The scalar-valued case q = ∞, r ≤ 1 (in which case the constant on the right
hand side is essentially n) is due to Brudnyi and Ganzburg [BG]. For dimension-
less bounds, the scalar-valued cases r = 0, q ≥ 0 and r = d, q ≥ 2d are due to
Bobkov [Bobk] (in these cases the dimensionless bound on the right hand side
is essentially q). One can then extrapolate these bounds to get sharp dimension
free Khinchine-Kahane type inequalities in the exponential class. This refined
earlier work of Bourgain [Bour] which in turn extended a result of Gromov and
Milman [GM] to the general degree d case from the linear case d = 1. Nazarov,
Sodin and Volberg [NSV] have also obtained Bobkov’s dimensionless bound in
the case r = 0 and q ≥ 0 (by different methods), as well as other interesting re-
sults. Our Theorem 1 may be viewed as a completion of all these results, giving
the precise behaviour in all the parameters, d, n, q and r.

The case r ≤ 1 and general q has a stronger formulation in terms of dis-
tributional inequalities for vector-valued polynomials over convex bodies in R

n

(which may be of independent interest for certain problems in real and harmonic
analysis). In fact, we have:

Theorem 2. Let p : R
n → X be a polynomial of degree at most d, and let K be

a convex body in R
n of volume 1. Let 0 ≤ q ≤ ∞. Then there exists an absolute

constant C independent of p, d, K, n, q and X so that for any α > 0,

‖p#‖q α−1|{x ∈ K : p#(x) ≤ α}| ≤ Cn(nB(n, q + 1))
1
q .
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In particular, we have:

Corollary. Let p : R
n → X be a polynomial of degree at most d, let K be a

convex body in R
n of volume 1 and let 0 ≤ q ≤ ∞. Then there exists an absolute

constant C independent of p, d, K, n, q and X so that for any α > 0,

(a) if n ≤ q then

‖p#‖q α−1|{x ∈ K : p#(x) ≤ α}| ≤ C n;

(b) if q ≤ n then

‖p#‖q α−1|{x ∈ K : p#(x) ≤ α}| ≤ C max(q, 1).

As before, up to the constant C, the inequalities are sharp (to see this we use
the same example as for Theorem 1). The scalar-valued case q = ∞ is due to
Brudnyi and Ganzburg [BG]. Nazarov, Sodin and Volberg [NSV] have obtained
Theorem 2 independently by somewhat different methods. In §6, Remark 2
below, we shall show how one can obtain the case r ≤ 1 and general q in
Theorem 1 from Theorem 2.

In common with Bobkov’s work [Bobk] (and that of Nazarov, Sodin and
Volberg [NSV]) the main tool in this current work is the utilisation of a certain
powerful extremal result of Kannan, Lovász and Simonovits which we now state.
For a, b ∈ R

n and λ ≥ 1 define the measures µa,b,λ by 〈φ, µa,b,λ〉 =
∫ 1

0
φ(a(1 −

t) + bt)(λ − t)n−1dt.

Theorem ([KLS]). Suppose f1, f2, f3, f4 are continuous nonnegative integrable
functions on R

n and α, β > 0. Suppose that for every a, b ∈ R
n and λ ≥ 1,(∫

f1dµa,b,λ

)α(∫
f2dµa,b,λ

)β

≤
(∫

f3dµa,b,λ

)α(∫
f4dµa,b,λ

)β

.

Then for every convex open set K in R
n(∫

K

f1

)α(∫
K

f2

)β

≤
(∫

K

f3

)α(∫
K

f4

)β

.

(Note that the reverse implication is straightforward.)

Finally, C will denote a generic absolute constant whose precise value may
change from line to line.

2. Reduction to weighted inequalities in dimension 1

We shall first prove the results in the scalar-valued setting and then show
in §5 how one can extend the arguments to the vector-valued setting. In the
scalar-valued setting, by the Kannan, Lovász and Simonovits theorem of the
introduction, Theorems 1 and 2 are equivalent (after a limiting argument because
χ{x∈K : |p(x)|≤α} is not a continuous function) to Theorems 3 and 4 respectively:
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Theorem 3. Let p : R → C be a polynomial of degree at most d, n ∈ N, λ ≥ 1
and 0 ≤ r ≤ q ≤ ∞. Then there exists an absolute constant C independent of
the above parameters such that

( 1∫
0

|p(t)| q
d (λ − t)n−1dt

1∫
0

(λ − t)n−1dt

) 1
q

≤ C
[nB(n, q + 1)]

1
q

[nB(n, r + 1)]
1
r

( 1∫
0

|p(t)| r
d (λ − t)n−1dt

1∫
0

(λ − t)n−1dt

) 1
r

.

Theorem 4. Let Let p : R → C be a polynomial of degree at most d, n ∈ N,
λ ≥ 1 and 0 ≤ q ≤ ∞. Then there exists an absolute constant C independent of
the above parameters so that for any α > 0,

( 1∫
0

|p(t)| q
d (λ − t)n−1dt

1∫
0

(λ − t)n−1dt

) 1
q α− 1

d

1∫
0

χ{|p(t)|≤α}(λ − t)n−1dt

1∫
0

(λ − t)n−1dt

≤ Cn (nB(n, q + 1))
1
q .

Although the forms of the inequalities in Theorems 3 and 4 make sense only
for 0 < r ≤ q < ∞, it is clear how to extend them when r = 0, q = 0 and/or
r = ∞, q = ∞. For instance, when q = 0, the conclusion of Theorem 4 takes the
form

exp
1
d

( 1∫
0

[log |p(t)|](λ − t)n−1dt

1∫
0

(λ − t)n−1dt

) α− 1
d

1∫
0

χ{|p(t)|≤α}(λ − t)n−1dt

1∫
0

(λ − t)n−1dt

≤ C.

To prove Theorems 3 and 4, we may of course assume that r > 0 and q < ∞
and then pass to the limit.

3. Proof of Theorem 3

We begin with the proof of Theorem 3. We first need some preliminary lemmas.
The first is a well-known elementary Remez type inequality. It is also a simple
consequence of the case n = 1 of Theorem 1 or Theorem 3 and as such is already
contained in [BG], for instance. We include a simple proof for the convenience
of the reader.

Lemma 1. There is an absolute constant C so that if p : R → C is a polynomial
of degree at most d, if 0 ≤ r ≤ q ≤ ∞, and if t ≥ u, then(1

t

∫ t

0

|p| q
d

) 1
q ≤ C

t

u

( 1
u

∫ u

0

|p| r
d

) 1
r .

(We have the usual interpretation in the limiting cases r, q = 0,∞.)
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Proof of Lemma 1. We may assume that q = ∞, r = 0 and u = 1. So we want
to show

‖|p| 1d ‖L∞[0,t] ≤ C t exp
1
d

1∫
0

log |p(s)|ds

for t ≥ 1. Clearly we may also assume that p(z) =
∏

(z − ζj) is monic. Now

max
0≤s≤t

|p(s)| 1d = max
0≤s≤t

∏
|s−ζj | 1d = max

0≤s≤1

∏
|st−ζj | 1d ≤ t max

0≤s≤1

∏
|s−ζj/t| 1d .

Moreover t ≥ 1 and |ζj | ≥ 2 implies |s − ζj/t| ≤ 2|ζj | ≤ 4|s − ζj | for 0 ≤ s ≤ 1;
so that we are left with proving

max
0≤s≤1

∏
|ζj |≤2

|s − ζj/t| 1d ≤ C exp
{1

d

1∫
0

∑
|ζj |≤2

log |s − ζj |ds
}

.

The term on the left of this inequality is bounded by 3, while the term on the

right is bounded below by exp γ where γ = inf
|ζ|≤2

1∫
0

log |s − ζ|ds. The lemma is

established with C = 12e−γ .

Lemma 2. There is an absolute constant C so that if 0 < r ≤ 2m,(∫ r
2

0

(1 − t/m)m−1tr+1dt
) 1

r ≥ C
(∫ m

0

(1 − t/m)m−1tr+1dt
) 1

r .

We remark that the term on the right hand side of Lemma 2 is itself bounded
below by m[(m + 1)B(m + 1, r + 1)]

1
r .

Proof of Lemma 2.∫ r
2

0

(1 − t/m)m−1tr+1dt ≥
∫ r

4

0

(1 − t/m)m−1tr+1dt ≥
∫ r

4

0

e−2ttr+1dt

≥ 1
r + 2

(r

4
)r+2e−

r
2 .

But∫ m

0

(1 − t/m)m−1tr+1dt ≤ (r + 1)
∫ ∞

0

(1 − t/m)mtrdt

≤ (r + 1)
∫ ∞

0

e−ttrdt = (r + 1)!

Taking r’th roots establishes the lemma.

Lemma 3. There is an absolute constant C so that if p : R → C is a polynomial
of degree at most d, if 0 < r ≤ q < ∞ and if r

2 ≤ t ≤ x, then∫ t

0

|p| q
d ≤ Cqtq+1

mq[(m + 1)B(m + 1, r + 1)]
q
r

[∫ x

0

(1 − u/m)m−1
(∫ u

0

|p| r
d

)
du

] q
r

.
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Proof. By Lemma 1, we have for t ≥ u

ur+1
(∫ t

0

|p| q
d

) r
q ≤ Crtr+

r
q

∫ u

0

|p| r
d .

Multiplying this inequality by (1 − u/m)m−1 and integrating with respect to u
from 0 to t yields[∫ t

0

ur+1(1 − u/m)m−1du
](∫ t

0

|p| q
d

) r
q ≤ Crtr+

r
q

∫ t

0

(1 − u/m)m−1
(∫ u

0

|p| r
d

)
du.

Lemma 2 and the remark following its statement now imply that(∫ t

0

|p| q
d

) r
q ≤ Crtr+

r
q

mr[(m + 1)B(m + 1, r + 1)]

∫ t

0

(1 − u/m)m−1
(∫ u

0

|p| r
d

)
du.

Lemma 3 now follows upon taking q
r ’th roots.

Proof of Theorem 3. We may assume that 0 < r ≤ q < ∞. For ease of notation
we write m for n− 1, and denote [(m + 1)B(m + 1, q + 1)]

1
q by Aq (for m fixed).

We assume m ≥ 2 (otherwise the proof simplifies), and changing variables we
see that we have to show, for each λ ≥ 1 and all polynomials p of degree at most
d ( m

λ∫
0

|p(t)| q
d (1 − t/m)mdt

m
λ∫
0

(1 − t/m)mdt

) 1
q

≤ C
Aq

Ar

( m
λ∫
0

|p(t)| r
d (1 − t/m)mdt

m
λ∫
0

(1 − t/m)mdt

) 1
r

.

Case 1: m ≤ λ

Notice that if 0 ≤ t ≤ 1, e−2 ≤ (1 − t/m)m ≤ 1 for m ≥ 2. Moreover,( λ

m

∫ m
λ

0

|p(t)| q
d dt

) 1
q ≤ C

( λ

m

∫ m
λ

0

|p(t)| r
d dt

) 1
r

for 0 < q, r < ∞ by Lemma 1. Finally, since Aq is an increasing function of q
this case is complete.

Case 2: m > λ.
Let x = m

λ ; then 1 ≤ x ≤ m as λ ≥ 1. For 1 ≤ x ≤ m,
∫ x

0
(1 − t/m)mdt

is bounded above and below by absolute constants. So we wish to see that for
1 ≤ x ≤ m and 0 < r ≤ q,

(1)
(∫ x

0

|p| q
d (1 − t/m)mdt

) 1
q ≤ C

Aq

Ar

(∫ x

0

|p| r
d (1 − t/m)mdt

) 1
r .

Now∫ x

0

|p| q
d (1 − t/m)mdt =

∫ x

0

(1 − t/m)m−1
(∫ t

0

|p| q
d

)
dt + (1 − x/m)m

∫ x

0

|p| q
d .

We shall concentrate on the first term, the arguments for the second being similar
but easier. We distinguish two subcases of (1):
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Subcase (i): r/2 ≤ x .
In this subcase, r ≤ 2m and∫ x

0

(1 − t/m)m−1
(∫ t

0

|p| q
d

)
dt

=
∫ x

r
2

(1 − t/m)m−1
(∫ t

0

|p| q
d

)
dt +

∫ r
2

0

(1 − t/m)m−1
(∫ t

0

|p| q
d

)
dt.

The estimate for the second term here is a special case (x = r/2) of subcase (ii)
below, so it suffices to deal with the first term. Using Lemma 3 we have∫ x

r
2

(1 − t

m
)m−1

(∫ t

0

|p| q
d

)
dt

≤ Cq

mqAq
r

[∫ x

r
2

(1 − t

m
)m−1tq+1dt

][∫ x

0

(1 − u

m
)m−1

(∫ u

0

|p| r
d

)
du

] q
r

≤ Cq(q + 1)mq+1Aq
q

mqAq
r(m + 1)

(∫ x

0

|p| r
d (1 − t

m
)mdt

) q
r .

Taking q’th roots establishes subcase (i).

Subcase (ii): 1 ≤ x ≤ r/2.

(2)
∫ x

0

(1 − t/m)m−1
(∫ t

0

|p| q
d

)
dt =∫ 1

0

(1 − t/m)m−1
(∫ t

0

|p| q
d

)
dt +

∫ x

1

(1 − t/m)m−1
(∫ t

0

|p| q
d

)
dt.

The first term is easy to deal with since by Lemma 1∫ 1

0

(1 − t/m)m−1

∫ t

0

|p| q
d dt ≤

∫ 1

0

|p| q
d ≤ Cq

(∫ 1

0

|p| r
d

) q
r

≤ Cq
(∫ 1

0

|p| r
d (1 − t/m)m−1dt

) q
r .

For the second term, Lemma 1 implies that for t ≥ u

ur+1
(∫ t

0

|p| q
d

) r
q ≤ Crtr+

r
q

∫ u

0

|p| r
d .

Multiplying this inequality by (1 − u/m)m−1 and integrating with respect to u
from 0 to t yields[∫ t

0

ur+1(1 − u/m)m−1du
][∫ t

0

|p| q
d

] r
q ≤ Crtr+

r
q

∫ t

0

(∫ u

0

|p| r
d

)
(1 − u/m)m−1du

≤ Crtr+
r
q

∫ t

0

|p| r
d (1 − u/m)mdu ≤ Crtr+

r
q

∫ x

0

|p| r
d (1 − u/m)mdu
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provided t ≤ x. But∫ t

0

ur+1(1 − u/m)m−1du ≥ e−t

∫ t
2

0

ur+1du =
e−ttr+2

2r+2(r + 2)
.

Thus for 1 ≤ t ≤ x ≤ r
2 ,∫ t

0

|p| q
d ≤ Cqe

tq
r t1−

2q
r

[ ∫ x

0

|p| r
d (1−u/m)mdu

] q
r ≤ Cq

[ ∫ x

0

|p| r
d (1−u/m)mdu

] q
r .

Now multiplying both sides of this inequality by (1 − t/m)m−1 and integrating
with respect to t from 1 to x gives∫ x

1

(1−t/m)m−1
(∫ t

0

|p| q
d

)
dt ≤ Cq

[∫ x

1

(1−t/m)m−1dt
][ ∫ x

1

|p| r
d (1−u/m)mdu

] q
r

≤ Cq
[ ∫ x

0

|p| r
d (1 − u/m)mdu

] q
r

(as (1 − t/m)m−1 ≤ 1 and x ≤ r
2 ≤ q). Taking q’th roots finishes subcase (ii) of

(2), and hence (1), proving Theorem 3.

4. Proof of Theorem 4

The first step in proving Theorem 4 is the special case n = 1, q = ∞:

Lemma 4. There is an absolute constant C so that for all polynomials p : R →
C of degree at most d and all intervals I,

‖p‖ 1
d

L∞(I) α− 1
d |{x ∈ I : |p(x)| ≤ α}| ≤ C|I|.

This lemma is an old result and in fact the best constant C is known to be 4.
This is due to Dudley and Randol, [DR]. However this result for some absolute
constant C is an easy consequence of a classical inequality of H. Cartan [C] which
we now state:

Cartan’s lemma. Let w1, w2, . . . , wd be d points in the complex plane C and
let h > 0. Then the set of points z ∈ C such that the inequality

d∏
j=1

|z − wj | ≤ hd

holds can be covered by at most d circles, the sum of whose radii is 2eh.

Note, in particular, Cartan’s lemma implies the corresponding statement of
Lemma 4 for monic (as opposed to L∞ - normalised) polynomials. We provide
a proof of Lemma 4 for completeness.

Proof of Lemma 4. We may assume that I = [0, 1] by translating and dilating
the polynomial p. Observe that the statement of the lemma is invariant under
multiplication of p by any nonzero constant, and (up to changing the value of C)
under multiplication of p by a function, whose d’th root is bounded above and
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below by absolute constants. So if p(z) = A
∏

(z − ζj), we may multiply p by∏
|ζj |≥2

|ζj |(z−ζj)−1 and then by (A
∏

|ζj |≥2

|ζj |)−1 without changing matters. Thus

we may assume that p(z) =
∏

|ζj |≤2

(z − ζj). This modified p(z) is now monic,

has degree k ≤ d say, and when restricted to the unit interval [0, 1] satisfies

‖p‖ 1
d∞ ≤ 3. We may therefore assume α ≤ 1 and Cartan’s inequality tells us that

|{x ∈ [0, 1] : |p(x)| ≤ α}| ≤ Cα
1
k ≤ Cα

1
d ,

completing the proof of the lemma.

Note the case q = ∞ of Theorem 4 and thus Theorem 2 is now an immediate
consequence: we merely have to observe that for 0 ≤ t ≤ 1 and λ ≥ 1, we have
(λ − t)n−1 ≤ n

∫ 1

0
(λ − s)n−1ds.

Proof of Theorem 4. Again we may assume that 0 < q < ∞. For ease of notation
we again write m for n − 1 and assume m ≥ 2 (the cases m = 0 and m = 1 are
easier). Let

Iq =

1∫
0

|p(t)| q
d (λ − t)mdt

1∫
0

(λ − t)mdt

and II =
α− 1

d

1∫
0

χ{|p|≤α}(λ − t)mdt

1∫
0

(λ − t)mdt

.

We wish to show that I ·II ≤ C(m+1)[(m+1)B(m+1, q+1)]
1
q . We immediately

make the change of variables t → λ
m t in all integrals, so that

Iq =

m
λ∫
0

|p(t)| q
d (1 − t

m )mdt

m
λ∫
0

(1 − t
m )mdt

and II =
α− 1

d

m
λ∫
0

χ{|p|≤α}(1 − t
m )mdt

m
λ∫
0

(1 − t
m )mdt

(for a possibly different polynomial p). Note that if D :=
∫ m

λ

0
(1 − t

m )mdt, then
for m ≤ λ, we have D ≥ ∫ m

λ

0
(1 − 1/m)mdt ≥ m

λ
1
2e while for m ≥ λ,

D ≥ ∫ 1

0
(1 − t/m)mdt ≥

1∫
0

(1 − 1/m)mdt ≥ 1
2e .

Case 1: m ≤ λ.
In this case we have

Iq ≤ 2eλ
m

m
λ∫

0

|p(t)| q
d (1 − t/m)mdt ≤ 2eλ

m

m
λ∫

0

|p(t)| q
d dt,
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while

II ≤ 2eλ
m

α− 1
d

m
λ∫

0

χ{|p|≤α}(1 − t/m)mdt ≤ 2eλ
m

α− 1
d

m
λ∫

0

χ{|p|≤α}dt

so that

I · II ≤ (2e)1+
1
q

( λ

m

∫ m
λ

0

|p(t)| q
d dt

) 1
q · α− 1

d
λ

m

∫ m
λ

0

χ{|p|≤α}dt ≤ C(2e)1+
1
q

by Lemma 4. Thus I · II is bounded above by an absolute constant in this case.

Case 2: m > λ.
In this case, since D is uniformly bounded below and the numerators of I and

II are decreasing with λ, we may take λ = 1 and reduce matters to showing
that

Ĩ · ĨI ≤ C(m + 1)[(m + 1)B(m + 1, q + 1)]
1
q

where

Ĩq =
∫ m

0

|p(t)| q
d (1 − t/m)mdt and ĨI = α− 1

d

∫ m

0

χ{|p|≤α}(1 − t/m)mdt.

Now

Ĩq =
∫ m

0

(1 − t/m)m d

dt

{∫ t

0

|p(s)| q
d ds

}
dt =

∫ m

0

(1 − t/m)m−1
{∫ t

0

|p(s)| q
d ds

}
dt

which in turn is less than
∫ 1

0
H dt + CqH

∫ m

1
(1 − t/m)m−1tq+1 dt where H =∫ 1

0
|p(s)| q

d ds, by Lemma 1. Hence

Ĩq ≤ H
[
1+Cq

∫ m

1

(1− t/m)m−1tq+1dt
]
≤ H

[
1+Cqmq+2

∫ 1

0

(1−s)m−1sq+1ds
]

= H
[
1 + Cqmq+1(q + 1)B(m + 1, q + 1)

]
.

Therefore Ĩ ≤ CH
1
q (m + 1)[(m + 1)B(m + 1, q + 1)]

1
q . On the other hand,

ĨI = α− 1
d

∫ m

0

χ{|p|≤α}(1−t/m)mdt = α− 1
d

∫ m

0

(1−t/m)m−1

∫ t

0

χ{|p(s)|≤α}ds dt

≤ α− 1
d

[∫ 1

0

∫ 1

0

χ{|p(s)|≤α}dsdt +
∫ m

1

(1 − t/m)m−1

∫ t

0

χ{|p(s)|≤α}dsdt
]

≤ C

K
+

C

K

∫ m

1

(1 − t/m)m−1t dt ≤ C

K

∫ ∞

0

e−t/2tdt ≤ C

K

by Lemma 4, where K = ‖|p| 1d ‖L∞[0,1]. Thus

Ĩ · ĨI ≤ C

[
‖|p| 1d ‖Lq[0,1]

‖|p| 1d ‖L∞[0,1]

]
(m + 1)[(m + 1)B(m + 1, q + 1)]

1
q
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which in turn is less than C(m + 1)[(m + 1)B(m + 1, q + 1)]
1
q as required,

completing the proof of Theorem 4. (Note that we have used in passing that
n[nB(n, q + 1)]

1
q is bounded below uniformly in n and q.)

5. The vector-valued case

To extend Theorems 1 and 2 to the vector-valued setting, we first observe that
our arguments extend to a wider class of functions than polynomials of degree
at most d. Following a preliminary version of [NSV], we say that a function u :
R

n → R is of class L if it is the restriction to R
n of a plurisubharmonic function

ũ : C
n → R such that lim sup

|z|→∞
ũ(z)

log |z| ≤ 1. When n = 1, u(x) = 1
d log |p(x)| is

of class L if p : R → C is a polynomial of degree d. We can write such a p as
p(x) = A

∏d
j=1(x− ζj), so that 1

d log |p(x)| = 1
d log |A|+ 1

d

∑d
j=1 log |x− ζj |, and

the distinguishing feature of a function of class L (when n = 1) is that it can be
written as u(x) = constant +

∫
log |x− ζ|dµ(ζ) where µ is a positive measure of

mass at most one in the plane. This is the well-known Riesz representation for
subharmonic functions, see for example Hayman’s book [H]. In particular, it is
not difficult to see that the key lemmas, Lemma 1 and Lemma 4, remain valid
if one replaces |p(x)| 1d with expu(x), where u is a general function of class L
in one dimension. With these remarks in mind the reader will have no trouble
extending Theorems 1 and 2 to functions of class L to obtain the following:

Theorem 5. Let u : R
n → R be a function of class L, 0 ≤ r ≤ q ≤ ∞ and K

be a convex body in R
n of volume 1. Then there exists an absolute constant C

independent of r, q, K, n and u so that

‖eu‖Lq(K) ≤ C
[nB(n, q + 1)]

1
q

[nB(n, r + 1)]
1
r

‖eu‖Lr(K).

Theorem 6. Let u : R
n → R be a function of class L, 0 ≤ q ≤ ∞ and K

be a convex body in R
n of volume 1. Then there exists an absolute constant C

independent of q, K, n and u so that

‖eu‖Lq(K) ‖e−u‖L1,∞(K) ≤ Cn[nB(n, q + 1)]
1
q .

To obtain the vector-valued extension of Theorems 1 and 2, we simply observe
that whenever p : R

n → X is a polynomial of degree at most d with values
in a Banach space X, u(x) = 1

d log ‖p(x)‖ is a function of class L. Indeed,
the estimate lim sup

|z|→∞
ũ(z)

log |z| ≤ 1 is straightforward, and using the fact ‖w‖ =

sup
�∈X∗,‖�‖≤1

|*(w)| for any w ∈ X, one easily sees that ũ(z) is plurisubharmonic.
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6. Further remarks

1. If we let m → ∞ in inequality (1), we have, since (1 − t/m)m ≤ e−t for
m > 0 and 0 < t ≤ m,(∫ x

0

|p(t)| q
d e−tdt

) 1
q ≤ C

max(q, 1)
max(r, 1)

(∫ x

0

|p(t)| r
d e−tdt

) 1
r

by the dominated convergence theorem, where C is absolute: combining this
with Lemmas 1 and 4 yields the following results.

Proposition 1. There exists an absolute constant C such that if p is a poly-
nomial of degree at most d, N > 0, and 0 < r ≤ q < ∞,

( N∫
0

|p(t)| q
d e−tdt

N∫
0

e−tdt

) 1
q

≤ C
max(q, 1)
max(r, 1)

( N∫
0

|p(t)| r
d e−tdt

N∫
0

e−tdt

) 1
r

.

Proposition 2. There exists an absolute constant C such that if p is a poly-
nomial of degree at most d, N > 0, and 0 < q < ∞,

( N∫
0

|p(t)| q
d e−tdt

N∫
0

e−tdt

) 1
q

·
α− 1

d

N∫
0

χ{|p(t)|≤α}e−tdt

N∫
0

e−tdt

≤ Cmax(q, 1).

Propositions 1 and 2 are also true if one replaces |p(t)| 1d with expu, where
u is any function of class L. Using another theorem of Kannan, Lovász and
Simonovits [KLS] (which is similar to their theorem stated in the introduction
except that the measures µ are replaced by measures with exponential densities)
we then obtain

Theorem 7. Let X be a Banach space and let p : R
n → X be a polynomial of

degree at most d. Suppose 0 < r ≤ q < ∞ and µ is a log-concave probability
measure on R

n. Then there is an absolute constant C such that(∫
‖p(x)‖ q

d dµ(x)
) 1

q ≤ C
max(q, 1)
max(r, 1)

(∫
‖p(x)‖ r

d dµ(x)
) 1

r

,

and for the sublevel set estimate:

Theorem 8. There exists an absolute constant C such that if p : R
n → X is a

polynomial of degree at most d, 0 < q < ∞, and µ is a log-concave probability
measure on R

n, then(∫
‖p(x)‖ q

d dµ(x)
) 1

q · α− 1
d µ{x ∈ R

n : ‖p(x)‖ ≤ α} ≤ Cq.
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A measure is said to be log-concave if it is supported by an affine subspace
L of R

n, and with respect to Lebesgue measure on L has a density of the form
e−g(x) where the set K = {x : g(x) < ∞} and g|K are convex. In addition
to characteristic functions of convex bodies, these measures include gaussians
e−|x|2dx. Of course we can let q or r → 0 in Theorems 7 and 8 to obtain
estimates in the exp − log class L0.

2. To see why Theorem 2 implies the case r ≤ 1 and general q of Theorem
1, we first observe that Theorem 2 has a trivial reverse inequality. Considering
the sublevel set for ‖p(x)‖ with α

q
d = 2

∫
K
‖p‖ q

d , we have 1/4 ≤ ‖‖p‖ 1
d ‖Lq(K) ·

sup
α>0

α− 1
d |{x ∈ K : ‖p(x)‖ ≤ α}| uniformly for q > 0. Hence, by Theorem 2

1/4 ≤ ‖‖p‖ 1
d ‖Lq(K) · sup

α>0
α− 1

d |{x ∈ K : ‖p(x)‖ ≤ α}| ≤ Cn(nB(n, q + 1))
1
q .

In particular, using these inequalities with q ≤ 1, we see that the “norms”
‖‖p‖ 1

d ‖Lq(K) for q ≤ 1 and [supα>0 α− 1
d |{x ∈ K : ‖p(x)‖ ≤ α}|]−1 =

‖‖p‖−1/d‖−1
L1,∞(K) are uniformly equivalent. Therefore for any q ≥ r, we have(∫
K

‖p(x)‖ q
d dx

) 1
q

≤ Cn(nB(n, q + 1))
1
q

(∫
K

‖p(x)‖ r
d dx

) 1
r

.

3. It is easy to see that the conclusion of Theorem 2 has the following
equivalent formulation for general finite-volume convex bodies K:(

1
|K|

∫
K

‖p‖ q
d

) 1
q

≤ Cn(nB(n, q + 1))
1
q
|K|
|E| ‖‖p‖

1
d ‖L∞(E)

uniformly over all closed subsets E of K (with the same constant C). Somewhat
surprisingly, one can replace the L∞ norm on the right side with the smaller
Lr norm,

(
1

|E|
∫

E
‖p‖ r

d

) 1
r , incurring only an extra factor of 2 in the estimate.

This was observed in [BG] for the case q = ∞ and follows by considering the
non-decreasing rearrangement of ‖p‖ over E, p∗(τ) (i.e., p∗ is the inverse of the
measure of the sublevel sets of ‖p‖ restricted to E). The estimate in Theorem 2
implies a lower bound for p∗, namely(

1
|K|

∫
K

‖p‖ q
d

) 1
q

τ

|K| ≤ Cn(nB(n, q + 1))
1
q [p∗(τ)]

1
d

for 0 ≤ τ ≤ |E|. Raising this to the r’th power, integrating in τ and then taking
the r’th root gives the desired bound.

4. The convexity of the set K is crucial in obtaining the form of the constant
in Theorem 1. If instead one asks for the form of the constant B in the inequality(∫

F

‖p‖ q
d

) 1
q ≤ B

(∫
F

‖p‖ r
d

) 1
r
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where F is now an arbitrary (unit-volume) compact set in R
n and 0 ≤ r ≤ q ≤

∞, one may see that not only must B contain a factor of |cvxF |1− r
q (where

cvxF denotes the convex hull of F) but also a factor n1− r
q . To see this, consider

the example p(x) = xd
1 as before and F = {(x1, x

′) ∈ R
n : x1 ∈ (0, 1/n) ∪

(1 − ε, 1), |x′| ≤ 1 − x1} for suitable ε much smaller than 1/n. The proof of the
resulting inequality(∫

F

‖p‖ q
d

) 1
q ≤ Cn1− r

q |cvxF |1− r
q

(∫
F

‖p‖ r
d

) 1
r

is due to Brudnyi and Ganzburg [BG] (at least in the case q = ∞). To see this,
we first observe∫

F

‖p(x)‖ q
d ≤

∫
F

‖p(x)‖ r
d ‖‖p‖ 1

d ‖q−r
L∞(F ) ≤

∫
F

‖p(x)‖ r
d ‖‖p‖ 1

d ‖q−r
L∞(cvxF )

≤
∫

F

‖p(x)‖ r
d { 1

(nB(n, r + 1))
1
r

‖‖p‖ 1
d ‖Lr(cvxF )}q−r

where the last inequality follows from the case q = ∞ and general r of Theorem
1. Next, using the following equivalent formulation of Theorem 2 (which we
derived in Remark 3 above)

(3)

(
1
|K|

∫
K

‖p‖ q
d

) 1
q

≤ Cn(nB(n, q + 1))
1
q inf

E⊂K

|K|
|E|

(
1
|E|

∫
E

‖p‖ r
d

) 1
r

when q = r, E = F and K = cvxF , we obtain the result. Interestingly, (3) can
be thought of as a way to formulate the analogue of Lemma 1 in the higher-
dimensional context, and it is natural to enquire as to whether the constant
n(nB(n, q + 1))

1
q can be improved upon if we restrict E to range over convex

subsets of K. This however is not the case. To see this, take K = {(x1, x
′) ∈

R
n : 0 < x1 < n − 1, |x′| < 1 − 1

n−1x1}, E = {(x1, x
′) ∈ R

n : 0 < x1 < 1, |x′| <

1 − 1
n−1x1}, and p(x) = xd

1. (Of course, X = R here).

5. If p : R
n → C is a polynomial of degree at most d, it is well known that

ω = |p| is an Aq weight when q > d + 1 with Aq bounds independent of the
coefficients of p ; see [RS]. Theorem 2, when q = d, can be viewed as a sharp
endpoint result of this nature. Recall that a weight ω is in Aq if

1
|B|

∫
B

ω(x)dx ·
[

1
|B|

∫
B

ω(x)−q′/qdx

]q/q′

≤ A < ∞

for all balls B in R
n. The smallest constant A for which the above holds is called

the Aq bound, Aq(ω), for ω. Using Theorem 2 with q = d, we see that there is
an absolute constant C such that if p : R

n → X is a polynomial of degree at
most d with values in a Banach space X and q > d + 1,

Aq(‖p‖) ≤ (Cd)d
[ q − 1
q − (d + 1)

]q−1

.
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We remark that this estimate remains valid when we allow the Aq bound to also
vary over all convex bodies K in R

n, not just Euclidean balls B. See also [NSV].

6. The theorem of Kannan, Lovász and Simonovits which we used relies heav-
ily on the non-negativity of the functions involved. However there are phenom-
ena, closely related to sublevel set problems for polynomials, which are highly
oscillatory in nature; most notably estimates for oscillatory integrals. For exam-
ple, it follows from Theorem 7.2 of [CCW] that if Q = [0, 1]n, p : Q → R is a
polynomial of degree at most d so that

∫
Q

p = 0 and ‖p‖L∞(Q) = 1, then for λ

large and real,

(4)
∣∣∣∫

Q

eiλp(x)dx
∣∣∣ ≤ Cd,n

|λ| 1d .

Can we expect improvement to this along the lines enjoyed by sublevel sets?
In particular if

∫
Q

p = 0 and ‖p‖L1(Q) = 1, can we take Cd,n in (4) to be
C min(d, n)? On average the answer is yes, because a direct consequence The-
orem 2 is that for ‖p‖L1(K) = 1, K a convex body of volume 1, φ ∈ S(R) with
0 ≤ φ̂ ≤ χ[−1,1]∣∣∣ 1

µ

∫ {∫
K

eiλp(x)dx
}

φ(λ/µ)dλ
∣∣∣ ≤ C min(d, n) µ− 1

d

with C absolute. To see this, note that the left side is equal to
∫

K
φ̂(µp(x))dx

which is in turn equivalent to |{x ∈ K : |p(x)| ≤ µ−1}|. (This well-known
argument also demonstrates the fact that oscillatory integral estimates imply
sublevel set estimates).
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