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FROBENIUS POWERS OF COMPLETE INTERSECTIONS

Luchezar L. Avramov and Claudia Miller

Introduction

Let R be a commutative noetherian local ring of characteristic p > 0, and
let φ : R → R be the Frobenius endomorphism, φ(a) = ap. Each iteration φr

defines on R a new structure of R-module, denoted φr

R, for which a · b = apr

b.
In 1969 Kunz [7, (3.3)] observed that if R is regular, then φr

R is flat for all
r ≥ 0, and he discovered that if φr

R is flat for some r ≥ 1, then R is regular.
Regularity is equivalent to the finiteness of the projective dimension of the R-
module k = R/m, where m is the maximal ideal of R, so Kunz’s theorem connects
the homological properties of k and those of φ. To summarize further results
along these lines, we let c(R) denote the least integer s such that (y : m) � ms

for some maximal R-regular sequence y (such an s exists by Krull’s Intersection
Theorem).

For a finitely generated R-module M the following conditions are equivalent.
(i) M has finite projective dimension.
(ii) TorR

n (M, φr

R) = 0 for all n, r ≥ 1.
(iii) TorR

n (M, φr

R) = 0 for all n ≥ 1 and infinitely many r.
(iv) TorR

n (M, φr

R) = 0 for j ≤ n ≤ j+depthR+1 where j, r are fixed integers
satisfying j ≥ 1 and r > logp(c(R)).

The implication (i) =⇒ (ii) is a fundamental theorem of Peskine and Szpiro
[10, (1.7)]. An early converse, (iii) =⇒ (i), was given by Herzog [4, (3.1)].
Recently, Koh and Lee proved (iv) =⇒ (i) in [6, (2.6)] (but stated a weaker
result).

The local ring R is said to be complete intersection if in some (equivalently,
in every) Cohen presentation of its m-adic completion as a homomorphic image
of a regular local ring, the defining ideal is generated by a regular sequence. If
R has this property, the length �RM of M is finite, and its projective dimension
pdR M is infinite, then limr→∞(�R(TorR

n (M, φr

R))p−r dim R) exists by Seibert
[11, Prop. 1], and is positive by Miller [9, (2.5)]; this partly sharpens Herzog’s
theorem.

Our main result links, qualitatively and quantitatively, the homology of Frobe-
nius powers of a complete intersection and the homology of the residue field.
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Theorem. Let M be a module over a complete intersection local ring (R, m, k).
If TorR

j (M, φr

R) = 0 for some fixed j, r ≥ 1 then TorR
n (M, φr

R) = 0 for all
n ≥ j; if, furthermore, M is finitely generated, then pdR M < ∞.

If M has finite length and pdR M = ∞, then for every r ≥ 1 the limits

lim
s→∞

�R(TorR
2s(M, φr

R))
�R(TorR

2s(M, k))
and lim

s→∞
�R(TorR

2s+1(M, φr

R))

�R(TorR
2s+1(M, k))

exist, are rational numbers, and at least one of them is positive.

It should be noted that none of the conclusions of the theorem requires R
to be a complete intersection. While we do not know whether this hypothesis
is necessary, it does play a major role in our proofs. We use it in Section 1 to
show that φr

R is rigid, refining techniques from [3], [9]. We invoke it again in
Section 2 in order to apply results from [2], [8], [1], on the one hand to deduce
finite projective dimension from rigidity, on the other to study the asymptotic
behavior of lengths of Tor’s.

We want to thank Srikanth Iyengar for useful comments on the manuscript.

1. Rigidity

Throughout our discussion, different module structures on the same abelian
group will be induced by various homomorphisms of commutative rings. We
start by describing notation that will keep track of the module structure in use.

If α : A → B is a homomorphism of commutative rings, then αB denotes the
A-B-bimodule B with A acting through α and B acting through idB , that is,
a · b′ = α(a)b′ and b · b′ = bb′ for all a ∈ A, b′ ∈ αB, b ∈ B. For each A-module
M the tensor product M ⊗A

αB is a B-module: b · (m ⊗ b′) = m ⊗ (bb′) for all
b ∈ B, m ∈ M , b′ ∈ αB. Using a projective resolution of M to compute Tor’s,
one endows TorA

n (M, αB), for each n ≥ 0, with a B-module structure that is
natural in M .

We fix a prime number p and an integer r > 0, and set q = pr. For any
ring A of characteristic p, we use ϕ to denote the r’th iteration of the Frobenius
endomorphism: ϕ(a) = aq for all a ∈ A. For every homomorphism α : A → B
one has αϕ = ϕα. For a subset a of A, we sometimes write aq instead of ϕ(a).

From now on R denotes a local ring with maximal ideal m and residue field k =
R/m. We let ι : R → R̂ denote the canonical map into the m-adic completion.

Remark 1. For each R-module M and all n ≥ 0 there are natural isomorphisms

TorR
n (M, ϕR) ⊗R

ιR̂ ∼= TorR
n (M, ιϕR̂) = TorR

n (M, ϕιR̂) ∼= TorR̂
n (M ⊗R

ιR̂, ϕR̂)

obtained by standard use of the flatness of ι.

Remark 2. By Cohen’s Structure Theorem we may assume R̂ is a residue ring
of a ring of formal power series Q = k[[t]] on indeterminates t = t1, . . . , te.
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Let −′ denote the functor (− ⊗Q
ϕQ) from the category of Q-modules into

itself; it is exact by Kunz’s theorem. On the category of R̂-modules the functors
(−′ ⊗Q R̂) and (−⊗R̂

ϕR̂) are isomorphic, by associativity of tensor products.
We further assume R̂ = Q/(x) for a Q-regular sequence x = x1, . . . , xc.

The subquotients of the (x)-adic filtration of the Q-algebra S = Q/(xq) are
free R̂-modules. Refining this filtration, we fix a filtration

0 = Sqc ⊂ Sqc−1 ⊂ · · · ⊂ S1 ⊂ S0 = S

with subquotients isomorphic to R̂; it produces exact sequences

0 −→ Si+1
τi−−→ Si

σi−→ R̂ −→ 0 for i = 0, . . . , qc − 1 .(1i)

For each Q-module N and for i = 0, . . . , qc − 1, set Si(N) = Ker(N ′ ⊗Q τi).
The idea for the proof of part (b) below comes from [3, (2.2)] and [9, (2.1)].

Lemma 3. If R = R̂, then for each R-module M the following hold.
(a) Si(M) is a homomorphic image of S0(M) for i = 1, . . . , qc − 1 .
(b) S0(M) ∼= TorR

1 (M, ϕR) .

Proof. Applying TorQ(−, ϕR) to each sequence (1i) we obtain isomorphisms

Si(M) ∼= Coker(TorQ
1 (M ′, σi)) for i = 0, . . . , qc − 1 .(2i)

(a) As S0 = S, for each exact sequence of S-modules (1i) there exists a map
πi : S0 → Si with σ0 = σiπi. In view of (2i), it yields a commutative diagram

TorQ
1 (M ′, S0)

TorQ
1 (M ′,σ0) ��

TorQ
1 (M ′,πi)

��

TorQ
1 (M ′, R) �� S0(M) ��

�i

��

0

TorQ
1 (M ′, Si)

TorQ
1 (M ′,σi) �� TorQ

1 (M ′, R) �� Si(M) �� 0

where the rows are exact, and so the homomorphism $i is surjective.

(b) Choose an exact sequence 0 −→ K
κ−−→ L

λ−−→ M −→ 0 with a free
R-module L, then apply (−⊗Q

ϕQ) to get an exact sequence of Q-modules

0 −→ K ′ κ′
−−→ L′ λ′

−−→ M ′ −→ 0(3)

Writing L = G⊗Q R with a free Q-module G, we obtain a commutative diagram

G ⊗Q TorQ
1 (S, S)

G⊗QTorQ
1 (S,σ) ��

∼=
��

G ⊗Q TorQ
1 (S, R)

∼=
��

TorQ
1 (L, R) ⊗Q

ϕQ
∼= ��

TorQ
1 (λ,R)⊗Q

ϕQ

��

TorQ
1 (L′, S)

TorQ
1 (L′,σ) ��

TorQ
1 (λ′,S)

��

TorQ
1 (L′, R)

TorQ
1 (λ′,R)

��
TorQ

1 (M, R) ⊗Q
ϕQ

∼= �� TorQ
1 (M ′, S)

TorQ
1 (M ′,σ) �� TorQ

1 (M ′, R)
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with isomorphisms due to the flatness of G and ϕQ over Q, and the equality
R′ = S.

The Koszul complex K(x, Q) is a free resolution of R over Q. For each R-
module N the differential of the complex N ⊗Q K(x, Q) is trivial, so there is an
isomorphism TorQ

1 (−, R) ∼= (−⊗R Rc) of functors on the category of R-modules.
In particular, TorQ

1 (λ, R) is surjective, hence so is TorQ
1 (λ′, S). Similarly, the

Koszul complex K(xq, Q) resolves S over Q. The differential of K(xq, Q)⊗QN is
trivial for each S-module N , so there is an isomorphism TorQ

1 (S,−) ∼= (Sc⊗S −)
of functors on the category of S-modules. Thus, TorQ

1 (S, σ) is surjective, hence
so is TorQ

1 (L′, σ).
Formula (20) and the preceding computations yield isomorphisms

S0(M) ∼= Coker(TorQ
1 (M ′, σ)) ∼= Coker(TorQ

1 (λ′, R)) .

The exact sequence (3) induces the top row of the commutative diagram

TorQ
1 (L′, R)

TorQ
1 (λ′,R) �� TorQ

1 (M ′, R) �� K ′ ⊗Q R
λ′⊗QR ��

∼=
��

L′ ⊗Q R

∼=
��

0 �� TorR
1 (M, ϕR) �� K ⊗R

ϕR
λ⊗R

ϕR �� L ⊗R
ϕR

with isomorphisms from Remark 2. It gives isomorphisms that finish the proof:

Coker(TorQ
1 (λ′, R)) ∼= Ker(λ′ ⊗Q R) ∼= Ker(λ ⊗R

ϕR) ∼= TorR
1 (M, ϕR) . �

Proof of Theorem. Part I. We assume that M is an R-module and there exists
a j ≥ 1 such that TorR

j (M, ϕR) = 0, and prove that TorR
n (M, ϕR) = 0 for all

n ≥ j.
In view of Remark 1 and the faithful flatness of ι : R → R̂, we may assume that

R is complete. Obvious inductive considerations show that it suffices to establish
the vanishing of TorR

j+1(M, ϕR). Replacing M by a (j−1)st syzygy, and adjusting
notation, we may change our hypothesis to read TorR

1 (M, ϕR) = 0. Thus, the
proposition will be proved once we show that this implies TorR

2 (M, ϕR) = 0.
The exact sequences (1i) and (3), and Remark 2, yield the commutative

diagrams displayed in Figure 1 for i = 0, . . . , qc − 1. The rows are exact by
Lemma 3. The columns are exact due to right exactness of tensor products and,
for the rightmost one, to our hypothesis.

By decreasing induction on i we prove the labeled maps are injective. If
i = qc − 1, then Si+1 = 0, so all modules in the left hand column are trivial,
and our assertion is clear. If 0 ≤ i < qc − 1, then κ′ ⊗Q Si+1 is injective by the
induction hypothesis. Applying the Snake Lemma to the two top rows we see
that κ′ ⊗Q Si is injective, then applying it to the two columns on the left we
conclude that K ′ ⊗Q τi is injective.
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0

��
0 �� Si(K) �� K ′ ⊗Q Si+1

K′⊗Qτi ��

κ′⊗QSi+1

��

K ′ ⊗Q Si
��

κ′⊗QSi

��

K ⊗R
ϕR ��

��

0

0 �� L′ ⊗Q Si+1
��

��

L′ ⊗Q Si
��

��

L ⊗R
ϕR ��

��

0

0 �� M ′ ⊗Q Si+1
��

��

M ′ ⊗Q Si
��

��

M ⊗R
ϕR ��

��

0

0 0 0

Figure 1

The injectivity of K ′ ⊗Q τ0 yields S0(K) = 0. Lemma 3 shows that the module
TorR

1 (K, ϕR) vanishes. This module is isomorphic to TorR
2 (M, ϕR), so we are

done.

2. Complexity

Let (S, n, k) be a local complete intersection, not necessarily of positive char-
acteristic, and set codim S = �S(n/n2)−dimS. Following [1], we say that a pair
(K, L) of finitely generated S-modules has complexity d, and write cxS(K, L) =
d, if d is the least non-negative integer for which there exists a β ∈ R such that

�S(Extn
S(K, L) ⊗S k) ≤ βnd−1 for all n � 0 .

The number cxS(K, k) is called the complexity of K and is denoted cxS K. It
measures the polynomial rate of growth of a minimal free resolution of K. In
particular, cxS K = 0 if and only if K has finite projective dimension.

Remark 4. The first inequality below follows from a result of Gulliksen [5,
(3.1)], cf. [1, (1.3)]; the other two inequalities are established in [1, (1.3)].

cxS(K, L) ≤ codim S(4)

cxS K + cxS L − codim S ≤ cxS(K, L) ≤ min{cxS K , cxS L}(5)

When TorS
n(K, L) = 0 for all n ≥ 1 the following equality is proved in [8, (2.1)].

cxS K + cxS L = cxS(K ⊗S L)(6)

When K is Cohen-Macaulay, [1, (5.6.2), (5.6.8), (5.6.10)] imply the next equality.

cxS(K, L) = cxS(L,Extdim S−dim K
S (K, S))(7)

We relate complexity to the growth of lengths of torsion modules.
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Proposition 5. If K is a module of finite length over a complete intersection
S, then for each finitely generated S-module L there are polynomials g±(t) ∈ Q[t]
with

�S(TorS
n(K, L)) =

{
g+(n) for all n = 2s � 0 ;
g−(n) for all n = 2s + 1 � 0 ;

max{deg g+(t) , deg g−(t)} = cxS(K, L) .

Proof. Let E be an injective envelope of the S-module k. The functor (−)∨ =
HomS(−, E) of Matlis duality is exact, so for each n ≥ 0 we obtain isomorphisms

TorS
n(K, L)∨ ∼= Extn

S(L, K∨)

of S-modules. Since Matlis duality preserves lengths, we see that

�S(TorS
n(K, L)) = �S(Extn

S(L, K∨)) .

By Gulliksen [5, (3.1)], the graded S-module E = Ext•S(L, K∨) has a structure
of finitely generated graded module over a polynomial ring S[χ] with indeter-
minates χ = χ1, . . . , χc of degree 2. Since the S-module K has finite length,
it is annihilated by nm for some m ≥ 1, so nmE = 0. It follows that E is also
a finitely generated graded module over the polynomial ring (S/nm)[χ]. The
Hilbert-Serre Theorem now provides polynomials g±(t) ∈ Q[t] such that

�S(Extn
S(L, K∨)) =

{
g+(n) for all n = 2s � 0 ;
g−(n) for all n = 2s + 1 � 0 ;

max{deg g+(t) , deg g−(t)} = dimS[χ] E .

Since (nS[χ])mE = nmE = 0, we have the first equality in the following sequence:

dimS[χ] E = dimS[χ](E/nE) = cxS(L, K∨) = cxS(K, L) .

The second comes from dimension theory. The third is a consequence of formula
(7) and the isomorphism K∨ ∼= Extdim S

S (K, S), due to the finite length of K.

Remark 6. Let R be a local complete intersection of characteristic p, with
R̂ = Q/(x) where Q = k[[t]] and x = x1, . . . , xc is a Q-regular sequence, cf.
Remark 2.

The local ring S = R̂⊗Q
ϕQ = Q/(xq) is complete intersection with codim S =

c. Let σ : S → R̂ be the canonical surjection, and let ρ denote the composition

R
ι−→ R̂ = R̂ ⊗Q Q

R̂⊗Qϕ−−−−→ R̂ ⊗Q
ϕQ = S .

As ι and ϕ : Q → Q are local flat homomorphisms, so is ρ. It satisfies ϕι = σρ,
so for every R-module M and for the S-module K = M ⊗R

ρS the following
hold.

TorR
n (M, ϕR) ⊗R

ιR̂ ∼= TorS
n(K, σR̂)(8)

cxR(M) = cxS(K)(9)
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Remark 7. In view of the inclusion (xq) ⊆ (t)(x), a result of Tate [12, Theorem
6] provides the first equality in the following sequence:

∞∑
n=0

�S(Extn
S(σR̂, k))tn =

(1 + t)c

(1 − t2)c
=

1
(1 − t)c

=
∞∑

n=0

(
n + c − 1

c − 1

)
tn .

Thus, we can determine the complexity of σR̂ as a module over S:

cxS
σR̂ = codim S(10)

Proof of Theorem. Part II. Let M be a finitely generated R-module.
Suppose TorR

j (M, ϕR) = 0 for some j ≥ 1. By Part I of the proof,
TorR

n (M, ϕR) = 0 for all n ≥ j. Replacing M by a syzygy, we may assume
j = 1. We then obtain

cxR(M) + codim S = cxS(K) + cxS(σR̂) = cxS(K ⊗S
σR̂) ≤ codim S

using formulas (9) and (10), (8) and (6), (4); thus, cxR M = 0, that is, pdR M
is finite.

Suppose �RM < ∞. Completion preserves length and projective dimension,
so we may assume R = R̂. By [2, (8.1)] there exist polynomials b±(t) ∈ Q[t]
with

�R(TorR
n (M, k)) =

{
b+(n) for all n = 2s � 0 ;
b−(n) for all n = 2s + 1 � 0 ;

deg b+(t) = deg b−(t) = cxR M .

Note next the equalities cxR M = cxS K = cxS(K, σR), due to formulas (9), (5),
and (10). The desired properties of the limits in the theorem are now seen to
follow from the expressions above and those in Proposition 5 with L = σR.
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