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QUATERNIONIC GAMMA FUNCTIONS AND THEIR
LOGARITHMIC DERIVATIVES AS SPECTRAL FUNCTIONS

Jean-François Burnol

We establish Connes’s local trace formula (related to the explicit formulae
of number theory) for the quaternions. This is done as an application of a
study of the central operator H = log(|x|) + log(|y|) in the context of invariant
harmonic analysis. The multiplicative analysis of the additive Fourier transform
gives a spectral interpretation to generalized “Tate Gamma functions” (closely
akin to the Godement-Jacquet “γ(s, π, ψ)” functions.) The analysis of H leads
furthermore to a spectral interpretation for the logarithmic derivatives of these
Gamma functions (which are involved in “explicit formulae”.)

1. Introduction

We establish for quaternions an analog of the trace formula obtained by
Connes in [5] for a commutative local field K. This formula has the form
Tr(P̃ΛPΛ Uf ) = 2 log(Λ)f(1) + W (f) + o(1) (for Λ → ∞), where f is a test-
function on K×, Uf is the operator of multiplicative convolution with f , PΛ

and P̃Λ are cut-off projections (precise definitions will be given later), all act-
ing on the Hilbert space of square-integrable functions on K. The contant term
W (f) was shown by Connes to be exactly the term arising in the “Weil’s explicit
formulae” [14] of number theory.

We have shown in this abelian local case (see [1], [2], and the related papers
[3] and [4]) that the Weil term W (f) can be written as −H(f)(1) for a certain
dilaton-invariant operator H. We study this operator in the non-commutative
context of quaternions and then derive the (analog of) Connes’s asymptotic
formula. The proof would go through (with some simplifications of course)
equally well in the abelian case.

We first give some elementary lemmas of independent interest about self-
adjoint operators. We then study in multiplicative terms the additive Fourier
Transform, and this immediately leads to the definition of certain “Quaternionic
Tate Gamma” functions and to the analog of Tate’s local functional equations
([13], [15]). This is of course very much related to the generalization to GL(N)
of Tate’s Thesis in the work [6] of Godement-Jacquet (see [8], [9] for reviews
and references to further works by other authors), where certain “γ(s, π, ψ)”
functions, local L- and ε-factors and associated functional equations are studied.
Also relevant is the classic monograph by Stein and Weiss [12] on harmonic
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analysis in euclidean spaces. In this paper we will follow a completely explicit
and accordingly elementary approach.

We introduce the “conductor operator” H = log(|x|)+ log(|y|) and show how
it gives an operator theoretic interpretation to the logarithmic derivatives of the
Gamma functions (which are involved in explicit formulae.) It is then a simple
matter to compute Connes’s trace, and to obtain the asymptotic formula

Tr(P̃ΛPΛ Uf ) = 2 log(Λ)f(1) − H(f)(1) + o(1)

in a form directly involving our operator H. Further work leads to a “Weil-like”
formulation for the constant term H(f)(1), if so desired.

2. Closed invariant operators

It is well known that any bounded operator on L2(R, dx) which commutes
with translations is diagonalized by the additive Fourier transform (see for ex-
ample the Stein-Weiss monograph [12].) We need a generalization which applies
to (possibly) unbounded operators on Hilbert spaces of the form L2(G, dx) where
G is a topological group. Various powerful statements are easily found in the
standard references on Hilbert spaces, usually in the language of spectral rep-
resentations of abelian von Neumann algebras. For lack of a reference precisely
suited to the exact formulation we will need, we provide here some simple lemmas
with their proofs.

Definition 2.1. Let L be a Hilbert space. A (possibly unbounded) operator M
on L with domain D is said to commute with the bounded operator A if

∀v ∈ L : v ∈ D ⇒
(

A(v) ∈ D and M(A(v)) = A(M(v))
)
.

Theorem 2.2. Let L be a Hilbert space and G a (not necessarily abelian) group
of unitary operators on L. Let A be the von Neumann algebra of bounded oper-
ators commuting with G. Let M be a (possibly unbounded) operator on L, with
dense domain D. If the three following conditions are satisfied
(1) A is abelian,
(2) (M, D) is symmetric, and
(3) (M, D) commutes with the elements of G,
then (M, D) has a unique self-adjoint extension. This extension commutes with
the operators in A.

Proof. We first replace (M, D) by its double-adjoint so that we can assume that
(M, D) is closed (it is easy to check that conditions (2) and (3) remain valid).
The problem is to show that it is self-adjoint. Let K be the range of the operator
M + i. It is a closed subspace of L (as ‖(M + i)(ϕ)‖2 = ‖M(ϕ)‖2 +‖ϕ‖2, and M
is closed). Let R be the bounded operator onto D which is orthogonal projection
onto K followed with the inverse of M + i. One checks easily that R belongs
to A, hence commutes with its adjoint R∗ which will also belong to A. Any
vector ψ in the kernel of R is then in the kernel of R∗ (as < R∗ψ|R∗ψ > = <
ψ|R R∗ψ > = 0). So ψ belongs to the orthogonal complement to the range of
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R, that is ψ = 0 as the range of R is D. So K = L and in the same manner
(M − i)(D) = L. By the basic criterion for self-adjointness (see [10]), M is
self-adjoint. Let A ∈ A. It commutes with the resolvent R hence leaves stable
its range D. On D one has RA(M + i) = AR(M + i) = A = R(M + i)A hence
A(M + i) = (M + i)A so A commutes with M .

For the remainder of this section we let G be a locally compact, Hausdorff,
topological abelian group and Ĝ its dual group. We refer to [11] for the basics of
harmonic analysis on G. In particular we have a Haar measure dx (unique up to a
multiplicative constant) and a Hilbert space L = L2(G, dx). We also have a dual
Haar measure dy on Ĝ such that the Fourier transform F (ϕ)(y) =

∫
ϕ(x)y(x)dx

is an isometry of L onto L2(Ĝ, dy). We sometimes identify the two Hilbert spaces
without making explicit the reference to F : so when we write f(y) ∈ L we really
refer to F−1(f) ∈ L with f ∈ L2(Ĝ, dy). No confusion should arise. We will
assume that dy is a σ-finite measure so that there exists ψ ∈ L with the property
ψ(y) 
= 0 a.e..

Let a(y) be a measurable function on Ĝ, not necessarily bounded. Let Da ⊂ L
be the domain of square-integrable (equivalence classes of measurable) functions
ϕ(x) on G such that a(y)F (ϕ)(y) belongs to L2(Ĝ, dy). And let Ma be the
operator with domain Da acting according to ϕ �→ Ma(ϕ) = F−1(a · F (ϕ)). We
write a = b if the two functions a(y) and b(y) are equal almost everywhere on
Ĝ.

Lemma 2.3. The operator (Ma, Da) on L2(G, dx) commutes with G. Fur-
thermore Da is dense and (Ma, Da) is a closed operator. If (Mb, Db) extends
(Ma, Da), then in fact a = b and (Mb, Db) = (Ma, Da). The adjoint of (Ma, Da)
is (Ma, Da) (of course Da = Da.)

Proof. We give the proof for completeness. The commutation with G-trans-

lations is clear. Then Da contains (the inverse Fourier transform of) ψ(y)√
1+|a(y)|2

and all its translates. Hence if f is orthogonal to Da then the function f(y)ψ(y)√
1+|a(y)|2

on Ĝ belongs to L1(Ĝ, dy) and has a vanishing “inverse Fourier transform”, hence

f = 0 (almost everywhere). It is also clear using ψ(y)√
1+|a(y)|2 that if (Mb, Db)

extends (Ma, Da), then a = b. Let us assume that the sequence ϕj is such
that ϕ = limϕj and θ = limMa(ϕj) both exist. Let us pick a pointwise on
Ĝ almost everywhere convergent subsequence ϕjk

(y). Using Fatou’s lemma we
deduce that ϕ belongs to Da. Using Fatou’s lemma again we get the vanishing
of

∫
Ĝ
|θ(y) − a(y)ϕ(y)|2 dy, and this shows that (Ma, Da) is a closed operator.

Finally let f(y) be in the domain of the adjoint of (Ma, Da). There exists then
an element θ of L such that for any ϕ ∈ Da the equality∫

f(y)a(y)ϕ(y) dy =
∫

θ(y)ϕ(y) dy
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holds. This implies that the two following functions of L1(Ĝ, dy):

f(y)a(y)ψ(y)√
1 + |a(y)|2 and

θ(y)ψ(y)√
1 + |a(y)|2

have the same Fourier transform on G, hence are equal almost everywhere. So
f ∈ Da and (Ma)∗(f) = (Ma)(f).

Theorem 2.4. Let (M, D) be a closed operator on L2(G, dx) commuting with
G-translations. Then (M, D) = (Ma, Da) for a (unique) multiplicator a.

Note 2.5. For a bounded M and G = R, this is proven in the classical mono-
graph by Stein and Weiss [12], as a special case of a more general statement
applying in Lp spaces.

Proof. Let us first assume that M is bounded. We use the (inverse Fourier

transform of the) function ψ(y) and define a(y) to be
M(ψ)(y)

ψ(y)
. Let us consider

the domain D consisting of all finite linear combinations of translates of ψ. It
is dense by the argument using unicity of Fourier transform in L1 we have used
previously. Then (M, D) ⊂ (Ma, Da), hence (Ma, Da) is also an extension of
the closure of (M, D). As M is assumed to be bounded this is (M, L). But
this means that Da = L and that M = Ma (we then note that necessarily a is
essentially bounded).

The next case is when M is assumed to be self-adjoint. Its resolvents R1 =
(M − i)−1 and R2 = (M + i)−1 are bounded and commute with G. Hence they
correspond to multiplicators r1(y) and r2(y). The kernel of R1 is orthogonal
to the range of R2 = R∗

1 which is all of D, so in fact it is reduced to {0}.
Hence r1(y) is almost everywhere non-vanishing. Let f ∈ D and g = M(f). As

R1(M(f) − i f) = f we get g(y) =
1 + i r1(y)

r1(y)
· f(y) and defining a(y) to be

1 + i r1(y)
r1(y)

we see that (Ma, Da) is an extension of (M, D). Taking the adjoints

we deduce that (M, D) is an extension of (Ma, Da). So all three are equal (and
a is real-valued).

For the general case we use the theorem of polar decomposition (see for ex-
ample [10]). There exists a non-negative self-adjoint operator |M | with the same
domain as M and a partial isometry U such that M = U |M |. Further condi-
tions are satisfied which make |M | and U unique: so they also commute with
G. It follows from what was proven previously that (M, D) ⊂ (Ma, Da) for an
appropriate a (the product of the multiplicators associated to the self-adjoint
|M | and the bounded U). The adjoint (M∗, D∗) also has a dense domain and
commutes with G, so in the same manner (M∗, D∗) ⊂ (Mb, Db) for an ap-
propriate b. The inclusion (Ma, Da) ⊂ (M∗, D∗) ⊂ (Mb, Db) implies b = a and
(Ma, Da) = (M, D)∗∗. But the double-adjoint coincides with the closed operator
(M, D).
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Let us mention an immediate corollary:

Corollary 2.6. A closed symmetric operator on L2(G, dx) commuting with G is
self-adjoint, and a symmetric operator which has a dense domain and commutes
with G is essentially self-adjoint.

3. Tate’s functional equations

Our first concern will be to introduce numerous notations. Let H be the space
of quaternions with R-basis {1, i, j, k} and table of multiplication i2 = j2 = k2 =
−1, ij = k = −ji, jk = i = −kj, ki = j = −ik. A typical quaternion will be
denoted x = x0 + x1i + x2j + x3k, its conjugate x = x0 − x1i − x2j − x3k, its
real part Re(x) = x0, its (reduced) norm n(x) = xx = xx = x2

0 + x2
1 + x2

2 + x2
3.

H can also be considered as a left C-vector space with basis {1, j}. We then
write a = x0 + x1i and b = x2 + x3i. Then jaj−1 = a, x = a + bj, and
n(x) = aa+bb. The action of H on itself by right-multiplication sends x = a+bj
to the 2 × 2 complex matrix

Rx =
(

a −b
b a

)
.

We write V for the complex vector space of complex-linear forms α : H → C.
The forms A : x �→ a and B : x �→ b are a basis of V . We have a left action
of H on V with x ∈ H acting as α(y) �→ α(yx). This left action represents the
quaternion x by the matrix

Lx =
(

a b

−b a

)
.

Also let VN = SYMN (V ), for N = 0, 1, . . . be the N + 1-dimensional complex
vector space with basis the monomials AjBN−j , 0 ≤ j ≤ N .

Let G = H
× be the multiplicative group (with typical element g) and G0 =

{g ∈ G| n(g) = 1} its maximal compact subgroup. Through the assignment
g �→ Lg an isomorphism G0 ∼ SU(2) is obtained, and the VN ’s give the complete
list of (isomorphism classes of) irreducible representations of G0.

The additive Fourier Transform F is taken with respect to the additive char-
acter x �→ λ(x) = e−2π i(x+x). We note that λ(xy) = λ(yx). The choice we make
for the normalization of F is:

F(ϕ)(y) = ϕ̃(y) =
∫

ϕ(x)λ(−xy) dx,

where dx = 4dx0dx1dx2dx3 is the unique self-dual Haar measure for λ. With
these choices the function ω(x) = e−2πxx is its own Fourier transform.

Definition 3.1. The module |g| of g ∈ H
× is defined by the equality of additive

Haar measures on H: d(gx) = d(xg) = |g|dx. It is expressed in terms of the
reduced norm by |g| = n(g)2.

Note 3.2. The multiplicative (left- and right-) Haar measures on G are the
multiples of dg

|g| .
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One has a direct product G = (0,∞) × G0, g = rg0, r =
√

n(g) = |g|1/4.
We write dσ for the Euclidean surface element on G0 (for the coordinates xi),
so that dx = 4r3 drdσ. The rule for integrating functions of r is

∫
g(r)dx =

8π2
∫ ∞
0

g(r)r3dr as is checked with ω(x). So dσ = 2π2 d∗g0 where d∗g0 is the
Haar measure on G0 with total mass 1.

Definition 3.3. The normalized Haar measure on G is defined to be d∗g =
1

2π2
dg
|g| = 4dr

r d∗g0. It is chosen so that its push-forward under the module map
g �→ u = |g| ∈ R

×+ is du
u = 4dr

r .

The multiplicative group G acts in various unitary ways on L2 := L2(H, dx):
L1(g) : ϕ(x) �→ |g|1/2ϕ(xg) R1(g) : ϕ(x) �→ |g|1/2ϕ(gx)

and also L2(g) = R1(g−1) and R2(g) = L1(g−1).

Definition 3.4. The Inversion I is the unitary operator on L2(H, dx) acting as
ϕ(x) �→ 1

|x|ϕ( 1
x ). The Gamma operator is the composite Γ = FI.

Theorem 3.5. The Gamma operator commutes with both left actions L1 and
L2 and with both right actions R1 and R2 of G on L2.

Proof. One just checks that F intertwines L1 with L2, and also R1 with R2 and
that the inversion I also intertwines L1 with L2, and R1 with R2.

Definition 3.6. The basic isometry is the map φ(x) �→ f(g) =
√

2π2 |g| φ(g)
between L2(H, dx) and L2(G, d∗g).

Note 3.7. It is convenient to avoid using any notation at all for the basic isom-
etry. So we still denote by F the additive Fourier transform transported to the
multiplicative setting. The inversion I becomes f(g) �→ f(g−1). The Gamma
operator is still denoted Γ when viewed as acting on L2(G, d∗g).

The spectral decomposition of L2((0,∞), du
u ) is standard Fourier (or Mellin)

theory (alternatively we can apply Theorem 2.4 here): any bounded operator M
commuting with multiplicative translations is given by a measurable bounded
multiplier a(τ) in dual space L2(R, dτ

2π ):

G1(u) = lim
Λ→∞

∫ Λ

−Λ

ψ(τ)u−iτ dτ

2π
=⇒ M(G1)(u) = lim

Λ→∞

∫ Λ

−Λ

a(τ)ψ(τ)u−iτ dτ

2π
.

On the other hand the spectral decomposition of L2(G0, d∗g0) is part of the
Peter-Weyl theory: it tells us that L2(G0, d∗g0) decomposes under the L1 ×R1

action by G0 × G0 into a countable direct sum ⊕N≥0WN of finite dimensional
irreducible, non-isomorphic, modules. This is also the isotypical decomposition
under either L1 alone or R1 alone (for which WN then contains N + 1 copies of
VN .) Using the standard theory of tensor products of separable Hilbert spaces
(see for example [10]) we have:
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Lemma 3.8. The isotypical decomposition of L2(G, d∗g) under the compact
group G0 × G0 acting through L1 × R1 is

L2(G, d∗g) = L2((0,∞),
du

u
) ⊗ L2(G0, d∗g0) = ⊕NL2((0,∞),

du

u
) ⊗ WN .

Lemma 3.9. Let M be a bounded operator on L2 which commutes with both
the L1 and R1 actions of G. Then to each integer N ≥ 0 is associated an
(essentially bounded ) multiplicator aN (τ) on R, unique up to equality almost
everywhere, such that

ψ ∈ L2(R,
dτ

2π
), G1(u) = lim

Λ→∞

∫ Λ

−Λ

ψ(τ)u−iτ dτ

2π

⇒ ∀F ∈ WN M(FG1) = FG2, with

G2(u) = lim
Λ→∞

∫ Λ

−Λ

aN (τ)ψ(τ)u−iτ dτ

2π

and where FG1 is the function g �→ F ( g
|g|1/4 )G1(|g|) and FG2 the function

g �→ F ( g
|g|1/4 )G2(|g|).

Proof. Let us take f ∈ L2((0,∞), du
u ) and consider the linear operator Mf on

L2(G0, d
∗g0):

F (g0) �→
(

g0 �→
∫ ∞

0

f(u)M(f ⊗ F )(g0 u1/4)
du

u

)
.

It commutes with the action of G0 × G0 hence stabilizes each WN and is a
multiple af

N of the identity there. On the other hand, if we choose F1 and F2 in
WN and consider

f �→
(

u �→
∫

G0

F2(g0)M(f ⊗ F1)(g0 u1/4) d∗g0

)
we obtain a bounded operator M(F1, F2) on L2((0,∞), du

u ) commuting with
dilations and such that

< f |M(F1, F2)(f) >=< F2|Mf (F1) >= af
N < F2|F1 >,

where the left-hand bracket is computed in L2((0,∞), du
u ) while the next two are

in L2(G0, d∗g0). So M(F1, F2) depends on (F1, F2) only through < F2|F1 >. We
then let aN (τ) be the spectral multiplier associated to M(F, F ) for an arbitrary
F satisfying < F |F >= 1.

Corollary 3.10. The von Neumann algebra A of bounded operators commuting
simultaneously with the left and right actions of the multiplicative quaternions
on L2(H, dx) is abelian.

Lemma 3.11. A self-adjoint operator M commuting with both left and right
actions of G commutes with any operator of the von Neumann algebra A. In
particular it commutes with Γ.

Proof. One applies Theorem 2.2.
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Definition 3.12. The quaternionic Tate Gamma functions are the multiplica-
tors γN (τ) (N ≥ 0) associated to the unitary operator Γ.

Note 3.13. This generalizes the Gamma functions of Tate for K = R and
K = C ([13]). In all cases they are indexed by the characters of the maximal
compact subgroup of the multiplicative group K×.

Lemma 3.14. There is a smooth function in the equivalence class of γN (τ).

Proof. If the function G1(u) on (0,∞) is chosen smooth with compact support
(so that ψ(τ) is entire) then, for any F ∈ WN the function FG1, viewed in the
additive picture, is smooth on H, has compact support, and vanishes identically
in a neighborhood of the origin. So its image under the inversion also belongs to
the Schwartz class in the additive picture on H. Hence Γ(FG1) can be written as
|g|1/2φ(g) for some Schwartz function φ(x) of the additive variable x. One checks
that this then implies that G2(u) is a Schwartz function of the variable log(u)
(we assume that F does not identically vanish of course), hence that γN (τ)ψ(τ)
is a Schwartz function of τ . The various allowable ψ’s have no common zeros so
the conclusion follows.

Note 3.15. From now on γN refers to this unique smooth representative. It is
everywhere of modulus 1 as Γ is a unitary operator.

Note 3.16. Any function F ∈ WN will now be considered as a function on all
of G = H

× after extending it to be constant along each radial line. It is not
defined at x = 0 of course.

Let F ∈ WN . For Re(s) > 0, F (x)|x|s−1 is a tempered distribution on H,
hence has a distribution-theoretic Fourier Transform. At first we only consider
s = 1

2 + iτ :

Lemma 3.17. As distributions on H

F(F (
1
x

) |x|− 1
2+iτ ) = γN (τ)F (x) |x|− 1

2−iτ .

Proof. We have to check the identity:∫
F (

1
y
) |y|− 1

2+iτ ϕ̃(y) dy = γN (τ) ·
∫

F (x) |x|− 1
2−iτϕ(x) dx

for all Schwartz functions ϕ(x) with Fourier Transform ϕ̃(y). Both integrals are
analytic in τ ∈ R, hence both sides are smooth (bounded) functions of τ . It
will be enough to prove the identity after integrating against ψ(τ) dτ

2π with an
arbitrary Schwartz function ψ(τ). With the notations of Lemma 3.9, we have
to check ∫

F (
1
y
)G1(

1
y
)|y|− 1

2 ϕ̃(y) dy =
∫

F (x) G2(x)|x|− 1
2 ϕ(x) dx.
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But, by Lemma 3.9, and by Definition 3.12, F (x) G2(x)|x|− 1
2 is just the Fourier

Transform in L2(H, dx) of F ( 1
y )G1( 1

y )|y|− 1
2 , so this reduces to the L2-identity∫

ψ(y)ϕ̃(y) dy =
∫

ψ̃(x)ϕ(x) dx.

Theorem 3.18. Let F ∈ WN . There exists an analytic function ΓN (s) in 0 <
Re(s) < 1 depending only on N ∈ N and such that the following identity of
tempered distributions on H holds for each s in the critical strip (0 < Re(s) < 1) :

F(F (
1
x

) |x|s−1) = ΓN (s)F (x) |x|−s.

Proof. We have to check an identity:∫
F (

1
y
) |y|s−1ϕ̃(y) dy = ΓN (s) ·

∫
F (x) |x|−sϕ(x) dx

for all Schwartz functions ϕ(x) with Fourier Transform ϕ̃(y). Both integrals are
analytic in the strip 0 < Re(s) < 1, their ratio is thus a meromorphic function,
which depends neither on F nor on ϕ as it equals γN (τ) on the critical line.
Furthermore for any given s we can choose ϕ(x) = F (x)α(|x|), with α having
very small support around |x| = 1 to see that this ratio is in fact analytic.

Note 3.19. This is the analog for quaternions of Tate’s “local functional equa-
tion” [13], in the distribution theoretic flavor advocated by Weil [15]. We followed
a different approach than Tate, as his proof does not go through that easily in
the non-commutative case.

Let Γ(s) be Euler’s Gamma function (
∫ ∞
0

e−uus du
u ).

Theorem 3.20. We have for each N ∈ N :

ΓN (s) = iN (2π)2−4s Γ(2s + N
2 )

Γ(2(1 − s) + N
2 )

.

Proof. Let 0 ≤ j ≤ N and ωj(x) = A(x)
N−j

B(x)
j
e−2πxx = aN−j b

j
ω(x). One

checks that ω̃j(y) = (−1)j iN αN−j β
j
ω(y) (y = α + βj). We choose as ho-

mogeneous function Fj(x) = aN−j bj |x|−N/4. For these choices the identity of
Theorem 3.18 becomes

iN
∫

(αα)N−j(ββ)je−2πyy|y|s−1−N/4dy =

ΓN (s)
∫

(aa)N−j(bb)je−2πxx|x|−s−N/4dx.

Adding a suitable linear combinations of these identities for 0 ≤ j ≤ N gives

iN
∫

(yy)N e−2πyy|y|s−1−N/4dy = ΓN (s)
∫

(xx)N e−2πxx|x|−s−N/4dx,

hence the result after evaluating the integrals in terms of Γ(s).
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4. The central operator H = log(|x|) + log(|y|)
Definition 4.1. We let ∆ ⊂ C∞(G) be the vector space of finite linear combi-
nations of functions f(g) = F (g0)K(log(|g|)) with F in one of the WN ’s (hence
smooth) and K a Schwartz function on R. It is a dense sub-domain of L2.

Theorem 4.2. ∆ is stable under F .

Proof. We have to show that γN (τ) is a multiplier of the Schwartz class. Let
hN (τ) = −i

γ′
N (τ)

γN (τ) . Using Theorem 3.20 and the partial fraction expansion
of the logarithmic derivative of Γ(s) (as in [1] for the real and complex Tate
Gamma functions), or Stirling’s formula, or any other means, one finds hN (τ) =
O(log(1 + |τ |)), h

(k)
N (τ) = O(1), so that γ

(k)
N (τ) = O(log(1 + |τ |)k).

Let A be the operator on L2(H, dx) of multiplication with log(|x|). As it is
unbounded, we need a domain and we choose it to be ∆. Of course (A,∆) is
essentially self-adjoint. It is unitarily equivalent to the operator (B,∆), B =
FAF−1. Clearly:

Lemma 4.3. The domain ∆ is stable under A and B.

Definition 4.4. The conductor operator is the operator H = A + B :

H = log(|x|) + log(|y|).
This is an unbounded operator defined initially on the domain ∆.

Lemma 4.5. The conductor operator (H, ∆) commutes with the left and with
the right actions of G and is symmetric.

This is clear. Applying now Theorem 2.2 we deduce:

Theorem 4.6. The conductor operator (H, ∆) has a unique self-adjoint exten-
sion.

We will simply denote by H and call “conductor operator” this self-adjoint
extension.

Theorem 4.7. The conductor operator H commutes with the inversion I.

Proof. Indeed, it commutes with Γ by Theorem 2.2 and it commutes with F by
construction.

We now want to give a concrete description of its spectral functions.

Definition 4.8. Let for each N ∈ N and τ ∈ R :

hN (τ) = −i
γ′

N (τ)
γN (τ)

,

kN (τ) = −h′
N (τ)
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Explicit computations prove that the functions hN are left-bounded
(∃C ∀τ ∀N hN (τ) ≥ −C) and that the functions kN are bounded
(∃C ∀τ ∀N |kN (τ)| ≤ C.) We need not reproduce these computations here,
which use only the partial fraction expansion of Euler’s gamma function, as
similar results are provided in [1] in the real and complex cases.

Let f(g) = F (g0)φ(|g|) be an element of ∆, F ∈ WN ⊂ L2(G0, d
∗g0), φ ∈

L2((0,∞), du
u ), φ being a Schwartz function of log(u) (u = |g|). We can also

consider f to be given as a pair {F, ψ} with ψ(τ) =
∫ ∞
0

φ(u)uiτ du
u being a

Schwartz function of τ . Then A(f) is given by the pair {F, D(ψ)} where D is
the differential operator 1

i
d
dτ . This implies that ΓAΓ−1(f) corresponds to the

pair {F, D(ψ)− hN ·ψ}. On the other hand ΓAΓ−1 = −B so H(f) corresponds
to the pair {F, hN · ψ}. The commutation with the inversion I translates into
hN (−τ) = hN (τ). Also: K = i[B, A] = −i[A, H] sends the pair {F, ψ} to
{F, kN · ψ}, hence is bounded and anti-commutes with the Inversion. We have
proved:

Theorem 4.9. The operator log(|x|)+log(|y|) is self-adjoint, left-bounded, com-
mutes with the left- and right- dilations, commutes with the Inversion, and its
spectral functions are the functions hN (τ). The operator i [log(|y|), log(|x|)] is
bounded, self-adjoint, commutes with the left- and right- dilations, anti-commutes
with the Inversion and its spectral functions are the functions kN (τ).

We now conclude this chapter with a study of some elementary distribution-
theoretic properties of H. For this we need the analytic functions of s (0 <
Re(s) < 1) indexed by N ∈ N :

HN (s) =
d

ds
log(ΓN (s))

(so that hN (τ) = HN ( 1
2 + iτ)).

Lemma 4.10. Let ϕ(x) be a Schwartz function on H. Then H(ϕ) is continuous
on H\{0}, is O(log(|x|)) for x → 0, and is O(1/|x|) for |x| → ∞. Furthermore,
for any F ∈ WN (constant along radial lines), the following identity holds for
0 < Re(s) < 1 :∫

H(ϕ)(x)F (x)|x|−sdx = HN (s)
∫

ϕ(x)F (x)|x|−sdx.

Proof. Assuming the validity of the estimates we see that both sides of the
identity are analytic functions of s, so it is enough to prove the identity on the
critical line:∫

H(ϕ)(x)F (x)|x|− 1
2−iτdx = hN (τ)

∫
ϕ(x)F (x)|x|− 1

2−iτdx.

As in the proof of Lemma 3.17, it is enough to prove it after integrating against
an arbitrary Schwartz function ψ(τ). With G(u) =

∫ ∞
−∞ ψ(τ)u−iτ dτ

2π , and using
Theorem 4.9 this becomes∫

H(ϕ)(x)F (x)G(|x|)|x|− 1
2 dx =

∫
ϕ(x)H(FG)(x)|x|− 1

2 dx
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(on the right-hand-side H(FG) is computed in the multiplicative picture, on the
left-hand-side H(ϕ) is evaluated in the additive picture). The self-adjointness of
H reduces this to H(ϕ) = H(ϕ), which is a valid identity.

For the proof of the estimates we observe that B(ϕ) is the Fourier transform
of an L1-function hence is continuous, so that we only need to show that it is
O(1/|x|) for |x| → ∞. For this we use that B(ϕ) is additive convolution of −ϕ
with the distribution G = F(− log(|y|)). The estimate then follows from the
formula for G given in the next lemma.

Lemma 4.11. The distribution G(x) = F(− log(|y|)) is given as:

G(ϕ) =
∫
|x|≤1

(ϕ(x)−ϕ(0))
dx

2π2 |x|+
∫
|x|>1

ϕ(x)
dx

2π2 |x|+ (4 log(2π)+4γe−2)ϕ(0).

Proof. We have used the notation γe = −Γ′(1) for the Euler-Mascheroni’s con-
stant (= 0.577 . . . ). Let ∆s for Re(s) > 0 be the homogeneous distribution
|x|s−1 on H. It is a tempered distribution. The formula

∆s(ϕ) =
∫
|x|≤1

(ϕ(x) − ϕ(0))|x|s−1 dx +
∫
|x|>1

ϕ(x)|x|s−1 dx +
2π2

s
ϕ(0)

defines its analytic continuation to Re(s) > − 1
4 , with a simple pole at s = 0.

Using

F(∆s) = Γ0(s)∆1−s

for s = 1 − ε, ε → 0, and expanding in ε gives

ϕ(0) + εG(ϕ) + O(ε2) =

Γ0(1 − ε) ·
{

2π2

ε
ϕ(0) +

∫
|x|≤1

(ϕ(x) − ϕ(0))
dx

|x| +
∫
|x|>1

ϕ(x)
dx

|x| + O(ε)

}
.

As Γ0(1 − ε) = 1
2π2 (ε + (4 log(2π) + 4γe − 2)ε2 + O(ε3)) the result follows.

5. The trace of Connes for quaternions

Let f(g) be a smooth function with compact support on H
×. Let Uf be the

bounded operator
∫

f(g)L2(g) d∗g on L2(H, dx) of left multiplicative convolu-
tion. So

Uf : ϕ(x) �→
∫

G

f(g)
1√|g|ϕ(g−1x) d∗g.
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The composition Uf F of Uf with the Fourier Transform F acts as

ϕ(x) �→
∫

G

∫
H

f(g)
1√|g|λ(−g−1xy)ϕ(y) dy d∗g

=
∫

H

∫
G

f(
1
g
)
√

|g|λ(−gxy) d∗g ϕ(y) dy

=
1√
2π2

∫
y∈H

(∫
Y ∈H

f(
1
Y

)
1√

2π2|Y |λ(−Y xy) dY

)
ϕ(y) dy

=
1√
2π2

∫
H

F(I(f)a)(xy)ϕ(y) dy.

In this last equation I(f)a is the additive representative 1√
2π2|Y |f( 1

Y ) of I(f).

Finally denoting similarly with Γ(f)a the additive representative of Γ(f) we
obtain

(UfF)(ϕ)(x) =
1√
2π2

∫
H

Γ(f)a(xy)ϕ(y) dy.

As f has compact support on H
× we note that I(f)a is smooth with compact

support on H and that Γ(f)a belongs to the Schwartz class. Following Connes
([5], for R or C instead of H), our goal is to compute the trace of the operator
P̃ΛPΛ Uf , where P̃Λ = FPΛF−1 and PΛ is the cut-off projection to functions
with support in |x| ≤ Λ. Our reference for trace-class operators will be [7]. We
recall that if A is trace-class then for any bounded B, AB and BA are trace-class
and have the same trace. Also if K1 and K2 are two Hilbert-Schmidt operators
given for example as L2−kernels k1(x, y) and k2(x, y) on a measure space (X, dx)
then A = K∗

1 K2 is trace-class and its trace is the Hilbert-Schmidt scalar product
of K1 and K2:

Tr(K∗
1 K2) =

∫ ∫
k1(x, y) k2(x, y) dx dy.

The operator PΛF−1PΛ is an operator with kernel a smooth function re-
stricted to a finite box (precisely it is λ(xy), |x|, |y| ≤ Λ). Such an operator is
trace class, as is well-known (one classical line of reasoning is as follows: taking
a smooth function ρ(x) with compact support, identically 1 on |x| ≤ Λ, and Qρ

the multiplication operator with ρ, one has PΛF−1PΛ = PΛQρF−1QρPΛ, so that
it is enough to prove that QρF−1Qρ is trace-class. This operator has a smooth
kernel with compact support, so we can put the system in a box, and reduce to
an operator K with smooth kernel on a torus. Then K = (1 + ∆)−n(1 + ∆)nK
with ∆ the positive Laplacian. For n large enough, (1 + ∆)−n is trace-class,
while (1 + ∆)nK is at any rate bounded.)

So Connes’s operator P̃ΛPΛ Uf = F · PΛF−1PΛ · Uf is indeed trace class and

Tr(P̃ΛPΛ Uf ) = Tr(PΛF−1PΛ · UfF) = Tr(PΛF−1PΛ · PΛUfFPΛ)
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can be computed as a Hilbert-Schmidt scalar product:

Tr(P̃ΛPΛ Uf ) =
1√
2π2

∫ ∫
|x|,|y|≤Λ

λ(xy)Γ(f)a(xy) dx dy,

using the change of variable (x, y) �→ (Y = xy, y)

Tr(P̃ΛPΛ Uf ) =
√

2π2

∫
|Y |≤Λ2

λ(Y )Γ(f)a(Y )

(∫
|Y |
Λ ≤|y|≤Λ

dy

2π2|y|

)
dY

(C) Tr(P̃ΛPΛ Uf ) =
√

2π2

∫
|Y |≤Λ2

(
2 log(Λ) − log(|Y |)

)
λ(Y )Γ(f)a(Y ) dY

This integral is an inverse (additive) Fourier transform evaluated at 1. As Γ =
FI itself involves a Fourier transform the final result is just

√
2π2MΛ(I(f)a)(1)

where MΛ is the self-adjoint operator (2 log(Λ) − B)+ = max(2 log(Λ) − B, 0).
If we recall that

√
2π2 is involved in the basic isometry from the additive to the

multiplicative picture, we can finally express everything back in the multiplica-
tive picture:

Theorem 5.1. The Connes operator P̃ΛPΛ Uf is a trace-class operator and sat-
isfies

Tr(P̃ΛPΛ Uf ) = (2 log(Λ) − B)+(I(f))(1)

Tr(P̃ΛPΛ Uf ) = 2 log(Λ)f(1) − H(f)(1) + o(1)

For the last line we used that B(I(f))(1) = H(I(f))(1) = H(f)(1) as H =
log(|x|) + log(|y|) commutes with the Inversion I. The error is o(1) for Λ → ∞
as it is bounded above in absolute value (assuming Λ > 1) by

√
2π2

∫
|Y |≥Λ2

log(|Y |) |Γ(f)a(Y )| dY

and Γ(f)a is a Schwartz function of Y ∈ H. We note that if needed the Lemma
4.11 gives to the term H(f)(1) a form more closely akin to the Weil’s explicit
formulae of number theory. We note that Connes’s computation in [5] also
goes through an intermediate stage essentially identical with (C) and that the
identification of the constant term with Weil’s expression for the explicit formula
of number theory then requires a further discussion. The main result of [1]
and of this paper is thus the direct connection between H and the logarithmic
derivatives of the Tate Gamma functions involved in the explicit formulae.
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