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NONLINEAR ELLIPTIC EQUATIONS IN PLANE CONVEX

DOMAINS
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1. Introduction

Boundedness of the first derivatives of solutions to the Dirichlet problem for
the Poisson equation in any n-dimensional convex domain is a classical fact, and
it is well known that the convexity of the domain implies the square summa-
bility of the second derivatives of solutions to the same problem ([Kad], [LU]).
Both properties fail in the presence of reentrant corners. In the last few years,
considerable progress was made in the study of other differentiability properties
of solutions to the Poisson equation in arbitrary convex domains [A], [AJ], [F],
[FJ], [J1], [J2]. But to our knowledge, no similar results have been obtained for
systems and higher order equations. The present paper is a short communication
on our recent work in this direction. It contains only statements of the results
and the proofs will appear elsewhere.

We start with the Dirichlet problem for elliptic equations of order 2m with
constant coefficients in an arbitrary bounded plane convex domain Ω. We state
that the m-th order derivatives of these solutions are bounded if the coefficients
of the equation are real (Theorem 2). For the case of strongly elliptic operators
with complex coefficients we obtain the same result under the additional (and
also necessary in general) assumption that the angles on ∂Ω are absent or suffi-
ciently close to π (Theorem 1). In Theorem 3, we give a pointwise estimate for
derivatives of Green’s function.

These results rely heavily upon a precise pointwise asymptotic estimate for
solutions near a boundary point, which is of independent interest (Lemma 1).
This estimate has been established without the convexity assumption and under
the sole requirement of smallness of the local Lipschitz constant of the boundary.
It can be extended to elliptic operators on n-dimensional Lipschitz domains but
we do not dwell upon this generalization in the sequel. We emphasize that
this estimate is of different nature in comparison with the well known results
on elliptic equations in Lipschitz domains (see the book [Ken] and more recent
papers [JK] and [AP]).

Our first application to problems of mathematical physics concerns the system
of two-dimensional anisotropic elasticity theory in a convex domain. We claim
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that all elements of the stress tensor are uniformly bounded if zero traction
conditions are prescribed on the boundary (Theorem 4).

As the second application, we guarantee the boundedness of the gradient
of the velocity vector satisfying the Navier–Stokes system and zero Dirichlet
conditions on the boundary of a convex domain (Theorem 5).

Finally, we assert the boundedness of the second derivatives of a solution to
the system of von Kármán equations in a convex domain whose boundary is
clamped in transversal direction and free in horizontal direction (Theorem 6).

2. Linear higher order equation in a convex domain

By w we denote a unique solution to the Dirichlet problem

L(∂x)w = f w ∈ W̊m,2(Ω) ,(1)

where f ∈ W 1−m,q(Ω) with q ∈ (2,∞). Here W̊ l,p(Ω) is the completion of
C∞

0 (Ω) in the Sobolev space W l,p(Ω), 1 < p < ∞, and W−l,p′
(Ω) with p′ =

p/(p − 1) is the dual of W̊ l,p(Ω). The operator L(∂x) is strongly elliptic and
given by

L(∂x) =
∑

0≤k≤2m

ak∂k
x1

∂2m−k
x2

.

Theorem 1. Let Ω be a bounded convex domain in R
2 such that the jumps of

all angles between the exterior normal vector to ∂Ω and the x–axis do not exceed
a sufficiently small constant depending on m, q and the coefficients of L(∂x).
Then the solution w belongs to the space Cm−1,1(Ω), i.e. its derivatives of order
m − 1 are Lipschitz on Ω. The estimate holds

||w||Cm−1,1(Ω) ≤ C ||f ||W 1−m,q(Ω)(2)

where the constant C does not depend on f .

Generally, this assertion does not hold without the above restriction on the
jumps of the normal vector. More precisely, if there exists an angle vertex on
∂Ω, one can construct a second order strongly elliptic operator L with complex
coefficients such that the Dirichlet problem (1) with f ∈ C∞(Ω) has a solution
with unbounded gradient [Koz] (see also [KMR], Sect. 8.4.3).

Theorem 2. Let the coefficients of L(∂x) be real and let Ω be an arbitrary
bounded convex domain in R

2. Then the conclusion of Theorem 1 holds.

Theorem 3. Let GL(x, y) denote Green’s function of problem (1). Also let Ω
be an arbitrary bounded convex domain if the coefficients of L are real and let,
additionally, the jumps of all angles between the exterior normal vector to ∂Ω
and the x–axis be smaller than a constant depending on m and the coefficients
of L(∂x) in the complex coefficient case. Then for all x, y in Ω∑

|α|=|β|=m

|∂α
x ∂β

y GL(x, y)| ≤ C |x − y|−2 ,

where C is a positive constant depending on m, the coefficients of L and Ω.
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3. Auxiliary local estimate near Lipschitz boundary

In the next lemma and only there, we refute the assumption of convexity of
Ω and estimate the solution w of problem (1) in a neighborhood Bδ = {x ∈ R

2 :
|x| < δ} of the point O ∈ ∂Ω. We assume that Ω ∩ B2δ is described by the
inequalities x2 > ϕ(x1), |x| < 2δ, where ϕ is a Lipschitz function on [−2δ, 2δ]
and ϕ(0) = 0.

Lemma 1. Suppose f(x) = 0 for |x| < 2δ and the Lipschitz norm of ϕ on
[−2δ, 2δ] does not exceed a certain constant depending only on m and the coeffi-
cients of L. Then for all x ∈ Ω ∩ Bδ and k = 1 . . . , m − 1

(3) |∇kw(x)| ≤

A|x|m−k exp
(
− a

∫ δ

|x|

ϕ(ρ) + ϕ(−ρ)
ρ2

dρ + b

∫ δ

|x|
max
|t|<ρ

|ϕ′(t)|2 dρ

ρ

)
.

Here we use the notation

a =
1
2π

�
∑

1≤k≤m

(ζ+
k − ζ−k ) ,

where ζ+
1 , . . . , ζ+

m and ζ−1 , . . . , ζ−m are roots of the polynomial L(1, ζ) with positive
and negative imaginary parts respectively. This value of a is best possible. By
b we denote a positive constant depending only on m and the coefficients of L,
and we put A = c δ−1−m||w||L2(Ω∩B2δ) , where c is a constant depending on m
and the coefficients of L.

Note that for the polyharmonic operator ∆m we have ζ±k = ±i which implies
a = m/π.

In short, the proof of this key lemma is as follows. By using a particular
coordinate transformation we reduce the original Dirichlet problem to a first
order evolution system

∂tU − MU − N(t)U = F(4)

in the strip R×(0, π). Here, M and N are matrix ordinary differential operators
on (0, π) with M independent of t, and N(t) playing the role of a small pertur-
bation. In order to obtain sharp information on the global behavior of U(t, ·)
we use a spectral splitting of (4) into a one-dimensional and infinite-dimensional
parts, modifying the technique developed in [KM].

4. Plane anisotropic elasticity

We consider the equations

∂x1σi1 + ∂x2σi2 = fi in Ω for i = 1, 2,(5)

which describe the plane deformation of a homogeneous anisotropic body. The
stress tensor σ = {σij}i,j=1,2 is connected with the strain tensor ε = {εij}i,j=1,2
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by the Hooke law

εij =
2∑

k,l=1

aij,klσkl ,

where aij,kl are real numbers such that aij,kl = akl,ij = aji,kl and

2∑
i,j,k,l=1

aij,klσijσkl ≥ c0

2∑
i,j=1

σ2
ij , c0 > 0 .

We suppose that

σi1ν1 + σi2ν2 = 0 on ∂Ω for i = 1, 2,(6)

where ν1 and ν2 are components of the unit normal vector to ∂Ω. Evaluating
ε by the displacement vector u = (u1, u2) one arrives at a second order elliptic
system with respect to u1 and u2. It is standard that this system complemented
by (6) is solvable in (W 1,2(Ω))2 if the right-hand side f = (f1, f2) belongs to
(L2(Ω))2 and is orthogonal to the rigid body displacements.

Theorem 4. Let Ω be a bounded convex domain and let f ∈ (
Lq(Ω)

)2 for some
q > 2. Then all elements of the stress tensor are uniformly bounded in Ω.

5. Navier-Stokes system

We consider the Dirichlet problem for the Navier-Stokes system



−ν∆v + ∇p +
∑2

k=1 vk∂xk
v = f in Ω

∇ · v = 0 in Ω
v = 0 on ∂Ω

(7)

where f ∈ (
W−1,2(Ω)

)2 and (v, p) ∈ (
W̊ 1,2(Ω)

)2 × L2(Ω).

Theorem 5. Let Ω be a bounded convex domain and let f ∈ (
Lq(Ω)

)2 for some
q > 2. Then v ∈ (

C0,1(Ω)
)2 .

It is worth mentioning that Lemma 1 leads to the following pointwise estimate
for the velocity vector which is valid without the convexity requirement on Ω:

|v(x)| ≤ C|x| exp
(
− 2

π

∫ δ

|x|

ϕ(ρ) + ϕ(−ρ)
ρ2

dρ + b

∫ δ

|x|
max
|t|<ρ

|ϕ′(t)|2 dρ

ρ

)
(8)

for all x ∈ Ω ∩ Bδ. Here b is a positive constant depending on ν and C is a
positive constant depending ν, ||f ||(Lq(Ω∩B2δ))2 and ||v||(L2(Ω∩B2δ))2 . The value
2/π in (8) is precise.
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6. Von Kármán equations

Now we deal with the Dirichlet problem for the system


∆2u1 = [u1, u2] + f1 in Ω
∆2u2 = [u1, u1] + f2 in Ω
u := (u1, u2) ∈

(
W̊ 2,2(Ω)

)2
, f := (f1, f2) ∈

(
W−2,2(Ω)

)2
,

(9)

where
[u, v] = ∂2

x1
u · ∂2

x2
v + ∂2

x2
u · ∂2

x1
v − 2∂x1∂x2u · ∂x1∂x2v .

Theorem 6. Let Ω be a bounded convex domain and let f ∈ (
W−1,q(Ω)

)2 for
some q > 2. Then u ∈ (

C1,1(Ω)
)2 .
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E-mail address: vlkoz@mai.liu.se

E-mail address: vlmaz@mai.liu.se


