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L2 CURVATURE AND VOLUME RENORMALIZATION OF
AHE METRICS ON 4-MANIFOLDS

Michael T. Anderson

Abstract. This paper relates the boundary term in the Chern-Gauss-Bonnet
formula on 4-manifolds M with the renormalized volume V , as defined in the
AdS/CFT correspondence, for asymptotically hyperbolic Einstein metrics on M .
In addition we compute and discuss the differential or variation dV of V , or equiv-
alently the variation of the L2 norm of the Weyl curvature, on the space of such
Einstein metrics.

0. Introduction

The Chern-Gauss-Bonnet formula for a compact Riemannian 4-manifold
(M, g) without boundary states that

1
8π2

∫
M

(|R|2 − 4|z|2)dV =
1

8π2

∫
M

(|W |2 − 1
2
|z|2 +

1
24

s2)dV = χ(M),(0.1)

where R, W, z, s are respectively the Riemann, Weyl, trace-free Ricci and scalar
curvatures.

In particular, if g is an Einstein metric, then z = 0, and so Einstein metrics
minimize the L2 norm of the curvature over all metrics on M . Hence the L2

norm of the full curvature of an Einstein metric on M is apriori bounded by the
topology of M .

If (M, g) is a compact 4-manifold with non-empty boundary, then (0.1) no
longer holds; there is a correction or defect term given by certain curvature inte-
grals over the boundary ∂M. If (M, g) is complete and open, then the boundary
integrals relate to the asymptotic geometry of (M, g).

When (M, g) is a complete non-compact, Ricci-flat 4-manifold, then the defect
term in (0.1) is easily identified if the manifold asymptotically approaches that
of a quotient of R

4, i.e. M is asymptotically locally Euclidean (ALE), flat, (AF)
or locally flat, (ALF), c.f. [5].

In this paper, we consider this issue when (M, g) is an Einstein 4-manifold of
negative scalar curvature, which is asymptotically hyperbolic. To define this, let
M be an arbitrary compact, connected and oriented 4-manifold with non-empty
boundary ∂M ; we do not assume that ∂M is connected. According to Penrose,
c.f. [14] and also [12], a complete metric g on M is conformally compact if there
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is a smooth defining function ρ on M̄ = M ∪ ∂M, i.e. ρ(∂M) = 0, dρ �= 0 on
∂M and ρ > 0 on M , such that the metric

ḡ = ρ2 · g,(0.2)

extends to a smooth metric on M̄. We require that ḡ is at least C3 smooth up
to ∂M, although this condition could be relaxed somewhat.

Conversely, if ḡ is any smooth Riemannian metric on M̄ and ρ is any C1

defining function, then g ≡ ρ−2 · ḡ gives a complete conformally compact metric
on the open manifold M .

The defining function ρ is not unique, since it can be multiplied by any smooth
positive function on M̄. Hence, both the metric ḡ and its induced metric γ on
∂M are not uniquely defined by (M, g). However, the conformal class [γ] of the
metric γ = ḡT∂M is uniquely determined by the complete metric g; (∂M, [γ]) is
called the conformal infinity of (M, g). Conversely, any conformal class [γ] on
∂M is the conformal infinity of a complete metric on M .

When (M, g) is a complete conformally compact Einstein metric with Ricg =
−3g, then the sectional curvatures of g necessarily approach −1 uniformly at
infinity at an exponential rate, c.f. (1.3) below or [8]. Such manifolds are called
asymptotically hyperbolic (AH).

The study of complete AH Einstein (AHE) manifolds has become very active
recently due to the AdS/CFT correspondence in string theory, c.f. [16] and
references therein. In order to produce an effective gravitational action, one
needs to renormalize the volume of such a metric, since the volume itself is
obviously infinite. If (M, g) is an AH Einstein 4-manifold and ρ is any defining
function on M , then one has the following asymptotic expansion for the volume
of compact domains B(r) = {log ρ−1 ≤ r} in M as r → ∞;

volB(r) = voe
3r + v1e

r + V + o(1).(0.3)

The coefficients vo and v1 depend on the geometry of (∂M, γ) as well as the
defining function ρ in this generality.

Clearly, since there are numerous defining functions, the exact exponential
growth rates in r, as well as the coefficients, depend on the compactification
(M̄, ḡ), and are not defined intrinsically w.r.t. (M, g). However, the constant
term V in (0.3) is an invariant of (M, g), i.e. is independent of the choice of
ρ. This is one of the elementary consequences of the AdS/CFT correspondence,
c.f. [16]; a proof appears in [7].

The first purpose of this paper is to relate the renormalized volume V in (0.3)
with the Chern-Gauss-Bonnet theorem in dimension 4.

Theorem 0.1. Let (M, g) be a complete AH Einstein 4-manifold. Then, up to
a constant, the boundary term at infinity in the Chern-Gauss-Bonnet formula
renormalizes the volume in the sense of (0.3). In fact,

1
8π2

∫
M

|W |2dV = χ(M) − 3
4π2

V.(0.4)
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An analogous result holds for arbitrary AH metrics on M which are suitably
asymptotic to an Einstein metric at infinity, c.f. Remark 1.2. Of course (0.4)
shows directly that V is an intrinsic invariant of (M, g), independent of any
compactification (M̄, ḡ).

One thus has the following universal upper bound on V for any AH Einstein
metric:

V ≤ 4π2

3
χ(M),(0.5)

with equality if and only if (M, g) is hyperbolic. Even when (M, g) is hyperbolic,
i.e. M = H4(−1)/Γ, (0.5) gives non-trivial information, since it implies that V
is an integer, mod 4π2/3. The renormalized volume in this case may serve as an
analogue of Thurston’s theory of the volume of closed hyperbolic 3-manifolds.
(After completion of the paper, the referee informed the author that the equality
in (0.5) for hyperbolic manifolds has also been proved by C. Epstein in Appendix
A to [13]).

A result analogous to (0.4) holds for AHE metrics on M = Mn in any dimen-
sion n ≥ 2 and relates the Chern-Gauss-Bonnet integrand (Euler density) with
χ(M) and the volume renormalization V in even dimensions. In odd dimensions,
it (re)-produces the formula for the conformal anomaly, c.f. [10]. This will be
detailed elsewhere, and we restrict here to dimension 4.

It is interesting to compare, and combine, Theorem 0.1 with a result of Hitchin
[11], where an analogous result is proved for the signature via the Atiyah-Patodi-
Singer index theorem. Thus for any AH Einstein metric, (or any AH metric
suitably asymptotic to an Einstein metric at infinity), one has

1
12π2

∫
M

(|W+|2 − |W−|2)dV = τ(M) − ηγ ,(0.6)

where τ(M) is the signature of M and ηγ is the eta-invariant of the conformal
infinity (∂M, γ). In particular, (0.4) and (0.6) imply the following analogue of
the Hitchin-Thorpe inequality for AHE metrics:

χ(M) − 3
4π2

V ≥ 3
2
|τ(M) − ηγ |,(0.7)

with equality if and only if (M, g) is self-dual Einstein.
The volume term V clearly depends, apriori, on the global geometry of the

’bulk’ manifold (M, g). However, the η-invariant of (∂M, γ) depends only on
the intrinsic geometry of the conformal class [γ] on ∂M. Thus, for a self-dual
Einstein metric on M , it follows that V is also an intrinsic invariant of (∂M, [γ]),
given that the topology of M is fixed.

The second purpose of this paper is to discuss to what extent this might be
true for a general AH Einstein metric on M . First, recall that η is a global
conformal invariant of [γ], i.e. it is not computable from the local geometry of
[γ]. However, the variation of η in the space of metrics is a local quantity; thus,
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if h(0) is an infinitesimal variation of γ on ∂M, then

dη(h(0)) = − 1
24π2

∫
∂M

< ∗d Ric, h(0) > d volγ ,(0.8)

c.f. [4, Thm. 6.9] and [1, Prop. 4.19]. Here Ric is the Ricci curvature of γ,
viewed as a 1-form with values in the tangent bundle, d is the exterior derivative
on Λ1 induced by the metric, and ∗ is the Hodge star operator ∗ : Λ2 → Λ1.
Recall that d Ric is the well-known Cotton-York tensor of conformal geometry,
whose vanishing characterizes conformal flatness.

Now let g be an AH Einstein metric on M and h an infinitesimal AHE vari-
ation of g, with h(0) the induced variation of the boundary metric γ. We then
have the following expression for the variation or differential dV of V .

Theorem 0.2. Let g be an AH Einstein metric, and h an infinitesimal AHE
deformation. Then the differential of the renormalized volume V in the direction
h is given by

dV (h) = −1
4

∫
∂M

< g(3), h(0) > d volγ ,(0.9)

where g(3) is the 3rd order term in the Taylor expansion of the metric ḡ at ∂M ,
w.r.t. the special defining function determined by γ, c.f. §1.

A formula similar to (0.9) holds in all dimensions ≥ 4. Thus the variation of
V at g is determined solely by the behavior of ḡ at the boundary ∂M . Formally
speaking, we may consider g(3) as the gradient of the volume function V , modulo
the factor − 1

4 . The term g(3) is formally undetermined, in the sense that the
Einstein equations do not determine any local expression for g(3) at ∂M , c.f.
[6], [7]. This is in contrast to the situation for the terms g(j), j ≤ 2, which are
determined locally by the geometry of γ = g(0).

In Proposition 2.6, we relate the formulas (0.8) and (0.9). Namely, let g be
an AH Einstein metric on M with boundary metric γ. If γ is not conformally
flat and dV �= 0, then

(0.10) dV (h) =

− 1
12

∫
∂M

< ∗d Ric, h+
(0) > d volγ +

1
12

∫
∂M

< ∗d Ric, h−
(0) > d volγ ,

where h±
(0) = π±(h(0)) and π± are linear projection operators on the space of

symmetric bilinear forms S2(∂M). As in (0.9), the projections π± depend,
apriori, on the term g(3).

It is a rather delicate open question whether the dependence of dV in (0.9)
or (0.10) on g(3) can be reduced to a dependence only on the boundary metric
(∂M, γ), as is the case for dη. We point out at the end of §2 that at a minimum,
this depends on the global topology of the bulk or filling manifold M , (again
in contrast to dη, which is independent of M). This is illustrated by observing
that the hyperbolic metric on H4(−1)/Z ≈ R

3 × S1 and the Schwarzschild AdS
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metric on R
2 × S2 have ∂M = S2 × S1, and with suitable normalization, have

the same conformally flat boundary metric γ on S2 × S1. However, both V and
dV are different for these metrics.

On the positive side, we will show elsewhere that an AH Einstein metric on
a given manifold M is uniquely determined, up to diffeomorphism, by dV and
the boundary metric γ, at least when the induced map π1(∂M) → π1(M) is
surjective. In addition, the results of this paper will be applied elsewhere to
study the Dirichlet problem for AHE metrics with prescribed conformal infinity,
c.f. [6], [8].

I would like to thank Jack Lee and Claude LeBrun for interesting conversa-
tions on these topics and the referee for comments on the manuscript.

1. Chern-Gauss-Bonnet and V

This section is concerned with the proof of Theorem 0.1. Before starting
the proof, we discuss some further background material on conformally compact
metrics, c.f. also [7], [8].

If g is a complete conformally compact metric on M , with defining function
ρ, let

r = log ρ−1, ρ = e−r.(1.1)

A simple computation shows that

|∇r|2g = |∇ρ|2ḡ ≡ |∇̄ρ|2,(1.2)

and that this quantity is independent of the choice of defining function ρ at ∂M .
Hence when the compactification ḡ is C1, |∇̄ρ|2 on ∂M is an invariant of the
conformal structure (∂M, [γ]).

Now a computation for the change of curvature under conformal change in
the metric shows

K̄ij = ρ−2(Kij + |∇̄ρ|2) − ρ−1{D̄2ρ(ēi, ēi) + D̄2ρ(ēj , ēj)},(1.3)

and, if (M, g) is Einstein with Ric = −3g, then

R̄ic = −2ρ−1D̄2ρ + {3ρ−2(|∇̄ρ|2 − 1) − ρ−1∆̄ρ}ḡ.(1.4)

Here K̄ij , (resp. Kij), denotes the sectional curvature of (M, ḡ), (resp. (M, g)),
in the (ēi, ēj) direction, where {ēi} form an orthonormal basis w.r.t. (M, ḡ).
Hence if ḡ is C2 smooth up to ∂M, then

Kij = −|∇̄ρ|2 + O(ρ2).(1.5)

Thus, the complete metric g is asymptotically of variable strictly negative
curvature; the curvature varies between two negative constants. The metric g is
called asymptotically hyperbolic (AH) if the invariant |∇̄ρ|2 satisfies

|∇̄ρ|2 = 1 on ∂M.(1.6)

Note that if (M, g) is Einstein, then (1.4) implies that (1.6) must hold, so that
any conformally compact Einstein metric is automatically AH.
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It is also elementary to see, (c.f. [8]) that if (M, g) is AH, then there is a
defining function ρ such that in a collar neighborhood U of ∂M,

|∇r| = |∇̄ρ| ≡ 1,(1.7)

in U . The metrics g and ḡ thus split in U as

g = dr2 + gr and ḡ = dρ2 + ḡρ,(1.8)

where gr = ρ−2 · gρ is a curve of metrics on the 3-manifold ∂M. Thus, w.r.t. the
metric g or ḡ, the flow lines of ∇r or ∇̄ρ are geodesics. The function ρ gives the
distance to ∂M w.r.t. ḡ, while the function r = log ρ−1 is a distance function
w.r.t. g from the boundary of some compact set in M .

Defining functions satisfying (1.7) are called special, or alternately geodesic,
defining functions. Special defining functions are still not unique; as an example,
r may be the distance function from the boundary of any compact convex subset
of (M, g) = H4(−1).

If (M, g) has a special Ck conformal compactification (M, ḡ), then one may
expand ḡ, i.e. ḡρ in (1.8), in a Taylor series in powers of ρ, as

ḡρ = g(0) + ρg(1) + ρ2g(2) + ρ3g(3) + ... + ρkg(k) + o(ρk),(1.9)

where the terms g(i) are bilinear forms on T (∂M), i.e. are annihilated when
evaluated on ∇̄ρ. The term g(0) is just the boundary metric γ, while g(j) =
1
j!
L(j)

∇̄ρ
ḡρ|ρ=0, where L is the Lie derivative.

Now if g is Einstein, then results of Fefferman-Graham [6], c.f. also [7], imply
that

g(1) = 0,(1.10)

so that ∂M is totally geodesic in M̄ w.r.t. ḡ and further that

trg(3) = 0, δg(3) = 0,(1.11)

where the trace and divergence are w.r.t. γ. The term g(2) is intrinsically and
locally determined by γ = g(0), c.f. [7] or (2.18) below, but the Einstein equations
do not imply any local intrinsic determination of g(j), for j ≥ 3, beyond (1.11).

The expansion (1.9) gives the following expansion for vol S̄(ρ) :

vol S̄(ρ) = vol S̄(0) + ρ2v(2) + O(ρ4).(1.12)

There is no ρ3 term, by (1.11). Hence, volS(r) has the expansion

volS(r) = v(0)e
3r + v(2)e

r + O(e−r),(1.13)

and so, as in (0.3), volB(r) has the expansion

volB(r) =
1
3
v(0)e

3r + v(2)e
r + V + O(e−r).(1.14)
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We now begin with the proof of Theorem 0.1 itself. We assume that g is an
AHE metric on the 4-manifold M , and let ρ be a special defining function for
(M, g). Since g is Einstein, the curvature tensor R is pure Weyl and scalar, i.e.

R = W − 1
2
g ∧ g,

where ∧ denotes the Kulkarni-Nomizu product, c.f. [2, Ch.1G]. When W =
0, the curvature tensor R = − 1

2g ∧ g gives the curvature of hyperbolic space
H4(−1), with sectional curvature −1. Thus

(1.15)
∫

M

(|R|2 − 6)d volg =
∫

M

|R +
1
2
g ∧ g|2d volg =

∫
M

|W |2d volg =
∫

M

|W̄ |2d volḡ,

where the second equality uses the conformal invariance of the L2 norm of W on
4-manifolds. Since, by assumption, g has a C2 conformal compactification, this
integral is finite. The norm here is the usual L2 norm of R or W , as a symmetric
map Λ2(TM) → Λ2(TM), so that |R|2 = 6 on H4(−1); this is 1

4 |R|2, when R is
viewed as a (4,0) tensor.

Let D be a compact domain in M , with smooth boundary ∂D ⊂ M . Since g
is Einstein, the Chern-Gauss-Bonnet formula for manifolds with boundary states

1
8π2

∫
D

|R|2 = χ(D) − 1
2π2

∫
∂D

3∏
1

λi − 1
8π2

∫
∂D

∑
σ∈S3

Kσ1σ2λσ3 ,(1.16)

c.f. [3]. Here λi are the eigenvalues of the 2nd fundamental form A and the
indices σi run over an orthonormal basis of the tangent spaces to ∂D. The sign
on A is chosen so that λi > 0 for convex domains; K denotes sectional curvature.

Let ∂D = S(r) be the r-level set of the function r in (1.1) and let D = B(r)
be the corresponding sublevel set. The 2nd fundamental form of S(r) is then
given by A = D2(r) = −D2 log ρ. For r sufficiently large, i.e. ρ sufficiently
small, D is diffeomorphic to M . Hence (1.16) may be rewritten as

(1.17)
1

8π2

∫
B(r)

|W |2 =

χ(M) − 3
4π2

(
volB(r) +

2
3

∫
S(r)

3∏
1

λi +
1
6

∫
S(r)

∑
σ∈S3

Kσ1σ2λσ3

)
.

All three terms in the parenthesis diverge to ±∞ as r → ∞, and so we
need to understand their cancellation properties. From the expansion (1.9) and
(1.14), using (1.3) and (1.18) below, one may prove purely formally that these
terms must converge to V as r → ∞. However, it is worthwhile to calculate
this explicitly to see just how the Einstein condition is being used. We begin by
analysing the boundary integrals over S(r). Following this, we analyse the bulk
integral over B(r).
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The eigenvalues λi of D2r are related to the eigenvalues λ̄i of D̄2ρ by

λi = 1 − ρλ̄i,(1.18)

c.f. [2, Ch. 1J] for instance for formulas on conformal changes of the metric.
Hence ∏

λi = 1 − H̄ρ + σ̄ρ2 − π̄ρ3,

where H̄ = tr D̄2ρ is the mean curvature of S(r) = S̄(ρ), σ̄ =
∏

i<j λ̄iλ̄j and
π̄ = λ̄1λ̄2λ̄3. Here and in the following, the indices 1,2,3 refer to directions
tangent to S(r), while the index 4 refers to the normal direction.

Next, for the boundary curvature term in (1.17), using (1.3) and (1.18) we
have ∑

σ∈S3

Kσ1σ2λσ3 = −6 + 6H̄ρ + 2τ̄ ρ2 + O(λ̄2)ρ̄2 + O(K̄λ̄)ρ3,

where τ̄ = K̄12 + K̄13 + K̄23, and O(λ̄2) and O(K̄λ̄) denote terms quadratic in
λ̄ or products of K̄ and λ̄. For the last two terms in (1.17), we thus have∫

S(r)

{(2
3
− 1) + (−2

3
+ 1)H̄ρ +

1
3
τ̄ ρ2 + O(λ̄2)ρ2 + O(π̄, K̄λ̄)ρ3}.(1.19)

Now volg S(r) = ρ−3 volḡ S(ρ) ∼ ρ−3. On the other hand, by (1.10), we have

D̄2ρ = Ā =
1
2
L∇̄ρḡ = O(ρ),(1.20)

where Ā is the 2nd fundamental form of S̄(ρ) in (M, ḡ). Hence, the last two terms
in (1.19) are O(ρ4). This shows that (1.19) may be rewritten in the form

−1
3

volS(r) +
1
3

∫
S(r)

(H̄ρ + τ̄ ρ2) + O(ρ).

We rewrite the second term as follows. From (1.4), one computes

R̄ic(4, 4) =
1
6
s̄ = −∆̄ρ

ρ
,(1.21)

where R̄ic denotes Ricci curvature w.r.t. ḡ. The first equality gives
5 R̄ic(4, 4) =

∑
i<4 R̄ic(i, i) = R̄ic(4, 4) + 2τ̄ , and so 2 R̄ic(4, 4) = τ̄ = −2 H̄

ρ .

Hence
1
3

∫
S(r)

(H̄ρ + τ̄ ρ2) = −1
3

∫
S(r)

H̄ρ.

Finally, the integral curves of ∇̄ρ are geodesics, and so the Ricatti equation

dH̄

dρ
+ |Ā|2 + R̄ic(∇̄ρ, ∇̄ρ) = 0,

holds. Since |Ā|2 = O(ρ2) by (1.20), and H̄/ρ = − R̄ic(∇̄ρ, ∇̄ρ), we obtain
∫

S(r)

H̄ρ =
∫

S(r)

H̄ ′ρ2 + O(ρ),
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where H̄ ′ = dH̄/dρ. In summary, we thus have the last two terms in (1.17) equal
to

−1
3

volS(r) − 1
3
ρ2

∫
S(r)

H̄ ′ + O(ρ).(1.22)

Now we claim that the two terms in (1.22) are exactly the first two terms in
the ρ-expansion of volB(r).

Lemma 1.1. As r → ∞, we have the expansion

volB(r) =
1
3

volS(r) +
1
3
ρ2

∫
S(r)

H̄ ′ + V + o(1).(1.23)

Proof. Let S̄(ρ) be the ρ-level set of ρ in (M, ḡ). Then for ρ small,

vol S̄(ρ) =

vol S̄(0)+ρ

∫
S̄(0)

H̄+
1
2
ρ2

∫
S̄(0)

(H̄ ′+H̄2)+
1
6
ρ3

∫
S̄(0)

(H̄ ′′+3H̄H̄ ′+H̄3)+O(ρ4).

Recall that volS(r) = ρ−3 · vol S̄(ρ) and H̄ = H̄ ′′ = 0 at S̄(0) = ∂M by (1.10)
and (1.11). Thus

volS(r) = ρ−3 vol S̄(0) +
1
2
ρ−1

∫
S̄(0)

H̄ ′ + O(ρ).(1.24)

Integrating this from 0 to r gives

volB(r) =
∫ r

0

volS(r)dr =
∫ 1

ρ

ρ−1 vol S̄(ρ)dρ =

vol S̄(0)
∫ 1

ρ

ρ−4dρ + (
1
2

∫
S̄(0)

H̄ ′)
∫ 1

ρ

ρ−2dρ + O(1),

which implies

volB(r) =
1
3
ρ−3 vol S̄(0) +

1
2
ρ−1

∫
S̄(0)

H̄ ′ + V + o(1).

Substituting in (1.24) shows that

volB(r) =
1
3

volS(r) +
1
3
ρ−1

∫
S̄(0)

H̄ ′ + V + o(1).(1.25)

Finally, we have

ρ−1

∫
S̄(0)

H̄ ′ = ρ−1

∫
S̄(ρ)

H̄ ′(ρ) + ρ−1(
∫

S̄(0)

H̄ ′ −
∫

S̄(ρ)

H̄ ′(ρ)).

But H̄ ′(ρ) = H̄ ′(0) + ρH̄ ′′(0) + o(ρ2) = H̄ ′(ρ) + o(ρ2). Hence

ρ−1

∫
S̄(0)

H̄ ′ = ρ−1

∫
S̄(ρ)

H̄ ′(ρ) + o(1),

and the result follows.
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Combining (1.17), (1.22) and (1.23) and letting r → ∞ then completes the
proof of Theorem 0.1.

Remark 1.2. The same proof as above evaluates the right side of (1.17) when-
ever (M, g) is any AH metric which is Einstein to 3rd order, i.e. for which
the expansion (1.9) agrees with the expansion of an Einstein metric to order 3.
Hence, for such metrics, we obtain

1
8π2

∫
M

(|W |2 − 1
2
|z|2 +

1
24

s2 − 6)dV = χ(M) − 3
4π2

V.(1.26)

It follows for instance that an Einstein metric minimizes V in its conformal
class, among AH metrics. Note that V itself is, of course, not a conformal
invariant among such AH metrics.

2. Boundary determination of dV

This section is concerned with the question of to what extent the renormalized
volume V , or the L2 norm of the Weyl curvature, is determined by the conformal
infinity γ of an AHE metric. To do this, we study the variation dV of V in the
space of AHE metrics on M .

Thus, let g be an AHE metric on M and let h be an infinitesimal variation
of g, so that the curve of metrics gt = g + th is AHE, to first order in t. From
Theorem 0.1, we have

dV (h) =
dVt

dt
|t=0 = −1

6
d

dt
(
∫

M

|W |2d volt)t=0 ≡ −1
6
dW(h).(2.1)

To analyse dV recall that, by definition, Einstein metrics are critical points of
the scale-invariant Einstein-Hilbert action

S = vol−1/2

∫
sd vol,(2.2)

in dimension 4. Hence the variation dS of S is determined by the behavior of
the variation of the metric at the boundary. We first make this precise in the
Lemma below, and then relate it to the variation of V . The following result has
recently also been proved in [15]; the proof below however is simpler and more
transparent.

Lemma 2.1. Let g be an Einstein metric on a smooth compact domain D in
M4, with scalar curvature s, and let h be an infinitesimal deformation of g, so
that gt = g + th is Einstein, with scalar curvature s, to first order in t. Then

(volD)′ =
d

dt
volgt D|t=0 = −2

s

∫
∂D

(2H ′+ < A, h >),(2.3)

where A is the 2nd fundamental form of ∂D, H = trA, and H ′ = dH
dt |t=0.
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Proof. Take the derivative of (2.2) w.r.t. t and use the fact that s is constant.
A brief computation shows that at t = 0,

s · (vol1/2 D)′ = vol−1/2

∫
D

(L(h) +
s

4
< g, h >)d vol,

where L(h) = s′(h) is the linearization of the scalar curvature, given by

L(h) = −∆trh + δδh − < Ric, h >,

c.f. [2, 1.174]. Since z = 0, this gives

1
2
s(volD)′ =

∫
D

(−∆trh + δδh)d vol,

and hence by the divergence theorem
1
2
s(volD)′ = −

∫
∂D

< dtrh, N > −
∫

∂D

δh(N),(2.4)

where N is the unit outward normal.
Now choose local normal exponential (Fermi) coordinates for a neighborhood

of ∂D. Thus, N is the field tangent to geodesics, and normal to equidistant
hypersurfaces S(r), with S(0) = ∂D. Let {ei} be a local orthonormal basis for
T (S(r)), so that {ei, N} are a local orthonormal basis for T (D) near ∂D. We
then have

δh(N) = −Nh(N, N) − < ∇eih(ei), N >,(2.5)

and

< dtrh, N > = Nh(N, N) + N(< gT , hT >).(2.6)

where T denotes tangential part. When combined, the first terms in (2.5)
and (2.6) cancel. For the second term in (2.5), we have < ∇ei

h(ei), N >=
divS(h(N))− < h, A >, where divS is the divergence on the hypersurfaces S.
This integrates to 0 on S(0) = ∂D. Hence, (2.4) becomes

1
2
s(volD)′ = −

∫
∂D

N < gT , hT > −
∫

∂D

< A, h > .(2.7)

To evaluate the first term, for each metric gt we have the hypersurfaces St(r)
constructed above, with the induced metric gij(t, r). In a fixed local coordinate
system, the volume form dVS(t, r) of St(r) is given by

dVS(t, r) = (det gij(t, r))1/2dx1 ∧ dx2 ∧ dx3.

Then 1
2 < gT , hT > dVS = ∂

∂t [det gij(t, r)1/2]dx1 ∧ dx2 ∧ dx3, and

1
2N < gT , hT > dVS =

∂

∂r

∂

∂t
[det gij(t, r)1/2]dx1 ∧ dx2 ∧ dx3.

The coefficients gij are smooth functions of the parameters r and t, and so

∂

∂r
(

∂

∂t
(det(gij)1/2)) =

∂

∂t
(

∂

∂r
(det(gij)1/2)) = H ′ =

dH

dt
.
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It follows that (2.7) becomes
1
2
s(volD)′ = −

∫
∂D

(2H ′+ < A, h >)d vol,

which gives (2.3).

This result, with the same proof, holds in all dimensions, with the coefficient
1
2 replaced by 2/n, n = dim M .

We now apply Lemma 2.1 to the domains B(r) in an AH Einstein manifold
(M, g), and let r → ∞. This leads to the proof of Theorem 0.2, which we restate
as:

Theorem 2.2. Let h = dgt/dt be an infinitesimal AHE deformation of an AHE
metric g on M and let h(0) = dγt/dt be the induced variation of γ on ∂M, where
ḡ is determined by a special defining function ρ, as in (1.7). Then

dV (h) = −1
4

∫
∂M

< g(3), h(0) >,(2.8)

for g(3) as in (1.9). The inner product and volume form in (2.8) are w.r.t. γ.

Proof. By Lemma 2.1, we have with r = log ρ−1 >> 1,

(volB(r))′ =
1
6

∫
S(r)

(2H ′+ < A, h >)d vol =
1
6
ρ−3

∫
S̄(ρ)

(2H ′+ < A, h >)d v̄ol .

(2.9)

As in the proof of Theorem 0.1, we analyse the terms on the right from the
expansion of ḡt, given by

ḡt = dρt ⊗ dρt + (g(0),t + ρ2
t g(2),t + ρ3

t g(3),t).(2.10)

Taking the derivative of (2.10) w.r.t. t gives

h̄ = 2dρ′ ⊗ dρ + (h(0) + ρ2h(2) + 2ρρ′g(2) + O(ρ3)).(2.11)

Here ρ′ = dρt/dt, and we have used the fact that ρ′ = O(ρ), since ρ′(∂M) = 0.
In fact, since ρt are special defining functions w.r.t. gt, a simple computation
gives

ρ′ = φ(1)ρ + φ(3)ρ
3 + o(ρ3),(2.12)

c.f. also [7, Lemma 2.2]. Note also that h̄ has no tangential terms of order ρ.
Next, from (1.18), we have H = 3−H̄ρ, and, by (1.10)-(1.11), H̄ = h1ρ+h3ρ

3,
so that

H = 3 − h1ρ
2 − h3ρ

4.(2.13)

Similarly, A = gT − ρĀ, and Ā = A1ρ + A2ρ
2, so that

A = gT − A1ρ
2 − A2ρ

3 + O(ρ4).(2.14)

Further, by (2.13), H ′ = h′
1ρ

2 + 2ρρ′h1 + O(ρ4) which with (2.12) gives

H ′ = ξ1ρ
2 + O(ρ4).(2.15)
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Now we substitute these computations in (2.9). The estimate (2.15) shows
that the first term in (2.9) contains only an O(ρ−1) term, and hence gives no
contribution to V ′, where V is the renormalized volume. Hence we may ignore
this term. For the next term, we have

< A, h > = < h, gT > − < A1, h > ρ2− < A2, h > ρ3 + O(ρ4).(2.16)

Now for any (1,1) tensors A, B, < A, B >g = < A, B >ḡ, and so the g-inner
products in (2.16) may be replaced by ḡ-inner products. We have 1

2 < h, gT >ḡ

d volS̄(ρ) = d
dt (d volḡt(S̄t(ρ))), which vanishes at order O(ρ3) by (1.11). Similarly,

< A1, h >ḡ ρ2 has no terms of order O(ρ3) by (2.11). Hence the only term in
(2.16) of order O(ρ3) is

− < A2, h > ρ3 = − < A2, h >ḡ ρ3 = − < A2, h(0) >ḡ ρ3 + o(ρ3).

Taking the limit ρ → 0 then implies that

V ′ = −1
6

∫
∂M

< A2, h(0) > .

To complete the proof, we have L∇̄ρḡ = 2Ā, while A2 = 1
2L2

∇̄ρ
Ā = 1

4L3
∇̄ρ

ḡ =
3
2g(3), which then gives (2.8).

The formula (2.8) shows that although apriori the renormalized volume V
depends on the global geometry of the bulk manifold (M, g), its variation dV
depends only on the (3rd order) behavior of the compactification ḡ at ∂M. We
note that one may prove, via Lemma 2.1 again, that there is a similar formula
in higher dimensions.

Remark 2.3. Using the fact that g(2) = L∇̄ρĀ together with (1.4), a brief
computation shows that

g(2) = −1
2
(R̄ic− s̄

6
g(0)),(2.17)

where the curvatures are w.r.t. the metric ḡ on M . In fact one may compute
that

−1
2
(R̄ic− s̄

6
g(0)) = −(Ricγ −sγ

4
γ),(2.18)

at ∂M, where the curvatures on the right of (2.18) are intrinsic w.r.t. the
boundary metric g(0) = γ, c.f. also [7, (2.10)] for example. We note that (1.21)
and (1.11) imply that ∇̄ρ(s̄) = 0 at ∂M and further computation shows that
(∇̄X R̄ic)(∇̄ρ) = 0 at ∂M , for X tangent to ∂M . Hence, (2.17) and the relation
g(3) = 1

3L∇̄ρg(2) imply

g(3) =
1
6
∇N R̄ic =

1
6
d R̄ic(N),(2.19)

where N = −∇̄ρ and d = d∇̄ is the exterior derivative w.r.t. the ambient metric
ḡ, c.f. [2, 4.69].
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Remark 2.4. We verify briefly that (2.8) also gives, up to a constant, the vari-
ation dW, where W =

∫ |W |2; of course, this must be the case by (2.1).
The gradient ∇W, i.e the Euler-Lagrange operator for W, is given by the

Bach tensor ∇W2 = 1
2 (δδW + W ◦ Ric), c.f. [2, 4.77]; (the factor of 1

2 comes
from the definition of |W |2 as in §1). Einstein metrics are also critical points of
W, so that ∇W2 = 0. Hence, as in the proof of Lemma 2.1, on any compact
domain D ⊂ M and at t = 0, we have

d

dt

∫
D

|W |2d volt =
∫

D

d

dt
(|W |2d volt) =

∫
D

< ∇W2, h > +
∫

∂D

< BW , h >,

i.e.

dW(h) =
∫

∂D

< BW , h >,(2.20)

where BW is a boundary term. To determine BW , integrate by parts as follows:∫
D

< δδW, h >= −
∫

∂D

< δW (N), h > +
∫

D

< δW, Dh >,

and ∫
D

< δW, Dh >= −
∫

∂D

< W (N), Dh > +
∫

D

< W, DDh >,

where N is the unit outward normal. Hence∫
∂D

< BW , h >= −1
2

∫
∂D

< δW (N), h > −1
2

∫
∂D

< Dh, W (N) > .(2.21)

Since W is conformally invariant, we may compute (2.21) w.r.t. the compactifi-
cation ḡ and let D = M . A computation as in that giving (2.19) shows that the
second integral in (2.21) vanishes, and so

(2.22)
∫

∂M

< BW , h(0) >=

− 1
2

∫
∂M

< δW (N), h(0) >=
1
4

∫
∂M

< d(R̄ic− s̄

6
ḡ)(N), h(0) >,

where the second equality uses the Bianchi identity, c.f. [2, 16.3]. Via (2.8) and
(2.19), this confirms (2.1).

Combining (2.8) and (2.19), we have

dV (h) = − 1
24

∫
∂M

< d R̄ic(N), h(0) > .(2.23)

This formula resembles, at least formally, the formula for the variation of η in
(0.8), i.e.

dη(h) = − 1
24π2

∫
∂M

< ∗d Ric, h(0) > .(2.24)

Of course by (0.7) these formulas must agree if (M, g) is self-dual Einstein,
and h is an infinitesimal variation of such metrics. However, in (2.24), the Ricci
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curvature Ric and exterior derivative d are intrinsic, i.e. computed on the 3-
manifold ∂M w.r.t. the boundary metric γ. On the other hand, in (2.23), the
Ricci curvature R̄ic and d are extrinsic, computed w.r.t the ambient metric ḡ at
∂M.

As in (2.18), the term g(2) in the expansion (1.9) of ḡ at ∂M is local and
intrinsic; recall that g(1) = 0. However, as pointed out in [6], the Einstein
equations only imply the relations (1.11) on the third term g(3) in the expansion;
the remaining parts of g(3) are formally undetermined. The term g(3) hence
(may) depend on the bulk metric ḡ at ∂M, and not only on γ.

In general, this issue is related to the unique solvability of the Dirichlet prob-
lem for AH Einstein metrics with prescribed conformal infinity. Namely, if, given
a boundary metric γ, there is a unique AHE metric g with conformal infinity γ,
then the expansion terms g(k) are all necessarily determined, in some manner,
by the intrinsic geometry of γ = g(0). On the other hand, if this is not the case,
then some g(k) may not be determined from γ.

Before proceeding further, we make several remarks.

Remark 2.5. (i). We observe that

dV �= c · dη(2.25)

for any constant c, in general. This essentially follows from Theorem 0.1 and a
remark of Hitchin in [11]. Thus let γo be the canonical round metric on S3 and
let γ be any metric sufficiently close to γo which is invariant under an orientation
reversing reflection of S3. Since η changes sign under orientation reversal, η(γ) =
0. The Graham-Lee theorem [8] shows that any such γ may be filled in with
an AH Einstein metric g, with γ as conformal infinity. If we now take a curve
of such metrics gt with boundary values γt, then dη(γt)/dt = dη(h) = 0, for all
t. However, such curves gt will satisfy, for t > 0, V (gt) �= V (go) = 4π2

3 unless
the curve is a constant curve, c.f. Theorem 0.1. Hence, for some t �= 0 small,
dV (h) �= 0, which gives (2.25).

We recall that d Ric is the only local conformal invariant constructed from
the metric in dimension 3 and hence dV cannot be a locally defined intrinsic
invariant of γ in general.

(ii). In [6], Fefferman and Graham consider formally the class of AH Einstein
metrics for which ḡ has an even expansion (1.9), i.e. g(odd) = 0. Of course, for
such metrics Theorem 2.2 gives

dV = −1
6
dW = 0.

Thus, such points are critical points of V or W and so one would expect that
there are very few such metrics, in the space of all AHE metrics.

Any hyperbolic metric is even in this sense, since the metrics ḡρ in (1.8) are
given by ḡρ = (1 − ρ2)2 · g(0). But Theorem 0.1 implies that any hyperbolic
metric gives the maximal value for V on M and so of course this metric must
be a critical point of V .
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Next we derive the formula (0.10). For a given AH Einstein metric (M, g), let
W+ and W− be the self-dual and anti-self-dual parts of the Weyl curvature, so
that W = W+ + W−; (recall that M is an oriented 4-manifold). As in Remark
2.4, we have ∇W = 1

2 (δδW + W ◦ Ric) = 0, and hence

∇W+ =
1
2
(δδW+ + W+ ◦ Ric) = 0, and ∇W− =

1
2
(δδW− + W− ◦ Ric) = 0,

where W± are the functionals
∫ |W±|2.

The same reasoning as in (2.20) then shows that, for an infinitesimal AHE
deformation h,

dW±(h) =
d

dt

(∫
M

|W±|2)
t=0

=
∫

∂M

< B±, h(0) >,(2.26)

where B± are boundary terms. These terms may be computed in the same way
as BW in (2.22). Thus, informally, we may think of ∇W± = B±.

Now consider the moduli space M of AHE metrics on M which admit a
C3 conformal compactification ḡ. The boundary values γ of such metrics give a
space B of metrics on ∂M. The structure of M and B is not of concern here.
Instead, we consider only the (formal) tangent spaces TgM, i.e. the vector
space of solutions to the linearized AHE equations at a given γ ∈ M, c.f. [2,
Ch. 12] for background on linearized Einstein equations. Any infinitesimal AHE
deformation h ∈ TgM induces an infinitesimal deformation h(0) ∈ TγB.

Let T± be the subspace of tangent vectors which leave W∓ unchanged, to
first order; thus

T+ = ker dW−, and T− = ker dW+.(2.27)

Via (2.26), T± may also be viewed as subspaces of TγB orthogonal to B∓. They
are codimension 1 hyperplanes of TγB, except when dW+ = 0 or dW− = 0. Of
course T+ ∩ T− consists of the variations which change neither W+ or W− to
first order. Observe that if dW+ = λdW− for some λ �= 0, then since a change
in the orientation interchanges dW+ and dW−, we must have λ2 = 1, and so
either dW = 0, (when λ = 1), or dη = 0, (when λ = 1, by (0.6) and (0.8)).

Now suppose that dW+ and dW− are linearly independent. Then any tangent
vector h(0) ∈ TγB may be decomposed uniquely as

h(0) = h+
(0) + h0

(0) + h−
(0),(2.28)

where h±
(0) ∈ T± and h0

(0) ∈ T+ ∩ T−. If dW− = 0, we set h− = 0 in (2.28) and
similarly h+ = 0 if dW+ = 0. The decomposition (2.28) defines the projection
operators π± in (0.10). A similar decomposition holds for h ∈ TgM.

The following result relates dW and dη, and gives (0.10) via (2.1).

Proposition 2.6. Let g be an AH Einstein metric on M , with boundary metric
γ. Suppose dW �= 0 and dη �= 0, i.e. g is not a critical point of W or η. Then,
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in the notation above, we have

dW(h) =
1
2

∫
∂M

< ∗d Ric, h+
(0) > −1

2

∫
∂M

< ∗d Ric, h−
(0) >,(2.29)

where ∗d Ric is intrinsically defined w.r.t. γ.

Proof. Since W = W+ + W−, we have

dW(h) = dW+(h) + dW−(h).

By the construction in (2.27)-(2.28), this gives

dW(h) = dW+(h+) + dW−(h−),

where

dW±(h±) =
∫

∂M

< B±, h±
(0) > .

However since h+ leaves W− unchanged to first order, it follows from (0.6) and
(0.8) that

dW+(h+) = d(W+(h+) −W−(h+)) =
1
2

∫
∂M

< ∗d Ric, h+
(0) > .(2.30)

Thus, when viewed as a linear functional restricted to T+ ⊂ TγB, B+ = ∗d Ric
is intrinsically and locally determined by γ. For the same reasons, we also obtain

dW−(h−) = −1
2

∫
∂M

< ∗d Ric, h−
(0) > .(2.31)

Combining (2.30) and (2.31) gives the result.

While ∗d Ric is intrinsically determined by the boundary metric γ, it is not
clear to what extent the subspaces T± are determined by γ. In this regard,
we discuss the following examples, which show that dW or dV cannot be solely
determined by the boundary metric in general; these examples are also discussed
in [9] and [16]. Thus, consider first hyperbolic 4-space H

4(−1). For any geodesic
σ ⊂ H

4(−1), translation by a fixed length L along σ extends to an isometry of
H

4(−1). Let H
4(−1)/Z ≈ R

3 × S1 be the quotient, with Z the group generated
by the translation. The metric g−1 on H

4(−1)/Z may be written as

g−1 = dr2 + sinh2 rgS2(1) + cosh2 dθ2,

where θ parametrizes a circle of length L. We have ∂M = S2 × S1 and the
conformal infinity [γ] is the conformal class of the product metric S2(1)×S1(L).
For instance by (0.4) and Remark 2.5(ii), we have V = 0 and dV = g(3) = 0 for
g−1, and of course η = dη = 0.

On the other hand, the AdS Schwarzschild metric, c.f. [9], [16, §3.2], or
[2,9.118(d)] is an AH Einstein metric on R

2 × S2 given by

gAS = (1 + r2 − 2m
r )−1dr2 + r2gS2(1) + (1 + r2 − 2m

r )dθ2.

Here m > 0 is the mass parameter, r ≥ r+, where r+ is the largest root of the
equation 1 + r2 − 2m

r = 0, and θ parametrizes a circle of length L = L(m) =
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4πr+

1 + 3r2
+

. This metric has the same conformal infinity S2(1) × S1(L) as before

and so η = dη = 0. However, by [9, (2.9)],

V (gAS) =
πr2

+(1 − r2
+)

1 + 3r2
+

,

and a straightforward computation using (0.9) gives

dVgAS
=

m

2
dθ2.
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