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ON THE MODULI SPACE OF CLASSICAL DYNAMICAL
R-MATRICES

Pavel Etingof and Olivier Schiffmann

1. Introduction

A classical dynamical r-matrix is an l-equivariant function r : l∗ → g ⊗ g

(where l, g are Lie algebras), such that r21 + r = Ω is g-invariant, which satisfies
the classical dynamical Yang-Baxter equation (CDYBE). CDYBE is a differ-
ential equation, which generalizes the usual classical Yang-Baxter equation. It
was introduced in 1994 by G.Felder [Fe], in the context of conformal field the-
ory. Solutions of CDYBE and their quantizations appear naturally in several
mathematical theories: the theory of integrable systems, special functions, rep-
resentation theory (see [ES] for a review).

Since classical dynamical r-matrices were introduced, several authors tried to
study and classify them ([EV],[S],[Xu]). The goal of this paper is to describe the
moduli space of classical dynamical r-matrices modulo gauge transformations.
In particular, we improve and generalize the results of [EV], [S], as well as correct
some errors that occurred in these papers (See remarks 3 and 5).

The main achievement of this paper, compared to the previous ones, is that
its results are valid for dynamical r-matrices for a nonabelian Lie algebra l. It
turns out that this generalization not only brings in new interesting examples
(see [EV],[AM]) but also makes the general theory much more clear and natural.

The composition of the paper is as follows.
In Section 1, we recall the definition of a dynamical r-matrix.
In Section 2, we extend to the nonabelian case the notion of a gauge trans-

formation of dynamical r-matrices, introduced in [EV].
In Section 3, we decribe the space of dynamical r-matrices modulo gauge

transformations (the moduli space). Here we formulate our main theorem, stat-
ing that under some technical conditions, the moduli space can be identified
with a certain explicitly given affine variety. For instance, if l = g, this vari-
ety consists of one point, which is the Alekseev-Meinrenken solution [AM] (for
semisimple Lie algebras, it was also constructed in [EV]).

In Section 4 we prove the main theorem.
In the appendix, we construct a generalization of the Alekseev-Meinrenken

classical dynamical r-matrix, associated to any finite-dimensional Lie algebra g
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with a nondegenerate invariant form and an automorphism B of g of finite order
which preserves this form.

We don’t treat the case of dynamical r-matrices with spectral parameters here.
However, we expect some results similar to our main theorem to hold also in this
case.

2. The dynamical Yang-Baxter equation

Let g be a Lie algebra over C, and l ⊂ g a finite dimensional Lie subalgebra.
Let x1, ..., xr be a basis of l.

Let D ⊂ l∗ be the formal neighborhood of 0. Let V be a complex vector space.
By functions from D to V we will mean elements of the space V [[x1, ..., xr]],
where we regard xi as coordinates on D. Finally, if ω ∈ Ωk(D, V ) is a k-form
with values in any vector space V , we denote by ω : D → Λkl⊗V the associated
function. For an element r ∈ g⊗ g we define the classical Yang-Baxter operator

CY B(r) = [r12, r13] + [r12, r23] + [r13, r23].

The classical dynamical Yang-Baxter equation (CDYBE) is the following
differential equation for an l-equivariant function r : D → g ⊗ g :

Alt(dr) + CY B(r) = 0,(2.1)

where for x ∈ g⊗3, we let Alt(x) = x123 − x213 + x231.
It is useful to consider solutions of CDYBE which satisfy an additional quasi-

unitarity condition:

r + r21 = Ω ∈ (S2g)g.(2.2)

It is easy to show that if r satisfies CDYBE and the quasi-unitarity condition
then Ω is a constant function of λ.

An l-equivariant solution of CDYBE which satisfies the quasi-unitarity condi-
tion is called a dynamical r-matrix. The set of all dynamical r-matrices satisfying
(2.2) will be denoted by Dynr(g, l,Ω).

Remark. In the litterature (see for instance [ES] and the references therein)
dynamical r-matrices are allowed to have a pole at λ = 0. However, if l is
abelian and r(λ) is a dynamical r-matrix then for any λ0 ∈ l∗, r(λ + λ0) is also
a dynamical r-matrix. Hence, for classification purposes it is always possible to
assume that r(λ) is regular at the origin.

3. Gauge transformations

Here we will reproduce some results from [EV], but unlike [EV], we will not
assume that l is abelian. We will assume, however, that g is finite dimensional.

Let G be the simply connected complex Lie group such that Lie(G) = g. Let
g : D → G be any regular, l-equivariant map. Consider the 1-form ηg = g−1dg
and set ζg = [ηg

12, ηg
13]. Define an l-equivariant function τg : D → Λ2g by the
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formula τg(λ) = (λ ⊗ 1 ⊗ 1)ζg(λ). For any l-equivariant function r : D → g ⊗ g

we set

rg = (g ⊗ g)(r − ηg + ηg
21 + τg)(g−1 ⊗ g−1).(3.1)

The following theorem is a nonabelian generalization of Proposition 1.2 of [EV].

Proposition 3.1. The function r is a dynamical r-matrix if and only if the
function rg is.

Proof. Let us show that if r is a dynamical r-matrix then so is rg. The other
direction is analogous. Let X = (D × G × D, { , }) be the dynamical Poisson
groupoid associated to r in [EV]. Consider the automorphism σ of X given by
σ(u1, x, u2) = (u1, g(u1)xg(u2)−1, u2). Then σ transforms { , } into the Poisson
bracket {f, g}σ = σ−1{σf, σg}. It is straightforward to calculate that the corre-
sponding transformation at the level of dynamical r-matrices is exactly (3.1). �

The transformation r → rg is called a gauge transformation. Note that
(3.1) defines an action of the group Map(D, G)l on Dynr(g, l,Ω), i.e we have
(rg1)g2 = rg2g1 for any g1, g2 ∈ Map(D, G)l and r ∈ Dynr(g, l, Ω). Let us denote
by Map0(D, G)l the subgroup consisting of maps g satisfying g(0) = 1. We
would like to understand the moduli space

M(g, l,Ω) = Dynr(g, l,Ω)/Map0(D, G)l.

In the triangular case (i.e when Ω = 0) this space was considered by P. Xu in
[Xu].
Remark 1. It is clear that Map(D, G)l/Map0(D, G)l 
 Gl. Hence the complete
moduli space M(g, l,Ω) = Dynr(g, l, Ω)/Map(D, G)l is equal to M(g, l,Ω)/Gl

where g ∈ Gl acts by rg = Ad(g ⊗ g)(r).

4. The structure of M(g, l,Ω)

From now on we will assume that
i) l ⊂ g has an l−invariant complement m.

The following theorem is a generalization of Theorem 1.4 in [EV]. It shows that
the space of dynamical r-matrices is, up to gauge equivalence, finite dimensional.

Theorem 1. Let ρ, r : D → g⊗2 be two dynamical r-matrices such that r(0) =
ρ(0). Then there exists g ∈ Map(D, G)l such that ρ = rg.

The proof is a generalization of the proof in [EV]. Before giving it we state the
following auxiliary result.

Lemma 4.1 (equivariant Poincaré lemma). Let l be a finite-dimensional Lie al-
gebra, V a finite-dimensional l-module, k ≥ 1 and ω ∈ Ωk(D, V ) an l-equivariant
closed k-form with values in V . Then there exists an l-equivariant k − 1-form
ζ ∈ Ωk−1(D, V ) such that dζ = ω.
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Proof. The proof is the same as that for the usual Poincaré lemma. It is enough
to assume that ω is homogeneous, of degree l ∈ N. Let E =

∑
i xi

∂
∂xi

be the
Euler vector field on D. Then by Cartan’s homotopy formula,

lω = LEω = iEdω + diEω = d(iEω)

and we can set ζ = iEω/l. Note that E is l-equivariant, hence so is ζ. �

Proof of Theorem 1. The dynamical r-matrices r, ρ are by definition formal
power series in the variables xi. Let us assume that the statement of the theorem
holds modulo terms of degree ≥ K. Let gk : U → G be a gauge transformation
such that E := rgk − ρ has degree ≥ K and let EK be the homogeneous compo-
nent of E of degree K. Then Alt (dEK) =

[
CY B(rgK ) − CY B(ρ)

]
K−1

where[·]
K−1

denotes the homogeneous component of degree K−1. But
[
rgK −ρ

]
l
= 0

for all l < K by assumption, hence

Alt (dEK) = 0.(4.1)

Lemma 4.2. The exists an l-equivariant closed 1-form ζ ∈ Ω1(D, g) such that
EK = ζ

21 − ζ.

Proof. Let us write EK = Ell + Elm − E21
lm + Emm where Ell ∈ Λ2l, Elm ∈ l ⊗ m

and Emm ∈ Λ2m. From (4.1) it follows that dEmm = 0 hence Emm = 0. Now let
ξ ∈ Ω1(D,m) be such that ξ = Elm. Then (4.1) implies that ξ is closed. Note
that the assumption i) guarantees that ξ is equivariant. Finally, let ω ∈ Ω2(D, C)
be such that ω = Ell. Then (4.1) says that ω is closed. By the equivariant
Poincaré lemma, there exists an equivariant 1-form η such that dη = ω. Set
θ = dη, so that θ − θ

21
= ω. Then ζ = ξ + θ satisfies the conditions of the

lemma. �

We now conclude the proof of Theorem 1. Let χ : D → g be any l-equivariant
function of order K + 1 such that dχ = ζ. Set g = eχ. Then ηg = g−1dg is of
order ≥ K and ζ − ηg is of order ≥ K + 1. But then ζ

21 − ζ − (ηg
21 − ηg + τg)

is also of order ≥ K + 1. Set gK+1 = ggK . Then, by the above rgK+1 − ρ is of
degree ≥ K + 1. The proof follows by induction. �

Proposition 4.1. Any dynamical r-matrix r is gauge-equivalent to a dynamical
r-matrix ρ such that ρ(0) ∈ Ω

2 + Λ2m.

Proof. Let η0 ∈ l⊗g such that r(0)−η0 +η21
0 ∈ Ω

2 +Λ2m. Since m is l-invariant,
we have η0 ∈ (l ⊗ g)l. By the equivariant Poincaré lemma, there exists an
equivariant function χ : D → g satisfying χ(0) = 0, dχ = η0. Set g = eχ. Then
ρ := rg satisfies the CDYBE and ρ(0) ∈ Ω

2 + Λ2m. �

Consider the following algebraic variety

MΩ = {x ∈ Ω
2

+ (Λ2m)l |CY B(x) = 0 in Λ3(g/l)}.
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It is immediate from (3.1) that if ρ and r are gauge-equivalent and if ρ(0) ∈
Ω
2 + Λ2m and r(0) ∈ Ω

2 + Λ2m then r(0) = ρ(0). Moreover, it follows from
the CDYBE (2.1) that for every dynamical r-matrix r ∈ Dynr(g, l, Ω) such that
r(0) ∈ Ω

2 + Λ2m we have r(0) ∈ MΩ.
Hence Theorem 1 and Proposition 3.1 give the following corollary.

Corollary 4.1. The map M(g, l,Ω) → MΩ which sends a class C to r(0) where
r ∈ C is any representative such that r(0) ∈ Ω

2 + Λ2m, is an embedding.

Remark 2. If condition i) fails then the space M(g, l,Ω) may be infinite-dimen-
sional. This is demonstrated by the following example due to P. Xu [Xu]. Let
g = Cx⊕Cy be the two-dimensional Lie algebra with [x, y] = y, and set l = Cy.
Then Λ3g = 0 and Λ2g is a trivial l-module. Thus any function r : D → Λ2g is
a dynamical r-matrix. On the other hand, gl = l and all gauge transformations
act trivially.
Remark 3. We would like to use this opportunity to correct the statement of
Theorem 1.4 of [EV]. This theorem is incorrect as stated (as shown by Cu’s
counterexample, see Remark 2). The mistake is in the proof of Lemma 1.5,
which uses the incorrect statement that

(g ⊗ l ⊕ l ⊗ g)l = (gl ⊗ l ⊕ l ⊗ gl)l(4.2)

for commutative l. This statement, however, is correct with the additional as-
sumption i); in this case Theorem 1.4 of [EV] and its proof are correct, and
Theorem 1.4 of [EV] is a special case of Theorem 1 above.

Now suppose that l = g. Note that i) automatically holds in this case. Then
by Proposition 3.1 and Theorem 1 there is at most one gauge-equivalence class
of dynamical r-matrices r : D → Ω

2 + Λ2g. Such a class in fact always exists, as
was discovered by Alekseev and Meinrenken [AM]. A representative of this class
is constructed as follows.

Let gΩ be the ideal of g spanned by the components of Ω, and let DΩ be
the formal neighborhood of 0 in g∗Ω. Let us identify gΩ with g∗Ω via Ω. Set
f(s) = 1

s − 1
2cotanh( s

2 ). Then f is smooth at the origin. Consider the following
map

T : DΩ → End(g) 
 g∗ ⊗ g 
 g ⊗ g

u �→ f(ad µ)

Let π∗ : g∗ → g∗Ω be the projection and set

rg

AM =
Ω
2

+ T ◦ π∗ : D → g ⊗ g.

Theorem 2 ([AM]). The map rg

AM is a dynamical r-matrix.

This theorem is proved in [AM] in the case of compact Lie algebras, but the
proof can be adapted to the general case. Another proof is given in the appendix.

Corollary 4.2. The moduli space M(g, g,Ω) consists of the single class rg

AM .
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Remark 4. When g is a simple Lie algebra and l = g these results easily follow
from [EV], Section 3.8.

We will now show that, under some technical conditions on Ω, the embedding
defined in Corollary 3.1 is actually an isomorphism. From now on we assume
that

ii) We have Ω ∈ (l ⊗ l) ⊕ (m ⊗ m).
We will write Ωl (resp. Ωm) for the corresponding components of Ω.

Condition ii) is satisfied in particular in the triangular case (Ω = 0). It is
also satisfied when l acts semisimply on g and when the restriction of the inverse
form ( , ) = Ω−1 to lΩ = l∩ gΩ is nondegenerate. Indeed, let g′ be an l-invariant
complement of l + gΩ in g and let mΩ be the orthogonal complement of lΩ i gΩ.
Then m = g′ ⊕ mΩ satisfies conditions i) and ii).

Proposition 4.2. Any dynamical r-matrix r is gauge-equivalent to a dynamical
r-matrix of the form ρ = rl

AM + Ωm

2 + t with t : D → Λ2m.

Proof. By Proposition 3.1 there exists a dynamical r-matrix ρ0 gauge-equivalent
to r such that ρ0(0) ∈ Ω

2 + Λ2m. We will first construct a sequence of gauge
transformations gi, i = 1, . . . such that ρgi

0 ∈ Ω
2 +

(
Λ2l⊕Λ2m

)
modulo terms of

degree ≥ i. We set g1 = 1. Suppose that we have constructed gi and let Ei be
the term of degree exactly i of ρgi

0 . From the CDYBE we have

−Alt (dEi) =
[
CY B(ρgi

0 )
]
i−1

(4.3)

where [·]i−1 denotes the component of degree i − 1. But by our assumption we
have ρgi

0 ∈ Ω
2 +

(
Λ2l⊕Λ2m

)
in degrees ≤ i− 1. Using the l-invariance of m it is

easy to see that this implies that[
CY B(ρgi

0 )
]
i−1

∈ Alt
(
(l ⊗ m ⊗ m) ⊕ (l ⊗ l ⊗ l) ⊕ (m ⊗ m ⊗ m)

)
.(4.4)

Let ξ ∈ Ω1(D,m) such that Ei + ξ
21 − ξ ∈ Λ2l ⊕ Λ2m. Then from (4.3) and

(4.4) it follows that dξ = 0. By the equivariant Poincaré lemma there exists an
equivariant map χ : D → m such that ξ = dχ. Moreover, ξ is of degree ≥ i,
hence χ is of degree ≥ i + 1. Now set g = eχ. Then ηg − ξ is of order ≥ i + 1.
Thus

(g ⊗ g)
(
ρgi

0 + ηg
21 − ηg + τg

)
(g−1 ⊗ g−1)

is in Ω
2 +

(
Λ2l ⊕ Λ2m

)
modulo terms of degree ≥ i + 1, and we put gi+1 = gig.

This allows to define the sequence gi inductively.
It is clear that the sequence ρgi

0 converges, in the sense of formal power series,
to a dynamical r-matrix ρ1 which is gauge-equivalent to ρ0. Moreover ρ1 takes
values in Ω

2 +
(
Λ2l⊕Λ2m

)
by construction. Let us write ρ1 = ρl

1 + ρm
1 where ρl

1

and ρm
1 take values in l⊗l and m⊗m respectively. Observe that ρl

1 : D → Ωl

2 +Λ2l

is itself a dynamical r-matrix. Hence by Corollary 3.2 we can perform a gauge-
transformation for l to reduce it to rl

AM . �
The following theorem is a generalization to the nonabelian case of [S], The-

orem 3, and will be proved in the next section.
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Theorem 3. Let r0 ∈ MΩ. Then there exists a unique dynamical r-matrix
r = rl

AM + Ωm

2 + t with t : D → Λ2m, such that r(0) = r0.

Corollary 4.3. Under conditions i) and ii) the moduli space M(g, l,Ω) of gauge-
equivalence classes of dynamical r-matrices is isomorphic to MΩ.

Remark 5. We use this opportunity to correct the statement of Theorem 3 in
[S] which is false as stated. The mistake is in the proof of Lemma 1, which uses
the incorrect statement (4.2). However, the theorem and its proof are correct
if one makes in addition the assumption i). In this case it is a special case of
Theorem 3 above. Moreover the genericity assumption made in [S] Theorem 3
is not necessary, as the flow constructed in [S] Lemma 2 is well-defined on the
whole (Λ2m)l.

Remark 6. Let us identify m with g/l via the decomposition g = l ⊕ m. This
allows to define an action of Gl on m, hence also an action of Gl on MΩ. It is
clear from (3.1) that the isomorphism M(g, l, Ω) 
 MΩ is Gl-equivariant. In
particular, M(g, l,Ω) 
 MΩ/Gl.

5. Proof of Theorem 3

Proof of Theorem 3. We will construct by induction a formal power series t =∑
k tk with tk : D → Λ2m of degree k, such that r = rl

AM + Ωm

2 +t is a dynamical
r-matrix satisfying r(0) = r0. Set t0 = r0 − Ω

2 ∈ Λ2m and let us suppose that
we have defined an l-equivariant polynomial t<k =

∑
l<k tl. Set s = rl

AM − Ωl

2 ,
ZΩ = CY B(Ω) and ZΩl

= CY B(Ωl). Then the CDYBE for rl
AM is equivalent

to the following equation for s :

Alt (ds) + CY B(s) +
1
4
ZΩl

= 0.(5.1)

Let π : g → l be the projection along m. Consider, for l ≤ k the following system
of differential equations for i = 1, . . . r.

∂tl
∂x∗

i

= −(x∗
i ⊗ 1 ⊗ 1)

[
[t12<l, t

13
<l] + [s12 + s13, t<l] +

1
4
(ZΩ − ZΩl

)
]

l−1

(El)

where by definition x∗(y) = x∗(π(y)) for all x∗ ∈ l∗, y ∈ g.

Lemma 5.1. Suppose that (El) is satisfied for all l < k. Then (Ek) admits a
unique solution tk of degree k, which is l-equivariant.

Proof. By the equivariant Poincaré lemma, it is enough to show that

∂

∂x∗
j

(x∗
i ⊗ 1 ⊗ 1)

{
[t12<k, t13<k] + [s12 + s13, t<k] +

1
4
(ZΩ − ZΩl

)
}

=
∂

∂x∗
i

(x∗
j ⊗ 1 ⊗ 1)

{
[t12<k, t13<k] + [s12 + s13, t<k] +

1
4
(ZΩ − ZΩl

)
}

.

(5.2)
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Let us write ∂i for
∂

∂x∗
i

and t for t<k. All equations below will be understood

modulo terms of degree ≥ k. Let Xi and Xj denote the r.h.s and l.h.s of (5.2).
Using the assumption that t is a solution of the system (El) for all l < k, we
have

Xi − Xj

= (x∗
i ⊗ x∗

j ⊗ 1 ⊗ 1)
{[

[t12, t13] + [s12 + s13, t23] +
1
4
(ZΩ − ZΩl

)123, t24
]

+
[
t23, [t12, t14] + [s12 + s14, t24] +

1
4
(ZΩ − ZΩl

)124
]

+
[
s23 + s24, [t13, t14] + [s13 + s14, t34] +

1
4
(ZΩ − ZΩl

)134
]

− [∂i(s23 + s24), t34] + [∂j(s13 + s14), t34]

− [ − [t12, t23] + [−s12 + s23, t13] − 1
4
(ZΩ − ZΩl

)123, t14
]

− [
t13,−[t12, t24] + [−s12 + s24, t14] − 1

4
(ZΩ − ZΩl

)124
]

− [
s13 + s14, [t23, t24] + [s23 + s24, t34] +

1
4
(ZΩ − ZΩl

)234
]}

.

(5.3)

By the Jacobi identity we have
[
[t12, t13], t24

]
+

[
t13, [t12, t24]

]
=

[
[t12, t23], t14

]
+

[
t23, [t12, t14]

]
= 0.(5.4)

Moreover,

(5.5) (x∗
i ⊗ x∗

j ⊗ 1 ⊗ 1)
{

[
1
4
(ZΩl

)123, t24] + [t23,
1
4
(ZΩl

)124]

+ [
1
4
(ZΩl

)123, t14] + [t13,
1
4
(ZΩl

)124]
}

= 0 ,

since ZΩl
∈ Λ3l, t ∈ Λ2m and m is l-invariant. Furthermore, ZΩ is

g-invariant, hence

(x∗
i ⊗ x∗

j ⊗ 1 ⊗ 1)
{

[
1
4
(ZΩ)123, t24] + [

1
4
(ZΩ)123, t14]

+ [t23,
1
4
(ZΩ)124] + [t13,

1
4
(ZΩ)124]

}

= (x∗
i ⊗ x∗

j ⊗ 1 ⊗ 1)
{
− [

1
4
(ZΩ)123, t34] + [t34,

1
4
(ZΩ)124]

}

= − (x∗
i ⊗ x∗

j ⊗ 1 ⊗ 1)
{

[
1
4
(
(ZΩl

)123 + (ZΩl
)124

)
, t34]

}
.

(5.6)
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In a similar way, ZΩ and ZΩl
are l-invariant, hence

[s23 + s24,
1
4
(ZΩ − ZΩl

)134] = [s12,
1
4
(ZΩ − ZΩl

)134],

−[s13 + s14,
1
4
(ZΩ − ZΩl

)234] = [s12,
1
4
(ZΩ − ZΩl

)234].
(5.7)

From the Jacobi identity again we deduce[
[s12, t23], t24

]
+

[
t23, [s12, t24]

]
=

[
s12, [t23, t24]

]
,[

[s12, t13], t14
]
+

[
t13, [s12, t14]

]
=

[
s12, [t13, t14]

]
,[

[s13, t23], t24
] − [

s13, [t23, t24]
]

= 0,[
s24, [t13, t14]

] − [
t13, [s24, t14]

]
= 0,[

t23, [s14, t24]
] − [

s14, [t23, t24]
]

= 0,[
s23, [t13, t14]

] − [
[s23, t13], t14

]
= 0.

(5.8)

and [
s23 + s24, [s13 + s14, t34]

] − [
s13 + s14, [s23 + s24, t34]

]
=

[
[s23, s13], t34

]
+

[
[s24, s14], t34

]
= − [

[s13, s23], t34
] − [

[s14, s24], t34
]
.

(5.9)

Collecting terms from (5.4),(5.5),(5.6),(5.7), (5.8),(5.9) and replacing in (5.3),
we obtain

Xi − Xj = (x∗
i ⊗ x∗

j ⊗ 1 ⊗ 1)
{
− [

1
4
(
(ZΩl

)123 + (ZΩl
)124

)
, t34]

− [
[s13, s23], t34

] − [
[s14, s24], t34

] − [∂i(s23 + s24), t34]

+ [∂j(s13 + s14), t34] +
[
s12, [t23, t24] +

1
4
(ZΩ − ZΩl

)234
]

+
[
s12, [t13, t14] +

1
4
(ZΩ − ZΩl

)134
]}

.

(5.10)

Using the fact that t is a solution to the system (El) again we have
[
s12, [t23, t24] +

1
4
(ZΩ − ZΩl

)234
]
+

[
s12, [t13, t14] +

1
4
(ZΩ − ZΩl

)134
]

=
[
s12,

∑
k

(xk ⊗ 1 + 1 ⊗ xk) ⊗ (−∂kt − [sk ⊗ 1 + 1 ⊗ sk, t])
]

= −[
s12,

∑
k

(xk ⊗ 1 + 1 ⊗ xk) ⊗ ∂kt
] − [

s12, [s23 + s24, t34]
]

− [
s12, [s13 + s14, t34]

]

(5.11)

where we set sk = (x∗
k ⊗ 1)s. But s is l-equivariant, i.e for y ∈ l we have

[s, y ⊗ 1 + 1 ⊗ y] =
∑

l

[xl, y]∂ls
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where [xl, y] is considered as a function D → C. Thus,

−[s12,
∑

k

(xk ⊗ 1 + 1 ⊗ xk) ⊗ ∂kt] = −
∑
l,k

∂ls
12∂kt34[xl, xk]

= −
∑

l

∂ls
12[x3

l + x4
l , t

34].
(5.12)

Using Jacobi identity, we can write[
s12, [s23 + s24, t34]

]
=

[
[s12, s23], t34

]
+

[
[s12, s24], t34

]
,[

s12, [s23 + s24, t34]
]

=
[
[s12, s13], t34

]
+

[
[s12, s14], t34

]
.

(5.13)

Using (5.10), (5.11), (5.12) and (5.13) we finally get, by (5.1)

Xi − Xj = − (x∗
i ⊗ x∗

j ⊗ 1 ⊗ 1) ·{[
Alt (ds)123 + [s13, s23] + [s12, s13] + [s12, s23] +

1
4
(ZΩl

)123, t34
]

+
[
Alt (ds)124 + [s14, s24] + [s12, s14] + [s12, s24] +

1
4
(ZΩl

)124, t34
]}

= 0

�
Let t =

∑
ti : D → Λ2m be the l-equivariant series constructed by applying

Lemma 4.2 succesively, starting from t0.
Consider the algebraic variety

TΩ = {t ∈ Λ2m | CY B(t +
Ω
2

) = 0 in Λ3(g/l)}.
Let x∗ ∈ l∗ and consider the flow on Λ2m defined by the equation

(5.14)
∂u

∂ε
=

− (x∗ ⊗ 1 ⊗ 1)
(

[u12, u13] + [s12 + s13, u23] +
1
4
(
CY B(Ω) − CY B(Ωl)

))
.

Lemma 5.2. The flow (5.14) preserves TΩ.

Proof. Let u ∈ TΩ. Set h1 = (x∗ ⊗ 1 ⊗ 1)
(
[s12 + s13, u23]

)
,

h2 = (x∗ ⊗ 1 ⊗ 1)
(

[u12, u13] +
1
4
(
ZΩ − ZΩl

))
.

Note that h1 ∈ Λ2m by condition i) and that h2 ∈ Λ2m since u ∈ Λ2m and since
by ii),

ZΩ − ZΩl
∈ (m ⊗ g ⊗ g) ⊕ (l ⊗ m ⊗ m).

It thus remains to check that the vector field defined by (5.14) is tangent to TΩ,
i.e that CY B(u, h1 + h2) ∈ Alt (l ⊗ g ⊗ g), where we use the notation

CY B(a, b) = [a12, b13] + [a13, b23] + [a12, b23] + [b12, a13] + [b13, a23] + [b12, a23].
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But
CY B(u, h1) = ad

(
(x∗ ⊗ 1)s

)
CY B(u) ∈ Alt (l ⊗ g ⊗ g),

and CY B(u, h2) ∈ Alt (l⊗g⊗g) by [S], Lemma 3 (note that the commutativity
of l, assumed in [S], is not used in the proof of Lemma 3). �
Corollary 5.1. The map t : D → Λ2m takes values in TΩ.

Proof. Note that t(0) ∈ TΩ by assumption, and that for any x∗ ∈ D the function
u(ε) = t(εx∗) on the formal disc satisfies (5.14) by construction. Hence t takes
values in TΩ. �

We now conclude the proof of Theorem 3 by showing that r = rl
AM + Ωm

2 + t

is a dynamical r-matrix. Setting sl
AM = rl

AM − Ωl

2 we have

Alt (dr) + CY B(r)

= Alt (dsl
AM ) + Alt (dt) + CY B(sl

AM + t) +
1
4
CY B(Ω)

= Alt (dsl
AM ) + Alt (dt) + CY B(sl

AM ) + CY B(t) + CY B(sl
AM , t)

+
1
4
CY B(Ω).

Using the CDYBE for rl
AM we see that r is a dynamical r-matrix if and only if

Alt (dt) + CY B(t) + CY B(sl
AM , t) +

1
4
(
CY B(Ω) − CY B(Ωl)

)
= 0.(5.15)

Since t takes values in TΩ, (5.15) is equivalent to the system

∂t

∂x∗
i

= −(x∗
i ⊗ 1 ⊗ 1)

(
CY B(t) + CY B(sl

AM , t) +
1
4
(
CY B(Ω) − CY B(Ωl)

))

for i = 1, . . . r. It is easy to see from conditions i) and ii) that this last system
is itself equivalent to the collection of systems (El) for all l ∈ N. �

6. Appendix. Generalized Alekseev-Meinrenken
dynamical r-matrices

In this appendix we give a generalization of the dynamical r-matrix rl
AM .

Let g be a finite-dimensional complex Lie algebra and B : g → g an automor-
phism of order n. Then g =

⊕
j∈Z/nZ

gj where gj = Ker (B − e
2iπj

n ). Set l = g0.
Then g0 acts on gj for all j.

Assume that g carries a nondegenerate invariant form ( , ), which is stable
under B. Set Ω = ( , )−1 ∈ (S2g)g. We will identify g with g∗ and l with l∗

using ( , ).
Let D be the formal neighborhood of zero in l∗ 
 l. Consider the function

ρ̂ : D → End(g) such that ρ̂(A)|gi
= fi(ad A), with

f0(s) =
1
s
− 1

2
cotanh (

1
2
s),

fj(s) = −1
2
cotanh (

1
2
(s +

2iπj

n
)), j �= 0.
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The element ρ̂ defines a map ρ : D → Λ2g. Let us set rB = Ω
2 + ρ.

Theorem A 1. The map rB is a dynamical r-matrix.

Remark 7. If B = 1 then rB is equal to the Alekseev-Meinrenken dynamical
r-matrix rl

AM .
The rest of this appendix is devoted to the proof of Theorem A.1. We start

by recalling the following result from [EV]. Let l be a reductive Lie algebra with
Cartan subalgebra h, g any finite-dimensional Lie algebra containing l and let
Ω ∈ (S2g)g. The projection l → h defines an embedding h∗ → l∗. Let ∆ be the
root system of l and lα the weight subspace corresponding to α ∈ ∆. Choose
an nondegenerate invariant inner product on l. Let us fix eα ∈ lα for all α ∈ ∆
such that (e−α, eα) = 1. Define a function ρ0 : D → Λ2l ⊂ Λ2g by

ρ0(λ) =
∑
α>0

eα ⊗ e−α − eα ⊗ e−α

(α, λ)
.

It is clear that ρ0 does not depend on the choice of the inner product.
Let r : l∗ → g ⊗ g be an l-equivariant meromorphic function satisfying the

quasi-unitarity condition r + r21 = Ω.

Theorem A 2 ([EV], Theorem 3.14). The map r is a classical dynamical r-
matrix if and only if r|h∗ + ρ0 is a classical dynamical r-matrix for h.

Proof. This is proved in [EV] under the assumption that g is simple and h ⊂ g

is a Cartan subalgebra. However, this assumption is not used in the proof and
the result is valid in general. �

Proposition A 1. Theorem A1 is valid if l is reductive, g = l1 ⊕ · · · ⊕ ln with
li = l, and B is the cyclic permutation automorphism B : li

∼→ li+1 mod n.

Proof. Let (xi)i∈I be an orthonormal basis of h ⊂ l. For i = 1, . . . , n we will
write e

(i)
α for the element of li ⊂ g corresponding to eα. With this notation, we

have B(e(i)
α ) = e

(i+1)
α and

gj = {g(1)
1 ⊕ · · · ⊕ g(n)

n ; | gk+1 = e
−2iπj

n gk}.
Finally, let k ⊂ ⊕

i h(i) be the orthogonal complement to h. Note that 1 − B
restricts to an invertible operator on k. A direct computation shows that

rB|h∗ + ρ0

=
Ω
2

+
∑

α>0,i

e(i)
α ∧ ( − 1

2
(1 + Be(α,λ)

1 − Be(α,λ)

)
e
(i)
−α

)
+

∑
i

yi ⊗
( − 1 + B

2(1 − B)
yi

)

=
∑

i

xi ⊗ xi +
∑

α>0,i

e
(i)
−α ⊗ e(i)

α −
∑

α>0,i

∑
l≥1

el(α,λ)e(i)
α ∧ e

(i+l)
−α

+
1
2

∑
i

B + 1
B − 1

yi ⊗ yi
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where (yi)i∈J is an orthonormal basis of k. By [S], Theorem 4 this expression is
a dymamical r-matrix. Hence, by Theorem A.2, rB is a dynamical r-matrix. �

Define a map W : D → Λ3g by

W (A) = Alt (dρ(A)) + CY B(ρ(A)) +
1
4
Z

where Z = CY B(Ω). For any i, j ∈ Z/nZ, X ∈ gi, Y ∈ gj and A ∈ l, consider
the expression

Kij(A, X, Y ) =
(
1 ⊗ X ⊗ Y, W (A)

) ∈ gi+j .

Lemma A 1. The expression Kij(A, X, Y ) is given by a universal Lie series in
A, X and Y .

Proof. Straightforward. �

Moreover, from Proposition A.1 we deduce the following result.

Proposition A 2. We have Kij(A, X, Y ) = 0 for all A, X, Y if l = gln(C),
g = l1 ⊕ · · · ⊕ ln with lk = l, and B is the cyclic permutation automorphism.

Finally, we recall the following standard fact.

Lemma A 2. Let P (X1, . . . , Xn) be a Lie polynomial which vanishes identi-
cally for all X1, . . . Xn ∈ glk(C) for all k ∈ N. Then P (X1, . . . , Xn) = 0.

Proof. Let Fn be the free Lie algebra in n generators and let Un be its enveloping
algebra (the free associative algebra). Let d be the degree of P and let I be the
ideal in Un generated by elements of degree at least d+1. Then Un/I is a finite-
dimensional algebra. Let σ : Un/I → gl(Un/I) be the left regular representation.
Then σ

(
P (X1, . . . , Xn)

)
= 0. Hence P (X1, . . . , Xn) = 0. �

Now, let us write Kij =
∑

k K
(k)
ij where K

(k)
ij is the homogeneous component

of degree k. By Proposition A.2, K
(k)
ij (A, X, Y ) = 0 whenever A, X, Y ∈ glm(C)

for some m ∈ C. Hence K
(k)
ij = 0 by Lemma A.2. Thus W (A) = 0 for all A ∈ l.

Theorem A.1 is proved.

Examples. Let g be a simple complex Lie algebra and l ⊂ g a semisimple
subalgebra with same rank as g. Such pairs are classified in [BdS]. Let Ql and
Qg be the root lattices of l and g respectively and set Γ = Qg/Ql. It follows
from [BdS] that Γ is one of the groups Z/2Z, Z/3Z or Z/5Z (the case Γ = Z/2Z

corresponds to symmetric spaces). Let χ be a nontrivial character χ of Γ. Then
χ gives rise to an automorphism Bχ of g whose set of fixed points is l, defined
by

Bχ|gα
= χ(α)Id,
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where gα is the root space of weight α. Let Ω ∈ (S2g)g be a Casimir element
(Ω �= 0). Let r : D → g ⊗ g be a dynamical r-matrix such that r + r21 = Ω. It
follows from Theorem A.2 and [EV] Theorem 3.1, that, up to gauge-equivalence,

r|h∗ + ρ0 =
Ω
2

+
∑

α∈∆g

1
2
cotanh(

1
2
(α, λ − ν))eα ⊗ e−α,

for some ν ∈ h∗, where ∆g is the root system of g. But then r is regular at
λ = 0 if and only if (α, ν) = 0 modulo 2πiZ for all α ∈ ∆l and (α, ν) �= 0
modulo 2πiZ for all α ∈ ∆g\∆l, where ∆l ⊂ ∆g is the root system of l. Such ν
defines a nontrivial character χ of Γ, and it follows from [EV], Section 3.8 that r
is gauge-equivalent to the generalized Alekseev-Meinrenken dynamical r-matrix
rBχ

. Hence the moduli space M(g, l,Ω) consists of |Γ| − 1 points.
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