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ON THE MODULI SPACE OF CLASSICAL DYNAMICAL
R-MATRICES

PAVEL ETINGOF AND OLIVIER SCHIFFMANN

1. Introduction

A classical dynamical r-matrix is an [-equivariant function r : ¥ - g® g
(where [, g are Lie algebras), such that 2! 4+r = () is g-invariant, which satisfies
the classical dynamical Yang-Baxter equation (CDYBE). CDYBE is a differ-
ential equation, which generalizes the usual classical Yang-Baxter equation. It
was introduced in 1994 by G.Felder [Fe], in the context of conformal field the-
ory. Solutions of CDYBE and their quantizations appear naturally in several
mathematical theories: the theory of integrable systems, special functions, rep-
resentation theory (see [ES] for a review).

Since classical dynamical r-matrices were introduced, several authors tried to
study and classify them ([EV],[S],[Xu]). The goal of this paper is to describe the
moduli space of classical dynamical r-matrices modulo gauge transformations.
In particular, we improve and generalize the results of [EV], [S], as well as correct
some errors that occurred in these papers (See remarks 3 and 5).

The main achievement of this paper, compared to the previous ones, is that
its results are valid for dynamical r-matrices for a nonabelian Lie algebra [. It
turns out that this generalization not only brings in new interesting examples
(see [EV],[AM]) but also makes the general theory much more clear and natural.

The composition of the paper is as follows.

In Section 1, we recall the definition of a dynamical r-matrix.

In Section 2, we extend to the nonabelian case the notion of a gauge trans-
formation of dynamical r-matrices, introduced in [EV].

In Section 3, we decribe the space of dynamical r-matrices modulo gauge
transformations (the moduli space). Here we formulate our main theorem, stat-
ing that under some technical conditions, the moduli space can be identified
with a certain explicitly given affine variety. For instance, if [ = g, this vari-
ety consists of one point, which is the Alekseev-Meinrenken solution [AM] (for
semisimple Lie algebras, it was also constructed in [EV]).

In Section 4 we prove the main theorem.

In the appendix, we construct a generalization of the Alekseev-Meinrenken
classical dynamical r-matrix, associated to any finite-dimensional Lie algebra g
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with a nondegenerate invariant form and an automorphism B of g of finite order
which preserves this form.

We don’t treat the case of dynamical r-matrices with spectral parameters here.
However, we expect some results similar to our main theorem to hold also in this
case.

2. The dynamical Yang-Baxter equation

Let g be a Lie algebra over C, and [ C g a finite dimensional Lie subalgebra.
Let x1,..., 2, be a basis of [.

Let D C I* be the formal neighborhood of 0. Let V' be a complex vector space.
By functions from D to V we will mean elements of the space V{[[z1, ..., x,]],
where we regard x; as coordinates on D. Finally, if w € Q%(D,V) is a k-form
with values in any vector space V, we denote by @ : D — A*[® V the associated
function. For an element r € g ® g we define the classical Yang-Baxter operator

CYB(r) = [r'2,r13] 4+ [r'2,r3] + [r'13, 23],

The classical dynamical Yang-Baxter equation (CDYBE) is the following
differential equation for an [~equivariant function r: D — g® g :

(2.1) Alt(dr) + CY B(r) = 0,

where for z € g®3, we let Alt(z) = 2123 — 2213 4 2231,
It is useful to consider solutions of CDYBE which satisfy an additional quasi-
unitarity condition:

(2.2) r+r?t = Qe (S%g)°.

It is easy to show that if r satisfies CDYBE and the quasi-unitarity condition
then 2 is a constant function of .

An [-equivariant solution of CDYBE which satisfies the quasi-unitarity condi-
tion is called a dynamical r-matriz. The set of all dynamical r-matrices satisfying
(2.2) will be denoted by Dynr(g, [, ).

Remark. In the litterature (see for instance [ES] and the references therein)
dynamical r-matrices are allowed to have a pole at A = 0. However, if [ is
abelian and r(A) is a dynamical r-matrix then for any A\g € [*, r(X + \g) is also
a dynamical r-matrix. Hence, for classification purposes it is always possible to
assume that r(\) is regular at the origin.

3. Gauge transformations

Here we will reproduce some results from [EV], but unlike [EV], we will not
assume that [ is abelian. We will assume, however, that g is finite dimensional.

Let G be the simply connected complex Lie group such that Lie(G) = g. Let
g : D — G be any regular, [-equivariant map. Consider the 1-form n, = g~ 'dg
and set ¢, = [17,'2,7;%]. Define an [-equivariant function 7, : D — A2g by the
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formula 74,(\) = (A® 1 ® 1)(4(A). For any [-equivariant function 7 : D — g® g
we set

(3.1) rf=(g@g)(r =T+ + )97 ®g7).
The following theorem is a nonabelian generalization of Proposition 1.2 of [EV].

Proposition 3.1. The function r is a dynamical r-matriz if and only if the
function r9 is.

Proof. Let us show that if r is a dynamical r-matrix then so is 9. The other
direction is analogous. Let X = (D x G x D, {, }) be the dynamical Poisson
groupoid associated to r in [EV]. Consider the automorphism o of X given by
o(u1,z,uz) = (u1,g(ur)rg(uz)~*, uz). Then o transforms {, } into the Poisson
bracket {f, g}, = 0 {of,og}. It is straightforward to calculate that the corre-
sponding transformation at the level of dynamical r-matrices is exactly (3.1). O

The transformation r — r9 is called a gauge transformation. Note that
(3.1) defines an action of the group Map(D,G)" on Dynr(g,[,2), i.e we have
(r91)92 = 79291 for any g1, g2 € Map(D,G)" and r € Dynr(g, [, Q). Let us denote
by Mapy(D,G)" the subgroup consisting of maps g satisfying g(0) = 1. We
would like to understand the moduli space

M(gv [7 Q) = Dyn'r(g, [7 Q)/MapO<D7 G)[
In the triangular case (i.e when £ = 0) this space was considered by P. Xu in
[Xu].
Remark 1. It is clear that Map(D, G)'/Map, (D, G)" ~ G'. Hence the complete
[

moduli space M(g,[,2) = Dynr(g,1,Q)/Map(D, G)" is equal to M(g,1,Q)/G"
where g € G' acts by 79 = Ad(g ® g)(r).

4. The structure of M(g,[,Q)

From now on we will assume that
i) [ C g has an [—invariant complement m.

The following theorem is a generalization of Theorem 1.4 in [EV]. It shows that
the space of dynamical r-matrices is, up to gauge equivalence, finite dimensional.

Theorem 1. Let p,r : D — g®?2 be two dynamical r-matrices such that r(0) =
p(0). Then there exists g € Map(D,G)" such that p = 9.

The proof is a generalization of the proof in [EV]. Before giving it we state the
following auxiliary result.

Lemma 4.1 (equivariant Poincaré lemma). Let [ be a finite-dimensional Lie al-
gebra, V a finite-dimensional [-module, k > 1 and w € Q¥(D, V) an [-equivariant
closed k-form with values in V. Then there exists an [-equivariant k — 1-form
¢ € QF1(D,V) such that d( = w.
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Proof. The proof is the same as that for the usual Poincaré lemma. It is enough
to assume that w is homogeneous, of degree [ € N. Let £ = ", xi% be the

Euler vector field on D. Then by Cartan’s homotopy formula,
lw= LEw = z’Edw + diEw == d(zEw)

and we can set ( = ipw/l. Note that E is [-equivariant, hence so is (. O

Proof of Theorem 1. The dynamical r-matrices r,p are by definition formal
power series in the variables x;. Let us assume that the statement of the theorem
holds modulo terms of degree > K. Let g : U — G be a gauge transformation
such that F := r9% — p has degree > K and let Ex be the homogeneous compo-
nent of E of degree K. Then Alt (dEx) = [CY B(r9%) — C’YB(/))]K_1 where
-] 5, denotes the homogeneous component of degree K —1. But [rox — p]l =0
for all [ < K by assumption, hence

(4.1) Alt (dEf) = 0.

Lemma 4.2. The exists an [-equivariant closed 1-form ¢ € QY (D, g) such that
Ex = 221 —C.

Proof. Let us write Ex = Ey + By — E[in1 + Eqm where By € A%, By € @ m
and Eynm € A?m. From (4.1) it follows that dEymm = 0 hence Fpm = 0. Now let
¢ € QY(D,m) be such that £ = Eg,. Then (4.1) implies that ¢ is closed. Note
that the assumption i) guarantees that ¢ is equivariant. Finally, let w € Q2(D, C)
be such that @ = Ey. Then (4.1) says that w is closed. By the equivariant
Poincaré lemma, there exists an equivariant 1-form 7 such that dn = w. Set
6 = dn, so that 6 — 9" = %. Then ¢ = £ 4+ 0 satisfies the conditions of the
lemma. ]

We now conclude the proof of Theorem 1. Let x : D — g be any l-equivariant
function of order K + 1 such that dx = (. Set g = eX. Then 7, = g~ 'dg is of
order > K and ¢ — 7, is of order > K + 1. But then 221 —C— M2 =y +7y)
is also of order > K + 1. Set gx+1 = ggx-. Then, by the above r9%+1 — p is of
degree > K + 1. The proof follows by induction. O

Proposition 4.1. Any dynamical r-matriz r is gauge-equivalent to a dynamical

: Q 2
r-matriz p such that p(0) € 35 + A*m.

Proof. Let 1, € [®g such that r(0) —7, +72' € % + A%m. Since m is [-invariant,
we have 7, € (I ® g)'. By the equivariant Poincaré lemma, there exists an
equivariant function x : D — g satisfying x(0) = 0, dx = 1. Set g = eX. Then
p := 19 satisfies the CDYBE and p(0) € £ + A%m. O

Consider the following algebraic variety

Mo ={z € % + (A%m)' [CY B(z) = 0in A%(g/1)}.
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It is immediate from (3.1) that if p and r are gauge-equivalent and if p(0) €
£ + A’m and 7(0) € £ + A%m then r(0) = p(0). Moreover, it follows from
the CDYBE (2.1) that for every dynamical r-matrix » € Dynr(g, [, Q) such that
r(0) € £ + A’m we have r(0) € M.

Hence Theorem 1 and Proposition 3.1 give the following corollary.

Corollary 4.1. The map M(g,[,Q) — Mq which sends a class C to r(0) where
r € C is any representative such that r(0) € % + A%m, is an embedding.

Remark 2. If condition i) fails then the space M(g, [, 2) may be infinite-dimen-
sional. This is demonstrated by the following example due to P. Xu [Xu]. Let
g = Cx @ Cy be the two-dimensional Lie algebra with [z, y] = y, and set [ = Cy.
Then A3g = 0 and A%g is a trivial [-module. Thus any function r : D — A2g is
a dynamical r-matrix. On the other hand, g' = [ and all gauge transformations
act trivially.

Remark 3. We would like to use this opportunity to correct the statement of
Theorem 1.4 of [EV]. This theorem is incorrect as stated (as shown by Cu’s
counterexample, see Remark 2). The mistake is in the proof of Lemma 1.5,
which uses the incorrect statement that

(4.2) gelelog)' =@oelalog)

for commutative [. This statement, however, is correct with the additional as-
sumption i); in this case Theorem 1.4 of [EV] and its proof are correct, and
Theorem 1.4 of [EV] is a special case of Theorem 1 above.

Now suppose that [ = g. Note that i) automatically holds in this case. Then
by Proposition 3.1 and Theorem 1 there is at most one gauge-equivalence class
of dynamical r-matrices r : D — % + A2g. Such a class in fact always exists, as
was discovered by Alekseev and Meinrenken [AM]. A representative of this class
is constructed as follows.

Let go be the ideal of g spanned by the components of €2, and let D be
the formal neighborhood of 0 in gg,. Let us identify go with g§ via Q. Set
f(s) =1 — Lcotanh(%). Then f is smooth at the origin. Consider the following
map

T: Do—End(g) ~g"®g~gRyg
u— f(ad p)

Let 7* : g* — g¢, be the projection and set
g Q *
TAM = 5+To¢r D —g®g.

Theorem 2 ([AM]). The map r%,, is a dynamical r-matriz.

This theorem is proved in [AM] in the case of compact Lie algebras, but the
proof can be adapted to the general case. Another proof is given in the appendix.

Corollary 4.2. The moduli space M(g,g,Q) consists of the single class r%,,.
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Remark 4. When g is a simple Lie algebra and [ = g these results easily follow
from [EV], Section 3.8.

We will now show that, under some technical conditions on €2, the embedding
defined in Corollary 3.1 is actually an isomorphism. From now on we assume
that

ii) We have Q € (I®[) ® (m @ m).

We will write Q; (resp. Q) for the corresponding components of .

Condition ii) is satisfied in particular in the triangular case (2 = 0). It is
also satisfied when [ acts semisimply on g and when the restriction of the inverse
form (, ) = Q7! to [q = [N gq is nondegenerate. Indeed, let g’ be an l-invariant
complement of [ 4 go in g and let mg be the orthogonal complement of [g i gg.
Then m = g’ & mgq satisfies conditions i) and ii).

Proposition 4.2. Any dynamical r-matrixz r is gauge-equivalent to a dynamical

r-matriz of the form p = 1Yy, + 92“‘ +t with t : D — A%*m.

Proof. By Proposition 3.1 there exists a dynamical r-matrix pg gauge-equivalent
to r such that po(0) € % + A?m. We will first construct a sequence of gauge
transformations g;, ¢ = 1,... such that pJ' € % + (A2[ & A2m) modulo terms of
degree > i. We set g1 = 1. Suppose that we have constructed g; and let E; be
the term of degree exactly ¢ of pj’. From the CDYBE we have

(4.3) —Alt (dE;) = [CYB(p§)],_,
where [-];_1 denotes the component of degree ¢ — 1. But by our assumption we
have py’ € % + (A2[ <) A2m) in degrees < i — 1. Using the [-invariance of m it is
easy to see that this implies that

(4.4) [CYB(pi)],_, € Alt (Iemom) @ (I@[0)®(momem)).

Let ¢ € QY(D,m) such that E; + €' € € A2l@ A?m. Then from (4.3) and
(4.4) it follows that d§ = 0. By the equivariant Poincaré lemma there exists an
equivariant map x : D — m such that £ = dx. Moreover, ¢ is of degree > i,
hence x is of degree > i + 1. Now set g = eX. Then 1, — ¢ is of order > i + 1.
Thus

(9@ 9) (P +15> =g +79) (g @ g ")

is in % + (A2[ <) A2m) modulo terms of degree > i + 1, and we put g;+1 = ¢i9.

This allows to define the sequence g; inductively.

It is clear that the sequence p§’ converges, in the sense of formal power series,
to a dynamical r-matrix p; which is gauge-equivalent to pg. Moreover p; takes
values in % + (A2[ &) AQm) by construction. Let us write p; = p! + p™ where p}
and p¥ take values in [®[ and m®m respectively. Observe that p} : D — %—H&QI
is itself a dynamical r-matrix. Hence by Corollary 3.2 we can perform a gauge-
transformation for [ to reduce it to r'y,,. O

The following theorem is a generalization to the nonabelian case of [S], The-

orem 3, and will be proved in the next section.
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Theorem 3. Let g € Mgq. Then there exists a unique dynamical r-matrix
r=rhy+ 92“’ +t with t : D — A?m, such that 7(0) = rg.

Corollary 4.3. Under conditions i) andii) the moduli space M(g, [, Q) of gauge-
equivalence classes of dynamical r-matrices is isomorphic to Mgq.

Remark 5. We use this opportunity to correct the statement of Theorem 3 in
[S] which is false as stated. The mistake is in the proof of Lemma 1, which uses
the incorrect statement (4.2). However, the theorem and its proof are correct
if one makes in addition the assumption i). In this case it is a special case of
Theorem 3 above. Moreover the genericity assumption made in [S] Theorem 3
is not necessary, as the flow constructed in [S] Lemma 2 is well-defined on the
whole (A%m)'.

Remark 6. Let us identify m with g/[ via the decomposition g = [ @ m. This
allows to define an action of G' on m, hence also an action of G' on Mgq. It is
clear from (3.1) that the isomorphism M(g,[,Q) ~ Mgq is G'-equivariant. In
particular, M(g,[,Q) ~ Mq/G".

5. Proof of Theorem 3

Proof of Theorem 3. We will construct by induction a formal power series ¢t =

it with ¢y, : D — A?m of degree k, such that r = rly,,+ 92“’ +t is a dynamical

r-matrix satisfying r(0) = ro. Set tg = ro — % € A?m and let us suppose that
we have defined an l-equivariant polynomial t; = >, _, 1. Set s = s — %,
Zo = CYB(Q) and Zg, = CYB(€). Then the CDYBE for rY,, is equivalent

to the following equation for s :

— 1
(5.1) Alt (ds) + CY B(s) + ZZQ[ =0.

Let w : g — [ be the projection along m. Consider, for [ < k the following system
of differential equations for ¢ =1,...7.
oty

(E1) ox}

* 1
= —(z; @10 1) |[t5, t5] + [s" + s t] + Z(ZQ - Zq,)
-1

where by definition z*(y) = z*(n(y)) for all z* € [*, y € g.

Lemma 5.1. Suppose that (E;) is satisfied for alll < k. Then (E}) admits a
unique solution ti of degree k, which is [-equivariant.

Proof. By the equivariant Poincaré lemma, it is enough to show that

o, . 1
e TR 1){[t1<2k,t1<3k] + 57+ 57 ] + 7 (Za - ZQJ}
(5.2) g

o . |
= g @10 D{ 18] + 824 55, bl + (20— Z0) .

)
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Let us write 0; for % and t for t.;. All equations below will be understood

modulo terms of degreZe > k. Let X; and X; denote the r.h.s and Lh.s of (5.2).
Using the assumption that ¢ is a solution of the system (E;) for all I < k, we
have

X; - X

* * 1
— (1,1 ®$j R1® 1){ HtlQ,t13] 4 [812 4 813,t23] 4 Z(ZQ _ ZQ[)123,t24]

1
4 [t23, [t12’t14] 4 [812 4 814,t24] 4 Z(ZQ o ZQ[)124]

1
+ [523 + 824, [tlB,t14] + [813 + 814,t34] + Z(ZQ _ ZQ[)134]
5.3
( ) _ [81-(823 4 824),t34] 4 [aj(slii + 814),t34]
1
o [_ [t12,t23] 4 [—812 + 823,t13] _ Z(ZQ _ ZQ[)123,t14]
1
4
1
_ [513 —|—814, [t23,t24] + [823 +824,t34] + Z(ZQ _ ZQ[)234]}.

o [tl?’, —[t12,t24] + [_312 + 824,t14] o (ZQ o ZQ[)124]

By the Jacobi identity we have

Moreover,

1
(ZQ[)lzga t24] + [t23? Z(ZQ[)124]

=

(5.5) (x;®x;®1®1){[

1 1
4 [Z(ZQ[)IZS’tM] + [t13’ Z(ZQ[)124]} — O,

since Zg, € A%, t € A’m and m is l-invariant. Furthermore, Zq is
g-invariant, hence

(mi () z; R1® 1){[1(29)123,1524] + [_(ZQ)123’t14]

4

4 [t23, i(ZQ)IQAL] 4 [t13, i(ZQ)124]}

(5.6)
i(ZQ)123’t34] + [t34, l(ZQ)124]}

:(xf@):c;f@l@l){—[ 1
((ZQ()123 + (ZQ,)124),7§34]}.

SN

:_(x;f®x;®1®1){[
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In a similar way, Zq and Zq, are [-invariant, hence
1

1
[823 + 524’ Z(ZQ _ ZQX)134] — [312’ 4(ZQ _ ZQX)134],
(5.7)
1 1
7[513 + 514’ Z(ZQ o ZQX)234] — [512’ Z(ZQ o ZQ()234].
From the Jacobi identity again we deduce

J+ 1
813 t23] t24] _ [813 [t23 t24] =0
824, [tlg,tMH o [15137 [8 — 07
2523 [814 t24]] _ [814 [t23 7§24 =0
823, [t13 t14]] o “823,t13] t14 =0.

and
525 4+ 524 [s13 4 514, £34]] — [s%3 4 514, [s23 4 524 £34)]
(5.9) = [[s%3, 5131, 634] + [[s%, s14], £%4]
= [[s%3, 523, £34] — [[s™4, s4], £34].
Collecting terms from (5.4),(5.5),(5.6),(5.7), (5.8),(5.9) and replacing in (5.3),
we obtain

1
Xi—Xj=@ieele 1){ = [7((Z2)™ + (Za)"™). "]

o [[813,823},t34] o [[314,824],t34] _ [6i(323 + 824),t34]
(5.10)

1
—(ZQ o ZQ[)234]

+ [aj(SlS +Sl4),t34] 4 [812, [t23,t24] 4 1

1
+ [812, [tlg,tM] 4 Z(ZQ o ZQ[)134] }
Using the fact that ¢ is a solution to the system (E;) again we have
1 1
[5127 [t23,t24] + Z(ZQ _ ZQ[)234] + [812, [tlg,t14] + Z(ZQ _ ZQ[)134]

=[s2)) (@ @1+ 1@ak) @ (—0kt — [s5 @ 1+ 1 & s, 1])]
(5.11) K

= —[s")) (wx @1+ 1@ ak) @ Ot] — [s'%,[s* + 5°4,13]]
k

52, [s13 4 514, £34]]
where we set s, = (2, ® 1)s. But s is [-equivariant, i.e for y € [ we have

[ssy@1+1@yl = [o,ylos
l
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where [x7,y] is considered as a function D — C. Thus,

—[s'%, Z(mk R1+1®a,) @ 0kt] = 2615123kt34[$1, wr)
. Lk

(5.12)
=— Z o182 [w} + af, t34).
!

Using Jacobi identity, we can write

[512’ [523 _1_52477534] [ t34] i [[512, 4], t34]
[312’ (528 4 324,t34] [ t34] 4 [[312,3 4, t34]
Using (5.10), (5.11), (5.12) and (5.13) we ﬁnally get, by (5.1)

(5.13)

Xi—X;=—(zj@z;®1®1)-

(ZQK )1237 t34]

| =

{[Alt (%)123 + [8137823] 4 [812, 313] + [8127823] +

1
[Alt (d8)124 [314’ 824] [812, 814] [812, 824] Z(ZQ[)124,t34]}
=0
O

Let t =Y t; : D — A?m be the [-equivariant series constructed by applying
Lemma 4.2 succesively, starting from ¢g.
Consider the algebraic variety

Q
To = {t € A*’m | CYDB(t+ 5) =01in A3(g/1)}.
Let z* € [* and consider the flow on A?m defined by the equation

ou
(5.14) 5 =

@ elel) <[u12,u13] 4512 4 518 0] 4 i(CYB(Q) - C’YB(Q[))>.
Lemma 5.2. The flow (5.14) preserves Tq.
Proof. Let u € Tg. Set hy = (z* @ 1 ®@ 1)([s2 + s, u??)),
hy=(z*®1®1) ([u12,u13] + i(ZQ - ZQ[)>.

Note that k1 € A?m by condition i) and that he € A?m since u € A?m and since
by ii),

Zo—Zo €My @ ([odmem).
It thus remains to check that the vector field defined by (5.14) is tangent to 7g,
i.e that CY B(u, h1 + h2) € Alt (I® g ® g), where we use the notation

CYB(G, b) — [01127 b13] + [a13’ b23] 4 [01127 b23] + [bl27 a13] 4 [b137a23] + [b127 a23]_
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But

CYB(u,h1) =ad ((z* ®1)s)CYB(u) € Alt (I® g ® g),
and CY B(u, he) € Alt (I®g®g) by [S], Lemma 3 (note that the commutativity
of I, assumed in [S], is not used in the proof of Lemma 3). O

Corollary 5.1. The map t : D — A*m takes values in Tq,.

Proof. Note that t(0) € 7 by assumption, and that for any * € D the function
u(e) = t(ex*) on the formal disc satisfies (5.14) by construction. Hence t takes
values in 7gq. O

We now conclude the proof of Theorem 3 by showing that r = rY,, + QT‘“ +1
is a dynamical r-matrix. Setting sy, = 7% — 4 we have

2
Alt (dr) + CY B(r)
= Alt (@5ly37) + Al (d) + CY B(slyyy +1) + 1OV B(Q)
— Alt (ds'y,,) + Alt (df) + CY B(sY ) + CY B(t) + CY B(sY 1, 1)
+ %C’YB(Q).
Using the CDYBE for r!;,, we see that r is a dynamical r-matrix if and only if
(5.15)  Alt (dt) + CYB(t) + CY B(s',,, 1) + i(CYB(Q) — CYB(%)) = 0.
Since t takes values in 7q, (5.15) is equivalent to the system

O el <CYB(t) + CYB(slyp t) + %(CYB(Q) - CYB(Q[)))

o7
fori=1,...7r. It is easy to see from conditions i) and ii) that this last system
is itself equivalent to the collection of systems (Ej) for all [ € N. O

6. Appendix. Generalized Alekseev-Meinrenken
dynamical r-matrices

In this appendix we give a generalization of the dynamical r-matrix rY,,.

Let g be a finite-dimensional complex Lie algebra and B : g — g an automor-
phism of order n. Then g = @jez/nz g; where g; = Ker (B — 627%). Set [ = go.
Then go acts on g; for all j.

Assume that g carries a nondegenerate invariant form (, ), which is stable
under B. Set Q = (, )~ ! € (S%g)?. We will identify g with g* and [ with [*
using (, ).

Let D be the formal neighborhood of zero in [* ~ [. Consider the function
p: D — End(g) such that p(A)4, = fi(ad A), with

1 1 1
fo(s) = . 2cotanh (23),
fi(s) = —%cotanh (%(s + 207

), J#0.
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The element /) defines a map p: D — A%g. Let us set rp = £ + p.

Theorem A 1. The map rg is a dynamical r-matriz.

Remark 7. If B = 1 then rpg is equal to the Alekseev-Meinrenken dynamical
r-matrix 7‘1[4M.

The rest of this appendix is devoted to the proof of Theorem A.1. We start
by recalling the following result from [EV]. Let [ be a reductive Lie algebra with
Cartan subalgebra ), g any finite-dimensional Lie algebra containing [ and let
Q) € (S?g)9. The projection [ — b defines an embedding h* — [*. Let A be the
root system of [ and [, the weight subspace corresponding to o € A. Choose
an nondegenerate invariant inner product on [. Let us fix e, € [, for all « € A
such that (e_q,e,) = 1. Define a function pg : D — A%l C A%g by

ea®e_q—eqRe_gq
pold) = Z (o, \)
a>0 ’

It is clear that pg does not depend on the choice of the inner product.
Let r : I* — g® g be an l-equivariant meromorphic function satisfying the
quasi-unitarity condition r + 72! = Q.

Theorem A 2 ([EV], Theorem 3.14). The map r is a classical dynamical r-
matriz if and only if vy~ + po is a classical dynamical r-matriz for b.

Proof. This is proved in [EV] under the assumption that g is simple and h C g
is a Cartan subalgebra. However, this assumption is not used in the proof and
the result is valid in general. O

Proposition A 1. Theorem Al is valid if | is reductive, g =11 & --- & 1, with
[; =1, and B 1is the cyclic permutation automorphism B : |; = lit1 mod n-

Proof. Let (x;);er be an orthonormal basis of h C [. For i = 1,... ,n we will

write e( ) for the element of [; C g corresponding to e,. With thlb notation, we
have B(e ((1)) = el and

g; = {le) D - (n) il Gk = = Gk}

Finally, let ¢ C @, H® be the orthogonal complement to h. Note that 1 — B
restricts to an invertible operator on . A direct computation shows that

TBlh* + po
=5 (@) LTbe (z) 1+B
2t ;: o’ M ~Betan) +Zyz B)yz)
= Z:m@acl—i— Z e g eli) _ DD IS /\e(jzl)
a>0,1 a>0,i 1>1

_ZB+1yz®yz
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where (y;)ics is an orthonormal basis of €. By [S], Theorem 4 this expression is
a dymamical r-matrix. Hence, by Theorem A.2, rg is a dynamical r-matrix. O

Define a map W : D — A3g by

W(4) = Alt (@(A)) + CY B(p(4)) + 17

where Z = CY B(R2). For any i,j € Z/nZ, X € g;, Y € g; and A € [, consider
the expression

Lemma A 1. The expression K;;j(A, X,Y) is given by a universal Lie series in
A X and Y.

Proof. Straightforward. O

Moreover, from Proposition A.1 we deduce the following result.

Proposition A 2. We have K;;(A, X,Y) = 0 for all A, XY if [ = gl,(C),

g=hL & ---®Ll, withl =1, and B is the cyclic permutation automorphism.
Finally, we recall the following standard fact.

Lemma A 2. Let P(Xy,...,X,) be a Lie polynomial which vanishes identi-
cally for all Xy,...X,, € gl,,(C) for all k € N. Then P(Xy,...,X,)=0.

Proof. Let F,, be the free Lie algebra in n generators and let U,, be its enveloping
algebra (the free associative algebra). Let d be the degree of P and let I be the
ideal in U,, generated by elements of degree at least d+ 1. Then U, /I is a finite-
dimensional algebra. Let o : U,,/I — gl(U,/I) be the left regular representation.
Then o(P(Xy,...,X,)) =0. Hence P(Xy,...,X,) =0. O

Now, let us write K;; =5, K Z(]k ) where K ,L(]k ) is the homogeneous component
of degree k. By Proposition A.2, Ki(f)(A, X,Y) =0 whenever A, X, Y € gl (C)

for some m € C. Hence Kz(f) =0 by Lemma A.2. Thus W(A) =0 forall A€l
Theorem A.1 is proved.

Examples. Let g be a simple complex Lie algebra and [ C g a semisimple
subalgebra with same rank as g. Such pairs are classified in [BdS]. Let @ and
Qg be the root lattices of [ and g respectively and set I' = Q4/Q\. It follows
from [BdS] that I" is one of the groups Z/27Z, Z/3Z or Z/5Z (the case I = Z /27
corresponds to symmetric spaces). Let x be a nontrivial character y of I'. Then
X gives rise to an automorphism B, of g whose set of fixed points is [, defined
by

Bx‘ga = X(Oé)[d,
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where g, is the root space of weight a. Let Q € (S%g)? be a Casimir element
(Q#0). Let r: D — g ® g be a dynamical r-matrix such that r + r?! = Q. It
follows from Theorem A.2 and [EV] Theorem 3.1, that, up to gauge-equivalence,

Q 1 1
Tl + po = 3 + Z Ecotanh(a(a, A—V))eq @ e_q,
a€A4

for some v € bh*, where Ay is the root system of g. But then r is regular at
A = 0 if and only if (a,v) = 0 modulo 2miZ for all & € A; and (a,v) # 0
modulo 27iZ for all o € Ag\A(, where A; C Ay is the root system of [. Such v
defines a nontrivial character x of I', and it follows from [EV], Section 3.8 that r
is gauge-equivalent to the generalized Alekseev-Meinrenken dynamical r-matrix
rp, . Hence the moduli space M(g, [, §2) consists of |I'| — 1 points.
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