
Mathematical Research Letters 8, 125–140 (2001)

JACOBIANS OF GENUS ONE CURVES

Catherine O’Neil

1. Introduction

We introduce the notion of an “n-prepared curve,” which over a field contain-
ing nth roots of unity and where n is invertible is an embedding of a smooth
genus one curve C in P

n−1 along with a rational n-torsion point T on its Jaco-
bian. The action of T on C then extends to an automorphism of P

n−1, i.e. an
element MT ∈ PGLn. For n = 3 and 5 we find the equation for the Jacobian of
an n-prepared curve. In particular, there is a map from the space of n-prepared
curves to X1(n), namely the Jacobian map (along with the specified level n struc-
ture); for n = 3 and 5, this map turns out to have a beautiful formula in terms of
invariants. If F is a cubic equation giving C in P

2, T is the symmetric trilinear
form associated to F and vi, (i = 0, 1, 2), are distinct fixed points of MT as above,
then the Jacobian map from the set of n- prepared curves to X1(3) is given by

first mapping C to the projective line given by the function
F (v0)F (v1)F (v2)
T (v0, v1, v2)3

,

then by identifying the line with X1(3) by sending the coordinate λ to the point
corresponding to Eλ : X3 + Y 3 + λZ3 + XY Z = 0. In P

4, C is given by the
intersection of five quadrics. We may choose a quadric Q so that its orbit under
the action of MT gives five such quadrics. If B is the assocatied bilinear form
to Q and if vi, (i = 0, . . . , 4), are distinct fixed points of MT , then map C as

above to P
1 by the function

Q(v0)Q(v1)Q(v2)Q(v3)Q(v4)
B(v0, v2)B(v1, v3)B(v2, v4)B(v3, v0)B(v4, v1)

, and

identify P
1 with X1(5) by sending the coordinate λ to the point corresponding

to the intersection of the following five quadrics: S0 = x2
0 − x2x3 + x1x4, S1 =

x2
1 − x0x2 + λ x3x4, S2 = x2

2 − x1x3 − λ x0x4, S3 = x2
3 − x0x1 − x2x4, and

S4 = −λ x2
4 + x1x2 − x0x3.

For n = 3 and n = 5 we standardize the form of MT and create sampling
spaces of n-prepared curves.

Many other people have studied the problem of finding Jacobians of genus
one curves in various contexts and degrees of generality; see [5], [8], [3], [2], [10]
and [11].

The author wishes to thank her thesis advisor Barry Mazur for many helpful
comments and suggestions.
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2. General results

2.1. n-prepared genus one curves.

Definition 2.1. For an integer n ≥ 31, an “n-prepared genus one curve (over
S)” is a triple

(C π→ S,L, λn ),

where C π→ S is a projective flat morphism whose fibers are smooth genus one
curves, L is an invertible sheaf on C of degree n (in particular Lt is a degree
n invertible sheaf for every geometric fiber Ct), and λn is a fixed-point free S-
automorphism of C of order n.

Claim 2.1. Given a pair (C π→ S, λn ) of a genus one curve and fixed-point free
automorphism as above, let E be the Jacobian of C. Then λn is induced from the
natural homogeneous space map λ : C × E −→ C by restriction to an n-torsion
point T ∈ E [n](S).

Sketch of Proof. This is well-known over a field. In general, we base change to S ′
where C and E are isomorphic and compare the λn map to the map ”translation
by λn(OE);” applying Corollary 6.2 of the Rigidity Lemma (p. 116 of [7]) as in
the proof of 2.9, we conclude that λn is translation by T ′ over S ′. We descend
T ′ to T over S as in the proof of 2.9 using Theorem 6 on page 135 of [1]. We
leave it to the reader to conclude that λn is translation by T .

In light of the above claim we will use the notation λn = λT .

Remark A. An n-prepared genus one curve comes with a closed immersion of
the curve C into P(π∗(L)) over S, using the notation of page 162 of [4]. In the
case where S is the spectrum of a local ring or a field, P(π∗(L)) is isomorphic
to P

n−1
S , and the isomorphism is defined by a choice of basis of the module of

global sections of the sheaf L. Fix such an embedding f : C −→ P
n−1
S , noting

that any other choice differs from f by an element of Aut(P n−1
S ) = PGLn(S).

Note that f only uses the data of C π→ S and the line bundle L.

Definition 2.2. We define a “morphism of two n-prepared curves” over S
(C π→ S,L, λT )

(g,α)−→ (C′ π′
→ S,L′, λT ′ )

to be a pair (g, α) with :
1. g : C −→ C′ an S-morphism of schemes,
2. α : L ∼= g∗L′, and
3. the induced map of Jacobians g∗ : J ′ → J sends T ′ to T .

Remark B. A morphism between two n-prepared genus one curves induces a
map between the spaces P(π∗(L)) and P(π∗(L′)) which we also call g; in the case
where S is the spectrum of a local ring and we have fixed closed embeddings f

1We can define a 2-prepared genus one curve similarly, with two (linearly inequivalent)
invertible sheafs; for the sake of brevity we will assume n ≥ 3.
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and f ′, there is a unique map over S which extends g, which we also denote by
g :

C f−−−−→ P
n−1
S

g

� �g ;

C′ f ′
−−−−→ P

n−1
S

in words, an S-morphism of n-prepared curves extends to a matrix in PGLn(S).
Remark C. The map λT can be extended to a morphism of Γ to itself, since
the degree of L and the order of T are both n. When S is the spectrum of a
local ring we have

C f−−−−→ P
n−1
S

λT

� �λT .

C f−−−−→ P
n−1
S

For a scheme S ′ → S, an n-prepared genus one curve Γ over S naturally
corresponds to one over S ′, namely by base change. We will denote this ΓS′ =
Γ×S S ′. A “S ′-morphism” of Γ over S is defined as above by base changing the
curves and replacing S by S ′.
Definition 2.3. Let Γ = (C π→ S,L, λT ) be an n-prepared curve. Define its
associated Jacobian n-prepared curve ΓE = (E π→ S,LE , λT ,E ) where E is the
Jacobian of C, λT ,E is “translation by T on E” for the same T as in Γ (see
Claim 2.1), and LE = O(T + 2 · T + · · · + n · T ). Here i · T is the image of T
under the multiplication-by-i map.

Our goal is to fine an appropriate base change S ′ → S so that there exists
an S ′-morphism between ΓS′ and ΓE,S′ . The existence of such a morphism will
give us a matrix (see Remark B) bringing C to its Jacobian E , at least when the
base scheme is nice enough. This is an extremely simple map and arises from
the choice of an appropriate basepoint on C. We will geometrically define this
basepoint for all n and work out the computations only for n = 3 and 5.

2.2. The form of λT over a field. Let n ≥ 2 be an integer and let K be a
field whose characteristic does not divide n.

Definition 2.4. Let Cn(K) denote the set of n-prepared curves over K. Define
the function

b : Cn(K) −→ K∗/K∗n

to send (C,L, λT ) to [b] ∈ K∗/K∗n if the characteristic polynomial of any lift of
λT to GLn(K) (see Remark C) is xn − b.

In order to justify the above definition, we need to show a lift MT of λT

has characteristic polynomial xn − b. Before we do that, note the following: let
M ′

T ∈ GLn(K) be another lift of λT ; Then M ′
T = u MT and the characteristic

polynomial of M ′
T is xn−unb. Also, let f ′ be another choice of a closed immersion
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of C into P
n−1
K . Then f ′ can be written f G where G ∈ PGLn(K) is some

automorphism of P
n−1
K . Then λT as an element of PGLn(K) will be conjugated

by G, but the characteristic polynomial is fixed by conjugation.
Now for the characteristic polynomial of MT : Clearly Mn

T = b I for some
b ∈ K∗, since λT has order n in PGLn(K). Next, the polynomial xn−b ∈ K[x] is
separable since the characteristic of (K) doesn’t divide n. Thus MT is semisimple
and diagonalizable. Finally, we show the eigenvalues of MT are distinct. The
eigenvectors of MT correspond to fixed points of λT in P

n−1(Ksep). Fix n points
{p0, p1, . . . pn−1} ∈ P

n−1(Ksep) in general position and fixed by MT . Define Hi

to be the hyperplane in P
n−1(Ksep) containing all the pj ’s except pi. The Hi

are MT -invariant. Indeed to show the eigenvalues associated to the fixed points
pi are distinct it is enough to show that the Hi are the only hyperplanes in
P

n−1(Ksep) which are MT -invariant. We will use the following lemma:

Lemma 2.1. Let H be a hyperplane in P
n−1
K which is MT -invariant. Then

H intersects C in n distinct K-rational points. If H and H′ are two distinct
MT -invariant hyperplanes, then H ∩ C and H′ ∩ C are disjoint. Finally, let
x ∈ H ∩ C(K). Then x has the following property:

LK = O( n · x + T ′ ) ∈ Picn
C/K(K),

where T ′ = n(n−1)
2 · T.

Proof. The geometric points on H ∩ C form an orbit of the action of λT . This
implies that Hi intersects C in n distinct points. Assume there is a geometric
point x in both H∩C and H′ ∩C. Then H∩C and H′ ∩C consist of the same
orbit, so H = H′. Then H ∩ C =

∑n−1
i=0 (x + i · T ), and since H is a hyperplane

O(H ∩ C) ∼ L.

Note that we can rewrite the property LK = O( n · x + T ′ ) ∈ Picn
C/K(K),

over K as LK⊗O(−T ′) = O( n ·x ). Since the map [n ] is finite étale with degree
n2, there are clearly only n2 such geometric points x. We have accounted for all
n2 points by the n distinct hyperplanes Hi defined above. If H is any hyperplane
fixed by λT , from above we see that H ∩ C = Hi ∩ C for some i, which implies
that H = Hi.

Corollary 2.2. Let Γ = (C,L, λT ) be an n-prepared curve over a field K of
characteristic prime to n. Let b(Γ) = b, and fix an embedding of C in P

n−1
K

and a lift MT of λT to GLn(K). Then there exist n distinct eigenvectors of MT

defined over K( n
√

b) with eigenvalues n
√

b ζi
n, i = 1, . . . , n.

Theorem 2.3. Assume K is infinite. Let Γ = (C,L, λT ) be an n-prepared curve
over K. There is a (non-unique) choice of the closed immersion f so that λT
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lifts to the matrix

Mn,b =




0 1 0 0 . . . 0
0 0 1 0 . . . 0
0 0 0 1 . . . 0
...

...
...

...
...

b 0 0 0 . . . 0




.

Proof. Various choices of f differ by automorphisms of P
n−1(K), which result

in conjugation of λT . Let MT ∈ GLn(K) be a lift of λT . We wish to find G ∈
GLn(K) such that GMT G−1 is the above matrix. Say we have a vector v in A

n
K

such that the set of vectors

{ω1 = v, ω2 = MT v, ω3 = M2
T v, . . . , ωn = Mn−1

T v}
is a basis for A

n
K . Then let G be any lift of the corresponding change of basis

matrix (note that MT sends ωn = Mn−1
T v to MT ·Mn−1

T v = b · v). It remains to
prove such a v exists. A vector whose orbit under MT does not span all of A

n
K

correspond to a point of P
n−1
K which lies on one of the n hyperplanes Hi (see

page 128), fixed by λT . Take v to be a vector corresponding to a K-point away
from these hyperplanes. Such a v exists since K is infinite.

2.3. Jacobian n-prepared curves. Let n ≥ 3 be an integer and let K be
a field whose characteristic does not divide n. Let Γ = (C,L, λT )/K be an
n-prepared curve and let

ΓE = (E,LE = O(n ·OE + T ′), λT,E)/K,

where T ′ = n(n−1)
2 · T, be the associated n-prepared Jacobian (see Definition

2.3). Fix an closed immersion fE of E in P
n−1
K (Remark A). By Remark C the

automorphism λT,E extends to an automorphism λT,E ∈ PGLn(K). Choose a
lift MT,E ∈ GLn(K) of λT,E .

Claim 2.2. Assume K is infinite and that ζn ∈ K is a fixed primitive nth root
of unity. We may choose the closed immersion fE so that λT,E lifts to the matrix
D = diag(1, ζn, ζ2

n, . . . , ζn−1
n ). Moreover we may choose OE to be any K-rational

point which is not fixed by λT,E but is lying on λT,E-invariant hyperplane.

Proof. By Theorem 2.3 we can lift λT,E to the matrix Mb (page 128). By
Corollary 2.8 which will be proved on page 132, b(ΓE) = 1. We need to find
a matrix W defined over K which conjugates M b=1 to D. Such a W is given
by (wi j)i, j where wi j = ζi j

n . By construction the line bundle which gives fE

is associated to the divisor n · OE + T ′ where T ′ = n(n−1)
2 · T. In other words

OE plays the part of x0 from Lemma 2.1. Then by Lemma 2.1, OE is on a
λT,E-invariant hyperplane of D but is not fixed by D since λT,E acts fixed-point
free on E. Moreover, note that any invertible diagonal matrix commutes with
D. Then we may move OE to any K-rational point lying on a fixed hyperplane
of [D]. Since the matrix is invertible, the image point will not be fixed by D.
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Theorem 2.4. Let x0 ∈ C(K) satisfy the condition of Claim 2.1, namely that
LK ∼ O( n · x + T ′ ). Then there is a K(x0)-morphism (ϕx0 , α) from ΓK(x0) to
ΓE,K(x0) sending x0 to OE . In particular once we identify C with Pic1(C), ϕx0

sends a point x ∈ C to the point of E corresponding to the degree zero divisor
(x− x0).

Remark. The above theorem is the realization of the goal; we have found
the choice of basepoint x0 giving rise to the Jacobian morphism of n-prepared
curves.

Proof. Start with the map ϕx0 with ϕx0(x) �→ (x− x0). For ϕx0 to extend to a
K(x0)-morphism there must exist a map α : L ∼= ϕ∗

x0
LE . On the level of divisors

this translates as n·x0+T ′ ∼ (n·OE +T ′)+n·x0. The induced map of Jacobians
sends T to T once we identify E with its own Jacobian.

Claim 2.3. ϕx0λT = λT,E ϕx0 .

Proof. On the level of divisors this is saying (x + T )− x0 ∼ (x− x0) + T.

2.4. The Weil Pairing. Let n ≥ 2 be an integer. Let K be a field whose
characteristic does not divide n. From Remark A, given a pair (C,L)/K where L
is a degree n line bundle over the smooth genus one curve C we get an embedding
f of C in P

n−1
K , defined up to automorphism of P

n−1
K . Let E/K be the Jacobian

of C; by Remark C, for any T ∈ E[n](K) we can uniquely extend λT , translation
by T on C, to [MT ] ∈ PGLn(K), an automorphism of P

n−1
K . By extending the

base field K if necessary we may assume that all points of E[n] are rational over
K. Then we get a homomorphism

χ : E[n](K) −→ PGLn(K).

χ : T �−→ [MT ].

Remarks. χ is injective because E[n] acts faithfully on C; χ is a homomorphism
by uniqueness of [MT ]; finally, χ is Galois-invariant because the maps λT and f
are defined over K, so λσ

T = λT σ .
A natural question to ask is: how close is χ to being a representation? If for

each T we could lift MT to GLn(K) such that their combined image commutes,
we would have a representation. The obstruction to the lifting is the commutator
[MT , M ′

T ]. Note that the determinant of this element is one and its image in
PGLn(K) is trivial since E[n] is abelian. Therefore

[MT , M ′
T ] = ε · I, εn = 1.

We thus have a pairing e(L) : E[n](L) × E[n](L) −→ µn(L). The pairing e(L)
is bilinear, alternating, and induced by a bilinear alternating pairing of group
schemes

e : E[n]× E[n] −→ µn.
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Theorem 2.5. e is the Weil pairing.

Sketch of Proof. In [6], Mumford defines the concept of a theta group associated
to a line bundle over an abelian variety (pages 221-229). In exactly the same
way it is possible to define the theta group associated to a line bundle over a
homogeneous space of an abelian variety. On page 222 of [6], Mumford defines
a skew-symmetric bihomomorphism for any theta group, which he denotes by
eL in the case of the theta-group associated to a line bundle L. In our situation
the pairing e above is the skew-symmetric bihomomorphism for the theta group
associated to L over the curve C. Finally, on page 228 [6], Mumford proves
crucial properties of eL and in particular how it relates to the Weil pairing.
Using properties 4 and 5 we deduce that e above is the Weil pairing on E.

2.5. A cohomological invariant. Let K be a field whose characteristic does
not divide the integer n ≥ 2. Let Γ = (C,L, λT ) be an n-prepared curve over the
field K, and let Cn(K) be the set of n-prepared curves over K. Let GK be the
absolute Galois group of K. We defined map (page 127) b : Cn(K) −→ K∗/K∗n.
Using our knowledge of the Weil pairing we will identify b as a cohomological
invariant attached to Γ.

Let E be (isomorphic to) the Jacobian of C. Then we may identify C in the
cohomology group H1(GK , E(K)). Indeed since L is a degree n line bundle on
C we actually know that C corresponds to an element ξC ∈ H1(GK , E(K))[n].
Thus we have a map 1 : Cn(K)→ H1(GK , E(K))[n]. We make use of the short
exact sequence (page 197 of [9]):

0 −→ E(K)/n E(K) δ−→ H1(G, E[n](K)) −→ H1(G, E(K))[n] −→ 0.

Claim 2.4. There exists a lift 1 : Cn(K) → H1(G, E[n](K)) of 1 which sends
ξC to the cocycle class of x0 − xσ

0 for x0 ∈ C(K) as in Theorem 2.4.

Proof. Write L = O(D) for some K-rational degree n divisor D. Then by con-
struction n · x0 + T ′ ∼ D, so n · (x0 − xσ

0 ) ∼ (D − T ′)− (D − T ′)σ ∼ OE , since
D and T are K-rational.

Remarks. (1) A different choice x′
0 will differ (with respect to the action of E)

from x0 by an n-torsion point, since n · x0 + T ′ ∼ n · x′
0 + T ′ ⇒ n(x0 − x′

0) ∼ 0.

Therefore the cocycles x0 − xσ
0 and x′

0 − x
′σ
0 differ by a coboundary and 1 is

well-defined. (2) We have used all of the information of Γ, not just C, to define
1.

Since T ∈ E[n](K) we get a group scheme map Z/nZ −→ E[n]; using the
identification E[n] ∼= E[n]∧ by sending S �→ e(−, S) we dualizes the above map
to get E[n] −→ µn, giving the cohomological map

e∗(−, T ) : H1(G, E[n](K)) −→ H1(G, µn(K)) ∼= K∗/K∗n.

The last isomorphism uses Hilbert’s Theorem 90. Composing we produce a map

1 ◦ e∗(−, T ) : Cn(K) −→ K∗/K∗n.
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Theorem 2.6. 1 ◦ e∗(−, T ) = b.

Proof. The map H1(G, µn) ∼= K∗/K∗n is given by[
σ �→ σ( n

√
a)

n
√

a

]
←→ a.

Let Sσ be the n-torsion point x0−xσ
0 ∈ E[n](K) and let MSσ ∈ GLn(K) denote

a lift of the extension of λSσ to P
n−1

K
. By definition, (e∗ ◦ l )(Γ) is the class of

the cocycle
σ �→ e(x0 − xσ

0 , T )

Using the version of the Weil pairing defined on page 130, we have

e(x0 − xσ
0 , T ) · I = [MSσ , MT ].

We find e(x0− xσ
0 , T ) by seeing where one nonzero vector v in A

n
K

is mapped
by MSσ MT M−1

Sσ
M−1

T . Recall that x0 ∈ C(K) is on a hyperplane H ⊂ P
n−1

K
containing all but one fixed point p under MT . Let v be a vector corresponding
to that p. The eigenvalue of v is

√
n[b]ζi

n for some i. An alternate definition of
H is that it contains x0’s orbit under λT .

Lemma 2.7. For any σ ∈ GK , M−1
Sσ

(v) = ε · vσ for some ε ∈ K
∗
.

Proof. M−1
Sσ

(x0 + j · T ) = xσ
0 + j · T = (x0 + j · T )σ since Sσ corresponds to the

degree zero divisor x0 − xσ
0 . Since the x0 + j · T generate H, we conclude that

M−1
Sσ

(H) = Hσ. The fixed points of MT , n− 1 of which are on H, are permuted
by MSσ so we must have M−1

Sσ
(p) = pσ; in other words M−1

Sσ
(v) = ε ·vσ for some

ε ∈ K
∗
.

To finish, we have

MSσ MT M−1
Sσ

M−1
T (v) = MSσ MT M−1

Sσ
(v) · 1

n
√

b ζi

= MSσ MT (vσ) · ε
n
√

b ζi
= MSσ (MT (v))σ · ε

n
√

b ζi

= MSσ (vσ) · ε(
n
√

b ζi)σ

n
√

b ζi
= v · ε(

n
√

b ζi)σ

ε n
√

b ζi
= v · (

n
√

b ζi)σ

n
√

b ζi
.

Corollary 2.8. Let ΓE be the n-prepared Jacobian associated to Γ. Then

b (ΓE) = 1 ∈ K∗/K∗n.

Proof. By Definition 2.3, ΓE = (E,O(T + 2 · T + · · · + n · T ), λT,E ). Clearly E

corresponds to the trivial class in H1(GK , E(K)). Moreover, the lift in Claim
2.4 is also trivial, since we may take x0,E to be OE (see Theorem 2.4). Thus its
image in K∗/K∗n is 1.
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2.6. Jacobians of Families of Curves. We have included this section in order
to assert that we have found the Jacobian map for an entire family of curves
rather than for individual fibers of the family. It may be skipped and referenced
as needed.

Let C be a genus one curve over a base S, let J be the Jacobian of C, and
let E be an elliptic curve over S. Let κ : S ′ → S be a surjective étale morphism.
Assume there exist morphisms r : JS′ → CS′ and ϕ : CS′ → ES′ defined over S ′
such that

1. JS′
r∼= CS′

ϕ∼= ES′ sends the origin OJ to OE ,
2. ∀ fields F such that t : Spec(F )→ S is a Spec(F )-valued point of S, there

exists αt : Jt
∼= Et, and

3. ∀ fields F and points t′ : Spec(F )→ S ′ of S ′ we define t = κ ◦ t′; then we
have αt = ϕt′ ◦ rt′ .

Let γ = ϕ ◦ r.

Theorem 2.9. We can descend γ to an isomorphism J
γ∼= E .

Proof. By Theorem 6 on page 135 of [1], since S ′ → S is surjective étale, we can
descend γ if and only if p∗1(γ) = p∗2(γ), where

S ′ ×S S ′ p2−−−−→ S ′

p1

� � .

S ′ −−−−→ S
We will apply Corollary 6.2 of the Rigidity Lemma (p. 116 of [7]) to each

connected component of S ′ ×S S ′. The corollary states that given two elliptic
curve families E1 and E2 over the base T and two maps ϕ1 and ϕ2 from E1 to
E2, if ϕ1 = ϕ2 at a Spec(F )-point of T then ϕ1 and ϕ2 differ by a section. For

any Spec(F ) t′′→ S ′ ×S S ′, define t′1 = p1 ◦ t′′ and t′2 = p2 ◦ t′′. By the third
condition above, we have αt = ϕt′1 ◦ rt′1 = γt′1 = p∗1(γ)t′′ . By symmetry we also
have αt = p∗2(γ)t′′ . Thus p∗1(γ) and p∗2(γ) differ by a section; since they both
bring the origin to the origin, the section is trivial.

3. The case of 3-prepared curves

3.1. When ζ3 ∈ K. Let K be a field of characteristic prime to 3. Assume ζ3 ∈
K. Let (C, L, λ) be a 3-prepared curve over the field K, where [MT ] ∈ PGL3(K)
represents λ and b ∈ K∗/K∗3 is the associated cohomological invariant (see
Theorem 2.6). Let (E, LE , [D]) be its associated 3-prepared Jacobian, where D
is the diagonal matrix diag(1, ζ3, ζ

2
3 ) ∈ PGL3(K) and OE = (1 : −1 : 0) (Claim

2.2). Fix a cubic F which defines C in P
2
K . Let x0 be a Ksep-point of C satisfying

the conditions of Theorem 2.4, so that the map ϕx0 from CKsep to EKsep extends
to PGL3(Ksep). Finally, let ϕx0 be represented in PGL3(Ksep) by the matrix
Φ−1. Fix eigenvectors v1, v2, v3 of MT defined over the field K( 3

√
b) such that
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each vi has eigenvalue 3
√

bζi and so the set {vi} is fixed under the action of Gal
(K( 3
√

b/K) (see Corollary 2.2).

Theorem 3.1. E is given by:

FE = X3 + Y 3 + F (v1)F (v2)F (v3) · Z3 + T (v1, v2, v3) ·XY Z,

for vi as above and where T is the symmetric trilinear form associated to F.2

Remark. By scaling Z above we see that the Jacobian map is given by the

composition of the morphism
F (v1)F (v2)F (v3)
T (v1, v2, v3)3

from the space of 3-prepared

curves to P
1 with the identification of P

1 with X1(3) which sends the coordinate
λ to the curve Eλ : X3 + Y 3 + λZ3 + XY Z = 0.

Proof. The proof is given by the following claim.

Claim 3.1. With the above notation, and with a possible permutation of the
names of the vi, x0 = v1 − θ · v2 and the map ϕx0 = [Φ−1] is given by

Φ = (v1 θ v2 θ2F (v2) v3),

where θ3 =
F (v1)
F (v2)

.

Proof. By Claim 2.3 we have λT,E ϕx0 = ϕx0λT,C ; in terms of matrices this
implies [Φ D] = [MT Φ] . Write Φ = (w1 w2 w3) for some vectors wi. Then

[Φ D] =
[
(w1 w2ζ w3ζ

2)
]

= [(MT w1 MT w2 MT w3)] = [MT Φ] ;

we conclude that the w′
is are eigenvectors of MT with distinct eigenvalues. With

possible rescaling of Φ and relabeling of the vi we may assume w1 = v1, w2 is
some multiple θ of v2, and w3 is some multiple θ2 l of v3.

D acts linearly on the space of cubics; since λT,E lifts to D, the cubic FE giving
E is in an eigenspace of D. There are three eigenspaces, and two of the three have
the property that any element has zeroes at the fixed points of D. Since λT,E has
no fixed points on E, FE is in the third eigenspace, and we conclude that there
exist ri ∈ K such that FE = r1 X3 +r2 Y 3 +r3 Z3 +r4 XY Z. On the other hand
we have FE(X, Y, Z) = F (Φ(X, Y, Z)) = F (v1 X + θv2 Y + lθ2v3 Z). Expanding
we get r1 = F (v1), r2 = θ3F (v2).r3 = l3θ6F (v3) and r4 = lθ3T (v1, v2, v3).
Plugging in OE = (1 : −1 : 0) we conclude that θ3 = F (v1)

F (v2)
.3 Note that F (vi) �= 0

since there are no fixed points of M on C. It remains to find l. Substituting
θ3 = F (v1)

F (v2)
and scaling FE by 1

F (v1)
we obtain

FE = X3 + Y 3 + l3
F (v1)F (v3)

F (v2)2
Z3 +

l

F (v2)
T (v1, v2, v3) XY Z,

2Define the trilinear form T associated to the cubic form F by T (u, v, w) = F (u+v +w)−
F (u + v) − F (u + w) − F (v + w) + F (u) + F (v) + F (w).

3Note that this defines θ only up to a choice of a cube root. Indeed a different choice of
θ corresponds to a different choice of x0, a translate of the original choice by T. Recall that
there are 9 choices for x0, differing from each other by the 3-torsion points on E.
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a K-rational equation. Since T (v1, v2, v3) is defined over K( 3
√

b) and is clearly
fixed by any automorphism of that field, it is K-rational. Then l

F (V2)
∈ K. Write

l = F (V2) ε for some ε ∈ K. Then we have

FE = X3 + Y 3 + ε3F (v1)F (v2)F (v3) Z3 + ε T (v1, v2, v3) XY Z,

and we can modify this model over K by scaling Z by ε−1. In other words we
may assume ε = 1.

We now specialize the above formula to a situation with fixed F, MT , and vi.

For b ∈ K, define the matrix M = M3,b (see Theorem 2.3). For variables
α, β, γ, δ, and b, define

FC = α (b2X3 + bY 3 + Z3) +

β (bXY 2 + bX2Z + Y Z2) + γ (bX2Y + Z2X + Y 2Z) + δ (3XY Z).

Then M acts on FC and thus on the underlying space. Define S to be the
largest (open) subscheme of Spec(Z[1/3, ζ3, b, α, β, γ, δ]) such that FC defines a
smooth flat genus one curve C/S embedded by fC in P

2
S and so that M acts

fixed-point free on every geometric fiber. Let L = f∗
C (O(1)).

Theorem 3.2. (C,L, [M ]) is a 3-prepared curve over S. Moreover, any 3-pre-
pared curve over K is the pullback of C to a K-point of S.

Proof. Given a 3-prepared curve (C, L, λ) over K, we may assume by Theorem
2.3 that λ ∈ PGL3(K) lifts to M. By a similar argument as in the proof of
Claim 3.1 above, the cubic giving C must be in an M -eigenspace of cubics whose
elements have no M -fixed points. The only such eigenspace is four dimensional
and generators are given above.

Theorem 3.3. The Jacobian E of C is given by

FE = X3 + Y 3 +

[(αb + δ)3 + β3b2 + γ3b− 3(αb + δ)βγb ]Z3 + (2αb− 3δ) XY Z,

with OE = ( 1 : −1 : 0 ).

Proof. We will use Theorem 2.9. Let S be as above, and define J to be the
Jacobian of C and E to be the elliptic curve given by the equation FE above. Let
S ′ = S[ 3

√
b]. There exists a natural étale surjective map κ : S ′ → S. There exists

a map r : JS′ → CS′ defined over S ′ because there is a S ′-section of C, namely x0

as in the proof of Claim 3.1, when we set MT = M and vi = (1 ζi
3

3
√

b ζ2i
3

3
√

b2)τ .
Also there exists ϕ : CS′ → ES′ defined over S ′ given by the matrix Φ as in the
proof of Claim 3.1. By construction the composite map sends the origin of J to
the origin of E . Next, Theorem 3.1 generalizes to any field F so conditions 2 and
3 on page 133 are satisfied given the above choice for MT and vi. We conclude
by Theorem 2.9 that E ∼= J .
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3.2. When ζ3 �∈ K.. Let the notation be as in Section 3.1 with the exception
of having ζ3 ∈ K.

Theorem 3.4. The Jacobian E of C is given by

FE = (2 +N + τ)(X3 + Y 3 + Z3) +

(3N − 3)(X2Y + Y 2Z + Z2X + XY 2 + Y Z2 + ZX2) +

(6N + 12− 3τ)(XY Z),

where

N = [(αb + δ)3 + β3b2 + γ3b− 3(αb + δ)βγb ], τ = (2αb− 3δ),

and with OE = ( 1 : −1 : 0 ).

Proof. Again we will work over the field K and the general result will follow
as above. Let (C, L, λ) be a 3-prepared curve over the field K. Let J be the
Jacobian of C. Note that the curve E in Theorem 3.1 is defined over K even
when ζ3 �∈ K. In fact E is a twist of J and they become isomorphic over the
field K(ζ3). We exhibit this isomorphism. The only assumptions we made on the
model for E were that λT,E lifted to the matrix D and that OE = (1 : −1 : 0).
When ζ �∈ K we may assume (Theorem 2.3) that λT,J lifts to ME = M3,1 (see
Theorem 2.3) and again that OE = (1 : −1 : 0) (as in Claim 2.2). Then an
isomorphism of J with E is given by the element

W =





 ζ2

3 ζ3 1
ζ3 ζ2

3 1
1 1 1





 ∈ PGLn(K(ζ3));

note that W has the properties that W (1 : −1 : 0) = (1 : −1 : 0) and
WλT,JW−1 = λT,E . To recover the equation for J we need only act on the
equation for E by W−1 :

FJ(X, Y, Z) = FE(W−1(X, Y, Z)).

A computation leads to the result.

4. The case of 5-prepared curves

Let K be a field of characteristic prime to 5. Assume ζ5 ∈ K, with the
accompanying remark that if ζ5 �∈ K, we may modify our final equations by a
map W analogous to that in Section 3.2. For b ∈ K, define the matrix M = M5,b

(see Theorem 2.3). Let [M ] denote the class of M in PGL5(K). For variables
ai,j , 0 ≤ i, j ≤ 4, define the K-vector space VC to be generated by the orbit of
the quadric

QC =
∑

0≤i,j≤4

ai,jxixj

under the action of the matrix M. Since M acts on VC it acts on the underlying
zero locus of VC . Define S to be the largest subscheme of Spec(K[ai,j ]) such that
VC defines a smooth flat genus one curve C/S embedded by fC in P

4
S and so that
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M acts fixed-point free on every geometric fiber. Then S is an open part of a
closed subscheme of Spec(K[ai,j ]). Let L = f∗

C (O(1)).

Theorem 4.1. (C,L, [M ]) is a 5-prepared curve over S. Moreover, any 5-pre-
pared curve over K is the pullback of a K-point of S to C.
Proof. (C,L, [M ]) is a 5-prepared curve by construction. Let (C, L, λ) be a
5-prepared curve over K. By Theorem 2.3 we may assume λ lifts to M. By
Remark A we get an embedding of C in P

4
K as a degree 5 curve. Then C will

be the intersection of five quadrics, or equivalently will be the zero locus of a 5
dimensional vector space generated by quadrics in P

4
K . That we can choose this

basis to be an orbit of one quadric under the action of λ follows from the same
argument as in the proof of Theorem 2.3.

Theorem 4.2. The Jacobian E = EA of C is given by the quadrics

S0 = x2
0 − x2x3 + x1x4, S1 = x2

1 − x0x2 + A x3x4, S2 = x2
2 − x1x3 −A x0x4,

S3 = x2
3 − x0x1 − x2x4, S4 = −A x2

4 + x1x2 − x0x3,

where A =
∏4

i=0 Q(vi)∏4
i=0 B(vi, vi + 2)

and with OE = ( 1 : 1 : 1 : 1 : 0 ).

Remark. The Jacobian map is given by sending a 5-prepared curve C to the
point on X1(5) corresponding to the elliptic curve EA as above. In other words,
A is a parameter on X1(5) identifying it with P

1.
We will first give an abstract algorithm to find the Jacobian of any 5-prepared
curve over K. We will then concretely apply this algorithm to any K ′-fiber of C.
The proof of Theorem 4.2 follows from this by the same argument as in Theorem
3.3.

We fix notation. Let (C, L, λ) be a 5-prepared curve over the field K, where
[MT ] ∈ PGL5(K) represents λ and b ∈ K∗/K∗5 is the associated cohomological
invariant (see Theorem 2.6). Let (E, LE , [D]) be its associated 5-prepared Jaco-
bian, where D = diag(1, ζ5, ζ

2
5 , . . . , ζ4

5 ) and OE = (1 : 1 : 1 : 1 : 0) (Claim 2.2).
Let x0 be a Ksep-point of C satisfying the conditions of Theorem 2.4, so that
the map ϕx0 from CKsep to EKsep extends to PGL5(Ksep). Finally, let ϕx0 be
represented in PGL5(Ksep) by the matrix Φ−1.

Choose eigenvectors v0, . . . , v4 of MT defined over the field K( 5
√

b) such that
each vi has eigenvalue 5

√
bζi

5 and so the set {vi} is fixed under the action of
Gal(K( 5

√
b/K)) (see Corollary 2.2).

Claim 4.1. With the above notation, and with a possible permutation of the
names of the vi, x0 = and the map ϕx0 = [Φ−1] is given by

Φ = (v0 θ v1 θ2α2 v2 θ3α3 v3 θ4α4 v4),

where α2 = − Q(v1)
B(v0, v2)

, α3 = −B(v1, v2)α2

B(v0, v3)
, θ5 = − Q(v0)

α2α3B(v2, v3)
,

and α4 =
Q(v0)ε

θ5B(v1, v4)
.
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Proof. By Theorem 2.4 there are 25 choices of the base point x0 which each give
rise to a matrix Φ. Let us fix a choice of x0. By Claim 2.3 we have λT,E ϕx0 =
ϕx0λT,C ; in terms of matrices this means[

D Φ−1
]

=
[
Φ−1 MT

]⇒ [Φ D] = [MT Φ] .

Write Φ = (w0 w1 w2 w3 w4) for some vectors wi. Then[
(w0 w1ζ5 w2ζ

2
5 w3ζ

3 w4ζ
4
5 )

]
= [(MT w0 MT w1 MT w2 MT w3 MT w4)] ;

we conclude that the w′
is are eigenvectors of MT with distinct eigenvalues. In

other words, they are multiples of the vi from above, and once we have know for
which j we have w0 = µvj , the other vi’s are fixed by checking eigenvalues.
Remark. We will see that once we fix j we have fixed x0 up to translation by
some multiple of T, since ϕx0+T = λ−T,E ϕx0 = λ−1

T,E ϕx0 , and by the theorem
multiplying Φ by D amounts to changing our choice of a fifth root of θ. Similarly
changing j amounts to translating x0 by some 5-torsion point independent of T.

With possible rescaling of Φ and relabeling of the vi we may assume w0 = v0,
w1 is some multiple θ of v1, w2 is some multiple θ2α2 of v2, w3 is some multiple
θ3 α3 of v3, and w4 is some multiple θ4 α4 of v4. We may now compute the
quadrics that define E, expanding in terms of the bilinear form B associated to
Q4 and defining α0 = α1 = 1:

QE(x) = Q(Φx) = Q(v0x0 + θ v1x1 + θ2α2 v2x2 + θ3α3 v3x3 + θ4α4 v4x4)

=
4∑

i=0

θ2i α2
i Q(vi) x2

i +
∑

0≤i �=j≤4

θi +j αiαj B(vi, vj) xixj .

The quadrics in the orbit of QE under D also define E; define QE,k(x) to be the
quadric QE(Dkx). We introduce new quadrics Ri to define E determined by the
equations

∑4
k=0 ζik

5 QE,k = 5Ri. Then we have

R0 = Q(v0)x2
0 + θ5α4B(v1, v4)x1x4 + θ5α2α3B(v2, v3)x2x3,

R1 = (Q(v1)x2
1 + α2B(v0, v2)x0x2 + θ5α3α4B(v3, v4)x3x4)θ2,

R2 = (α2
2Q(v2)x2

2 + α4B(v0, v4)x0x4 + α3B(v1, v3)x1x3)θ4,

R3 = (θ5α2
3Q(v3)x2

3 + B(v0, v1)x0x1 + θ5α2α4B(v2, v4)x2x4)θ,

R4 = (θ5α2
4Q(v4)x2

4 + α3B(v0, v3)x0x3 + α2B(v1, v2)x1x2)θ3.

Since the point OE = (1 : 1 : 1 : 1 : 0) is on E, are able to deduce the following:

From the equation R1(OE) = 0 we deduce the value α2 = − Q(v1)
B(v0, v2)

, from

the equation R4(OE) = 0 the value α3 = −B(v1, v2)α2

B(v0, v3)
, and from the equation

R0(OE) = 0 the value θ5 = − Q(v0)
α2α3B(v2, v3)

. Scaling, the equation R0 becomes

4Define B(w, v) = Q(w + v) − Q(w) − Q(v).
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S0 = x2
0 − x2x3 +

θ5α4B(v1, v4)
Q(v0)

x1x4. The Ri’s generate a K-rational vector

space; by their shapes we see each Ri is conjugated to a multiple of itself by

any Galois element. In particular
θ5α4B(v1, v4)

Q(v0)
∈ K, so for some ε ∈ K we can

write α4 =
Q(v0)ε

θ5B(v1, v4)
. Moreover by scaling x4 by 1

ε we can assume ε = 1.

Remarks. 1) We may freely divide by the values of Q and B on the vectors
vi : first, if for any i we had Q(vi) = 0, then vi would correspond to a fixed
point on the curve C under M. Second, since Q(vi) �= 0,all the values of B in
the equations Ri(OE) = 0 for i = 0, 1, 2, and 3 are nonzero - moreover if both
values of B in the equation R4(OE) = 0 were zero, then R4 would be a reducible
quadric. 2) We have two extra equations R2(OE) = 0 and R3(OE) = 0 from
which we may infer identities on the Q and B values:

Q(v1)Q(v2)B(v0, v3) = −B(v1, v3)B(v0, v2)B(v1, v2) and

Q(v0)Q(v3)B(v1, v2) = −B(v0, v1)B(v2, v3)B(v0, v3).

More generally,

Lemma 4.3. For all i we have the following identities:

Q(vi+1)Q(vi+2)B(vi, vi+3)
B(vi+1, vi+3)B(vi, vi+2)B(vi+1, vi+2)

=
Q(vi)Q(vi+3)B(vi+1, vi+2)

B(vi, vi+1)B(vi+2, vi+3)B(vi, vi+3)

= −1.

Proof of Lemma. By the Remark on page 138, choosing a different x0 is tan-
tamount to cyclically permuting the indices of the vi, and the columns of the
associated matrix Φ would be similarly permuted and scaled by elements in K.
Note that identities such as those above are unaffected by scaling each vi.

By construction the first quadric S0 defining E is given by S0 = x2
0 −

x2x3 + x1x4. After scaling R1 (using the definition of α2) and defining A =
θ5α3α4B(v3, v4)

Q(v1)
=

B(v1, v2)B(v3, v4)Q(v0)
B(v0, v3)B(v0, v2)B(v1, v4)

=
∏4

i=0 Q(vi)∏4
i=0 B(vi, vi + 2)

(by the

above lemma multiplying by both terms when i = 1) we obtain S1 = x2
1 −

x0x2 + A x3x4. After scaling R2 we have the two coefficients
α4B(v0, v4)

α2
2Q(v2)

and

α3B(v1, v3)
α2

2Q(v2)
; after expanding we see the latter is -1 by the above lemma; divid-

ing A by the former simplifies
Q(v0)Q(v2)B(v3, v4)

B(v0, v2)B(v0, v4)B(v2, v3)
= −1 again by the

lemma. We conclude that S2 = x2
2 − x1x3 − A x0x4. Scaling R3 (and using the

definition of the αi and the above lemma when i = 0) we need only identify
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the coefficient
alpha2α4B(v2, v4)

α2
3Q(v3)

=
Q(v0)Q(v1)B(v2, v4)

B(v0, v2)B(v0, v1)B(v1, v4)
= −1 by the

lemma. We get S3 = x2
3 − x0x1 − x2x4. Finally, scaling R4 and using the defini-

tion of α3 we need only identify the coefficient
θ5α2

4Q(v4)
α2B(v1, v2)

. Dividing this by A

simplifies to
Q(v1)Q(v4)B(v2, v3)

B(v1, v2)B(v3, v4)B(v1, v4)
= −1 by the lemma, and we conclude

S4 = −A x2
4 + x1x2 − x0x3. �
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