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JACOBIANS OF GENUS ONE CURVES

CATHERINE O’NEIL

1. Introduction

We introduce the notion of an “n-prepared curve,” which over a field contain-
ing nth roots of unity and where n is invertible is an embedding of a smooth
genus one curve C' in P! along with a rational n-torsion point 7" on its Jaco-
bian. The action of 7' on C' then extends to an automorphism of P"~!, i.e. an
element M7 € PGL,,. For n = 3 and 5 we find the equation for the Jacobian of
an n-prepared curve. In particular, there is a map from the space of n-prepared
curves to X (n), namely the Jacobian map (along with the specified level n struc-
ture); for n = 3 and 5, this map turns out to have a beautiful formula in terms of
invariants. If F is a cubic equation giving C in P2, 7 is the symmetric trilinear
form associated to F' and v;, (i = 0, 1,2), are distinct fixed points of Mp as above,
then the Jacobian map from the set of n- prepared curves to X;(3) is given by
F(vo) F(v1)F(v2)

T (vo,v1,v2)3 ’
then by identifying the line with X (3) by sending the coordinate A to the point
corresponding to By : X3 + Y3 + A\Z3 + XY Z = 0. In P4, C is given by the
intersection of five quadrics. We may choose a quadric ) so that its orbit under
the action of Mp gives five such quadrics. If B is the assocatied bilinear form
to @ and if v;, (i = 0,...,4), are distinct fixed points of My, then map C as

Q(v0)Q(v1)Q(v2)Q(v3)Q(v4)
B(UO, Ug)B(Ul, Ug)B(Ug, U4)B(1)3, U())B(U4, Ul) ’
identify P! with X(5) by sending the coordinate )\ to the point corresponding
to the intersection of the following five quadrics: Sy = 2% — zox3 + 2124, S1 =
a:% — XoTo + Ax3xs, SS9 = x% — x1T3 — AToxg, S3 = wg — X1 — Taxy, and
Sy = —)\.I'i + 12 — Xox3.

For n = 3 and n = 5 we standardize the form of My and create sampling
spaces of n-prepared curves.

first mapping C to the projective line given by the function

above to P! by the function and

Many other people have studied the problem of finding Jacobians of genus
one curves in various contexts and degrees of generality; see [5], [8], [3], [2], [10]
and [11].

The author wishes to thank her thesis advisor Barry Mazur for many helpful
comments and suggestions.
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2. General results
2.1. n-prepared genus one curves.

Definition 2.1. For an integer n > 3', an “n-prepared genus one curve (over
S)” is a triple
CLS,L,\),

where C = S is a projective flat morphism whose fibers are smooth genus one
curves, L is an invertible sheaf on C of degree n (in particular Ly is a degree
n invertible sheaf for every geometric fiber C;), and A\, is a fized-point free S-
automorphism of C of order n.

Claim 2.1. Given a pair (C = S, )\, ) of a genus one curve and fived-point free
automorphism as above, let £ be the Jacobian of C. Then A, is induced from the
natural homogeneous space map A : C x £ — C by restriction to an n-torsion

point T € En|(S).

Sketch of Proof. This is well-known over a field. In general, we base change to S’
where C and £ are isomorphic and compare the \,, map to the map ”translation
by A\ (Og);” applying Corollary 6.2 of the Rigidity Lemma (p. 116 of [7]) as in
the proof of 2.9, we conclude that A, is translation by 7’ over §’. We descend
7' to T over S as in the proof of 2.9 using Theorem 6 on page 135 of [1]. We
leave it to the reader to conclude that A, is translation by 7. O

In light of the above claim we will use the notation \,, = A\7.
Remark A. An n-prepared genus one curve comes with a closed immersion of
the curve C into P(m.(L)) over S, using the notation of page 162 of [4]. In the
case where S is the spectrum of a local ring or a field, P(7.(£)) is isomorphic
to ]P’g_l, and the isomorphism is defined by a choice of basis of the module of
global sections of the sheaf £. Fix such an embedding f : C — Pg_l, noting
that any other choice differs from f by an element of Aut(P5~') = PGL,(S).
Note that f only uses the data of C = S and the line bundle L.

Definition 2.2. We define a “morphism of two n-prepared curves” over S

(C 5 Sa'CaAT) (‘g’—a)) (CI 1/) S’E/a)"f')
to be a pair (g, ) with :
1. g:C — C' an S-morphism of schemes,
2. a: L=g*L, and
3. the induced map of Jacobians g* : J' — J sends T' to T.

Remark B. A morphism between two n-prepared genus one curves induces a
map between the spaces P(m, (L)) and P(7. (L)) which we also call g; in the case
where § is the spectrum of a local ring and we have fixed closed embeddings f

I'We can define a 2-prepared genus one curve similarly, with two (linearly inequivalent)
invertible sheafs; for the sake of brevity we will assume n > 3.
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and f’, there is a unique map over S which extends g, which we also denote by
g:
c L pit

¢ L py
in words, an S-morphism of n-prepared curves extends to a matrix in PGL,,(S).
Remark C. The map A7 can be extended to a morphism of I" to itself, since
the degree of £ and the order of 7 are both n. When S is the spectrum of a
local ring we have

c L prt

a | |

c L p?

For a scheme &’ — S, an n-prepared genus one curve I' over S naturally
corresponds to one over §’, namely by base change. We will denote this I's/ =
I'xsS'. A “S’-morphism” of " over S is defined as above by base changing the
curves and replacing S by S'.

Definition 2.3. Let T' = (C = S, L, A7) be an n-prepared curve. Define its
associated Jacobian n-prepared curve T'e = (€ 5 S,LE,\1.c) where & is the
Jacobian of C, At ¢ is “translation by T on £ for the same T as in I’ (see
Claim 2.1), and Le = O(T +2-T +---+n-T). Herei-T is the image of T

under the multiplication-by-i map.

Our goal is to fine an appropriate base change S’ — S so that there exists
an S’-morphism between I'ss and I's s/. The existence of such a morphism will
give us a matrix (see Remark B) bringing C to its Jacobian &, at least when the
base scheme is nice enough. This is an extremely simple map and arises from
the choice of an appropriate basepoint on C. We will geometrically define this
basepoint for all n and work out the computations only for n = 3 and 5.

2.2. The form of Ay over a field. Let n > 2 be an integer and let K be a
field whose characteristic does not divide n.

Definition 2.4. Let C,(K) denote the set of n-prepared curves over K. Define
the function

b:Cp(K) — K*/K™
to send (C, L, A1) to [b] € K*/K*™ if the characteristic polynomial of any lift of
Ar to GL,(K) (see Remark C) is ™ — b.

In order to justify the above definition, we need to show a lift My of Ap
has characteristic polynomial ™ — b. Before we do that, note the following: let
M}, € GL,(K) be another lift of Ap; Then M7 = u My and the characteristic
polynomial of M7 is ™ —u™b. Also, let f’ be another choice of a closed immersion
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of C into P% . Then f’ can be written fG where G € PGL,(K) is some
automorphism of P% . Then Ay as an element of PGL, (K) will be conjugated
by G, but the characteristic polynomial is fixed by conjugation.

Now for the characteristic polynomial of My : Clearly M7 = b1 for some
b € K*, since Ar has order n in PGL,, (K). Next, the polynomial 2™ —b € K|[z] is
separable since the characteristic of (K) doesn’t divide n. Thus My is semisimple
and diagonalizable. Finally, we show the eigenvalues of M7 are distinct. The
eigenvectors of Mr correspond to fixed points of Az in P*~1(K*°). Fix n points
{po, D1, .- -Pn_1} € PP"L(K*°P) in general position and fixed by Mr. Define H;
to be the hyperplane in P"~1(K*°P) containing all the p;’s except p;. The H;
are Mp-invariant. Indeed to show the eigenvalues associated to the fixed points
p; are distinct it is enough to show that the H; are the only hyperplanes in
Pn—1(K%°P) which are Mp-invariant. We will use the following lemma:

Lemma 2.1. Let ‘H be a hyperplane in IF’?{I which is Mrp-invariant. Then
H intersects C' in n distinct K -rational points. If H and H' are two distinct
My -invariant hyperplanes, then H N C and H' N C are disjoint. Finally, let
r € HNC(K). Then = has the following property:

Lz=0(n-z+T )¢ Picg/K(F),
where T' = @ -T.

Proof. The geometric points on H N C' form an orbit of the action of Ap. This
implies that H; intersects C' in n distinct points. Assume there is a geometric
point x in both HNC and H' N C. Then H N C and H' N C consist of the same
orbit, so H = H'. Then HNC = Y7 (z +i-T), and since H is a hyperplane
OHNC)~ L. O

Note that we can rewrite the property Lz = O(n -z +T") € Picg, ;¢ (K),
over K as Lz®O(=T") = O(n-z). Since the map [n] is finite étale with degree
n?, there are clearly only n? such geometric points . We have accounted for all
n? points by the n distinct hyperplanes H; defined above. If H is any hyperplane

fixed by Ar, from above we see that H N C = H; N C for some ¢, which implies
that H = HZ

Corollary 2.2. Let I' = (C,L,Ar) be an n-prepared curve over a field K of
characteristic prime to n. Let b(I') = b, and fix an embedding of C in ]P’"Kfl
and a lift My of Ar to GL,(K). Then there exist n distinct eigenvectors of My
defined over K (3/b) with eigenvalues Y/b(l,i=1,...,n.

Theorem 2.3. Assume K is infinite. LetT' = (C, L, A1) be an n-prepared curve
over K. There is a (non-unique) choice of the closed immersion f so that A
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lifts to the matriz

0100 0
0010 0
My,—| 0001 0
b 0 0 0 ... 0

Proof. Various choices of f differ by automorphisms of P*~!(K), which result
in conjugation of A\p. Let My € GL,(K) be a lift of Ay. We wish to find G €
GL, (K) such that GM7G~1 is the above matrix. Say we have a vector v in A%
such that the set of vectors

2 n—1
{wi =v,ws = Mypv,w3 = Mzv,. .. ,w, = M3 v}

is a basis for A% . Then let G be any lift of the corresponding change of basis
matrix (note that Mz sends w,, = M}~ v to My - M 'v = b-v). It remains to
prove such a v exists. A vector whose orbit under My does not span all of A%
correspond to a point of ]P”}{l which lies on one of the n hyperplanes H; (see
page 128), fixed by Ar. Take v to be a vector corresponding to a K-point away
from these hyperplanes. Such a v exists since K is infinite. O

2.3. Jacobian n-prepared curves. Let n > 3 be an integer and let K be
a field whose characteristic does not divide n. Let I' = (C,L£,A\r)/K be an
n-prepared curve and let

I'p=(E,Lg=0n-Op+T),MMEg)/K,

where T' = @ - T, be the associated n-prepared Jacobian (see Definition
2.3). Fix an closed immersion fg of F in P%' (Remark A). By Remark C the
automorphism Ap g extends to an automorphism Ap p € PGL, (K). Choose a
lift MT,E € GLn(K) of >\T,E-

Claim 2.2. Assume K is infinite and that (, € K is a fized primitive nth root
of unity. We may choose the closed immersion fg so that Ar g lifts to the matriz
D = diag(1,¢n, (2, ..., ¢ ). Moreover we may choose Og to be any K -rational
point which is not fized by Ar g but is lying on Ay g-invariant hyperplane.

Proof. By Theorem 2.3 we can lift Ay g to the matrix M, (page 128). By
Corollary 2.8 which will be proved on page 132, b(I'g) = 1. We need to find
a matrix W defined over K which conjugates M,—; to D. Such a W is given
by (w; ;)i ; where w;; = ¢.7. By construction the line bundle which gives fg
is associated to the divisor n - Og + T’ where T' = @ -T. In other words
Opg plays the part of g from Lemma 2.1. Then by Lemma 2.1, O is on a
Ar,g-invariant hyperplane of D but is not fixed by D since A g acts fixed-point
free on E. Moreover, note that any invertible diagonal matrix commutes with
D. Then we may move O to any K-rational point lying on a fixed hyperplane
of [D]. Since the matrix is invertible, the image point will not be fixed by D. O



130 CATHERINE O’NEIL

Theorem 2.4. Let xo € C(K) satisfy the condition of Claim 2.1, namely that
Lz~ O(n-x+T"). Then there is a K(xo)-morphism (g, ) from Tk 5y to
Le k(zy) sending xo to Op. In particular once we identify C' with Pic! (C),
sends a point x € C' to the point of E corresponding to the degree zero divisor
(x — xp).

Remark. The above theorem is the realization of the goal; we have found
the choice of basepoint zy giving rise to the Jacobian morphism of n-prepared
curves.

Proof. Start with the map ¢,, with ¢, (z) — (z — o). For ¢,, to extend to a
K (0)-morphism there must exist a map o : £ = ¢; L. On the level of divisors
this translates as n-zo+71" ~ (n-Og+T')+n-x. The induced map of Jacobians
sends T to T once we identify F with its own Jacobian. U

Claim 2.3. (pazo)‘T = >\T,E' Pz
Proof. On the level of divisors this is saying (z + 1) —zo ~ (xr —z) + 7. O

2.4. The Weil Pairing. Let n > 2 be an integer. Let K be a field whose
characteristic does not divide n. From Remark A, given a pair (C, £)/K where £
is a degree n line bundle over the smooth genus one curve C we get an embedding
fof Cin IP’T[L{_l, defined up to automorphism of IP’TIL{_l. Let E/K be the Jacobian
of C; by Remark C, for any T' € E[n](K) we can uniquely extend A7, translation
by T on C, to [Mr] € PGL,(K), an automorphism of P!, By extending the
base field K if necessary we may assume that all points of E[n] are rational over
K. Then we get a homomorphism

X : E[n](K) — PGL,(K).
X : T — [Mr)].

Remarks. x is injective because E[n] acts faithfully on C; x is a homomorphism
by uniqueness of [Mr]; finally, x is Galois-invariant because the maps Ap and f
are defined over K, so AT = Aro.

A natural question to ask is: how close is x to being a representation? If for
each T' we could lift M7 to GL,,(K) such that their combined image commutes,
we would have a representation. The obstruction to the lifting is the commutator
[Mr, M}]. Note that the determinant of this element is one and its image in
PGL,, (K) is trivial since E[n] is abelian. Therefore

[Mpr, Myl =¢-1, €"=1.

We thus have a pairing e(L) : E[n](L) x E[n](L) — p,(L). The pairing e(L)
is bilinear, alternating, and induced by a bilinear alternating pairing of group
schemes

e: Eln] x En] — pp.
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Theorem 2.5. e is the Weil pairing.

Sketch of Proof. In [6], Mumford defines the concept of a theta group associated
to a line bundle over an abelian variety (pages 221-229). In exactly the same
way it is possible to define the theta group associated to a line bundle over a
homogeneous space of an abelian variety. On page 222 of [6], Mumford defines
a skew-symmetric bihomomorphism for any theta group, which he denotes by
eX in the case of the theta-group associated to a line bundle £. In our situation
the pairing e above is the skew-symmetric bihomomorphism for the theta group
associated to £ over the curve C. Finally, on page 228 [6], Mumford proves
crucial properties of e~ and in particular how it relates to the Weil pairing.

Using properties 4 and 5 we deduce that e above is the Weil pairing on E. [

2.5. A cohomological invariant. Let K be a field whose characteristic does
not divide the integer n > 2. Let I' = (C, £, A1) be an n-prepared curve over the
field K, and let C,,(K) be the set of n-prepared curves over K. Let G be the
absolute Galois group of K. We defined map (page 127) b: C,,(K) — K*/K*".
Using our knowledge of the Weil pairing we will identify b as a cohomological
invariant attached to I'.

Let E be (isomorphic to) the Jacobian of C. Then we may identify C in the
cohomology group H'(G g, E(K)). Indeed since £ is a degree n line bundle on
C we actually know that C' corresponds to an element (¢ € HY (Gk, E(K))[n].
Thus we have a map £ : C,(K) — H'(Gx, F(K))[n]. We make use of the short
exact sequence (page 197 of [9]):

0 — E(K)/nE(K) -2 HY(G, E[n)(K)) — H(G, E(K))[n] — 0.

Claim 2.4. There exists a lift £ : C,,(K) — HY(G, E[n)(K)) of { which sends
¢ to the cocycle class of xg — x§ for xo € C(K) as in Theorem 2.4.

Proof. Write £ = O(D) for some K-rational degree n divisor D. Then by con-
struction n-xg + 1" ~ D,son - (xg —2f) ~ (D —-T") — (D —T1")° ~ Og, since
D and T are K-rational. O

Remarks. (1) A different choice z(, will differ (with respect to the action of E)
from xy by an n-torsion point, since n-xo+ 71" ~n- -z + 71" = n(xg — () ~ 0.
Therefore the cocycles zg — 2§ and zf, — z” differ by a coboundary and £ is
well-defined. (2) We have used all of the information of I', not just C, to define
1

Since T' € FE[n](K) we get a group scheme map Z/nZ — FE]n]; using the
identification E[n] = E[n]" by sending S — e(—, S) we dualizes the above map
to get E[n| — iy, giving the cohomological map

e*(—,T): HY (G, En|(K)) — HY (G, un(K)) = K*/K*".
The last isomorphism uses Hilbert’s Theorem 90. Composing we produce a map
toe*(—=,T):Ch(K) — K*/K™.
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Theorem 2.6. (oe*(—,T) =b.
Proof. The map HY(G, ) & K*/K*" is given by
[U e (’\1/5)} -
Va
Let S, be the n-torsion point xg —z§ € E[n](K) and let Mg, € GL,(K) denote

a lift of the extension of Ag, to ]P’%_l. By definition, (e* o )(T") is the class of
the cocycle

o e(xg—zf,T)
Using the version of the Weil pairing defined on page 130, we have
e(xo —xf,T) I =[Ms,, Mr].

We find e(xg — xF,T) by seeing where one nonzero vector v in A% is mapped
by Mg, My MST: Mz, Recall that x9 € C(K) is on a hyperplane H C ]P’%_l
containing all but one fixed point p under Mr. Let v be a vector corresponding
to that p. The eigenvalue of v is \/n[b]¢} for some i. An alternate definition of
‘H is that it contains xg’s orbit under Ap.

Lemma 2.7. For any o € G, Mgol(v) —¢-v7 for somee €K .

Proof. Ms_(,l (xo+j-T)=2a8+j-T = (xog+7-T)° since S, corresponds to the
degree zero divisor zy — x§. Since the xg 4 j - T' generate H, we conclude that
MS:l (H) = H°. The fixed points of My, n — 1 of which are on H, are permuted

by Mgo so we must have MS_: (p) = p?; in other words MS_U1 (v) = e-v7 for some
—%
ee K. O

To finish, we have

Mg, My Mg' My (v) = Mg, My Mg (v) - e

= Mg, Mp(v7) - ZC = Mg, (M7(v))° - \/;g
= MSG(’UU)-E(%C’L)U — 5(%0)‘7 . ({L/[;gz)a

V¢ e/b¢i I

Corollary 2.8. Let I'g be the n-prepared Jacobian associated to I'. Then
bTp)=1€ K*/K™.

Proof. By Definition 2.3, 'y = (E,O(T+2-T+---+n-T), ¢ ). Clearly £

corresponds to the trivial class in H*(G g, E(K)). Moreover, the lift in Claim

2.4 is also trivial, since we may take zo g to be O (see Theorem 2.4). Thus its
image in K*/K*™ is 1. O
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2.6. Jacobians of Families of Curves. We have included this section in order
to assert that we have found the Jacobian map for an entire family of curves
rather than for individual fibers of the family. It may be skipped and referenced
as needed.

Let C be a genus one curve over a base S, let J be the Jacobian of C, and
let £ be an elliptic curve over S. Let k : &’ — S be a surjective étale morphism.
Assume there exist morphisms r : Js» — Cs and ¢ : Css — Eg/ defined over S’
such that

1. Js = Cs é Es’ sends the origin O to Og,

2. V fields F such that ¢ : Spec(F') — S is a Spec(F')-valued point of S, there
exists a; : Jp = &, and

3. V fields F and points ¢’ : Spec(F) — S’ of S’ we define t = k o t/; then we
have ay = @y o ry.

Let y=¢por.

~
Theorem 2.9. We can descend v to an isomorphism J = &.

Proof. By Theorem 6 on page 135 of [1], since S’ — § is surjective étale, we can
descend ~ if and only if pi(y) = p3(v), where

S xsS 2,8

g !

S’ — S
We will apply Corollary 6.2 of the Rigidity Lemma (p. 116 of [7]) to each
connected component of &’ xs &’. The corollary states that given two elliptic
curve families £ and & over the base 7 and two maps 1 and o from &; to
Es, if 1 = o at a Spec(F')-point of 7 then ¢ and ¢ differ by a section. For

any Spec(F) s Xs &', define t) = p; ot” and t, = py o t”. By the third
condition above, we have oy = @y ory =y = pj (7)¢. By symmetry we also
have oy = p5(7y)ws. Thus pj(v) and p5(y) differ by a section; since they both
bring the origin to the origin, the section is trivial. O

3. The case of 3-prepared curves

3.1. When (3 € K. Let K be a field of characteristic prime to 3. Assume (3 €
K. Let (C,L,\) be a 3-prepared curve over the field K, where [Mr] € PGL3(K)
represents A and b € K*/K*? is the associated cohomological invariant (see
Theorem 2.6). Let (E, Lg, [D]) be its associated 3-prepared Jacobian, where D
is the diagonal matrix diag(1, (3,¢3) € PGL3(K) and O = (1 : —1:0) (Claim
2.2). Fix a cubic F which defines C in P%. Let ¢ be a K**P-point of C satisfying
the conditions of Theorem 2.4, so that the map ¢,, from Ciser to Exser extends
to PGL3(K*°P). Finally, let ¢,, be represented in PGL3(K*°P) by the matrix
®~!. Fix eigenvectors vy, vs,v3 of Mrp defined over the field K (\3/5) such that
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each v; has eigenvalue v/b¢" and so the set {v;} is fixed under the action of Gal
(K(V/b/K) (see Corollary 2.2).

Theorem 3.1. E is given by:
Frp=X?*4+Y? 4 F(v))F(v2)F(v3) - Z° + T (v1,v9,v3) - XY Z,
for v; as above and where T is the symmetric trilinear form associated to F.?

Remark. By scaling Z above we see that the Jacobian map is given by the
F(v1)F(v2)F(vs)
T(”l? V2, UB)
curves to P! with the identification of P! with X (3) which sends the coordinate

A to the curve Ey : X2+ Y3+ 23+ XYZ =0.

composition of the morphism from the space of 3-prepared

Proof. The proof is given by the following claim. O

Claim 3.1. With the above notation, and with a possible permutation of the
names of the v;, xg = v1 — 0 - vy and the map @, = [®1] is given by

B = (101 vy 62F(v3) v3),

F
where 6% = (vl).
F(v2)
Proof. By Claim 2.3 we have Ar g ¢z, = @z,Ar,c; in terms of matrices this
implies [® D] = [Mr ®]. Write ® = (w; w2 w3) for some vectors w;. Then

[® D] = [(w1 wal w3¢?)] = [(Mrwi Myws Myws)] = [Mr ®];

we conclude that the w}s are eigenvectors of My with distinct eigenvalues. With
possible rescaling of ® and relabeling of the v; we may assume w; = vy, ws is
some multiple 6 of v, and ws is some multiple 621 of vs.

D acts linearly on the space of cubics; since Ar g lifts to D, the cubic Fg giving
F is in an eigenspace of D. There are three eigenspaces, and two of the three have
the property that any element has zeroes at the fixed points of D. Since A\r g has
no fixed points on F, Fg is in the third eigenspace, and we conclude that there
exist r; € K such that Fg =r; X3+ry Y3 +1r3 Z3+1r, XY Z. On the other hand
we have Fg(X,Y,Z) = F(®(X,Y,Z)) = F(v1 X + 0vo Y + 16%v3 Z). Expanding
we get 11 = F(v1),m2 = 03F(v2).r3 = [20°F(v3) and 74 = 1037 (vq,v9,v3).
Plugging in Og = (1 : —1 : 0) we conclude that 6% = LZ;;.?’ Note that F'(v;) # 0

F(
since there are no fixed points of M on C. It remains to find [. Substituting
63 = ?EZS and scaling F by ﬁ we obtain

(v1) F(v3) g8y L

F
Fr=X>+Y3+1
E + + F(Ug)2 F(’Ug)

T (v1,v2,v3) XY Z,

2Define the trilinear form 7 associated to the cubic form F by T (u,v,w) = F(u+v+w) —
Flu4+v) — Flu+w) — F(v+w) + F(u) + F(v) + F(w).

3Note that this defines 6 only up to a choice of a cube root. Indeed a different choice of
0 corresponds to a different choice of zg, a translate of the original choice by T. Recall that
there are 9 choices for zg, differing from each other by the 3-torsion points on E.
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a K-rational equation. Since 7 (vy,vs,vs) is defined over K(3/b) and is clearly
fixed by any automorphism of that field, it is K-rational. Then =4t~ € K. Write

F(V2)
[ = F(V3) € for some € € K. Then we have
Fp=X3+Y3+EF(v)F(v2)F(v3) Z2 4 €T (v1,v,v3) XY Z,

and we can modify this model over K by scaling Z by ¢~ !. In other words we
may assume € = 1. U

We now specialize the above formula to a situation with fixed F, Mr, and v;.
For b € K, define the matrix M = M3 (see Theorem 2.3). For variables
a, 3,7,9, and b, define

Fe=a(*X?+0Y3 + 2% +
BOXY? +bX?Z +YZ?) +~v(bX?Y + 22X +Y?Z) + 6§ (3XY Z).

Then M acts on Fg and thus on the underlying space. Define S to be the
largest (open) subscheme of Spec(Z[1/3,(3,b,a, 3,7, d]) such that F¢ defines a
smooth flat genus one curve C/S embedded by fc in P% and so that M acts
fixed-point free on every geometric fiber. Let £ = f3(O(1)).

Theorem 3.2. (C,L,[M]) is a 3-prepared curve over S. Moreover, any 3-pre-
pared curve over K is the pullback of C to a K-point of S.

Proof. Given a 3-prepared curve (C, L, \) over K, we may assume by Theorem
2.3 that A € PGL3(K) lifts to M. By a similar argument as in the proof of
Claim 3.1 above, the cubic giving C' must be in an M-eigenspace of cubics whose
elements have no M-fixed points. The only such eigenspace is four dimensional
and generators are given above. O

Theorem 3.3. The Jacobian £ of C is given by
Fe=X"+Y?+
[(ab +0)% + 336 ++°b — 3(ab + 6)Byb] Z° + (2ab — 35) XY Z,
with Og = (1:=1:0).

Proof. We will use Theorem 2.9. Let S be as above, and define J to be the
Jacobian of C and &£ to be the elliptic curve given by the equation Fg above. Let
S’ = S[V/b]. There exists a natural étale surjective map x : S’ — S. There exists
amap r: Js» — Cs/ defined over S’ because there is a §’-section of C, namely xq
as in the proof of Claim 3.1, when we set My = M and v; = (1 CiV/b ¢3V/0b2)7.
Also there exists ¢ : Cs: — Es: defined over 8’ given by the matrix ® as in the
proof of Claim 3.1. By construction the composite map sends the origin of J to
the origin of £. Next, Theorem 3.1 generalizes to any field F' so conditions 2 and
3 on page 133 are satisfied given the above choice for Mt and v;. We conclude
by Theorem 2.9 that £ = 7. O
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3.2. When (3 ¢ K.. Let the notation be as in Section 3.1 with the exception
of having (3 € K.

Theorem 3.4. The Jacobian € of C is given by

Fe=Q+N+1)(X3+Y3+ 23+
(BN =3 (XY +Y2Z + Z°X + XY’ +YZ> + ZX?) +
(6N + 12 — 37)(XY Z),
where
N = [(ab+6)> 4+ 32b* + v3b — 3(ab + 0)Byb], T = (2ab — 39),

and with Og = (1:—-1:0).

Proof. Again we will work over the field K and the general result will follow
as above. Let (C,L,\) be a 3-prepared curve over the field K. Let J be the
Jacobian of C. Note that the curve F in Theorem 3.1 is defined over K even
when (3 ¢ K. In fact F is a twist of J and they become isomorphic over the
field K ({3). We exhibit this isomorphism. The only assumptions we made on the
model for E were that A\ g lifted to the matrix D and that Op = (1: —1:0).
When ¢ ¢ K we may assume (Theorem 2.3) that Ap ; lifts to Mg = M3 (see

Theorem 2.3) and again that O = (1 : =1 : 0) (as in Claim 2.2). Then an
isomorphism of J with E is given by the element

G ¢ o1
W = G ¢ 1 € PGL, (K (¢3));
1 1 1

note that W has the properties that W(1 : —1 : 0) = (1 : —1 : 0) and
WAr, JW—1 = Ar,g. To recover the equation for J we need only act on the
equation for E by W1 :

Fy(X,Y,2) = Fg(W YX,Y, 2)).

A computation leads to the result. O

4. The case of 5-prepared curves

Let K be a field of characteristic prime to 5. Assume (5 € K, with the
accompanying remark that if (5 ¢ K, we may modify our final equations by a
map W analogous to that in Section 3.2. For b € K, define the matrix M = M5,
(see Theorem 2.3). Let [M] denote the class of M in PGL5(K). For variables
aij,0 < 4,7 <4, define the K-vector space V¢ to be generated by the orbit of
the quadric

Qc = Z Qi j Lilj
0<i,j<4
under the action of the matrix M. Since M acts on V¢ it acts on the underlying
zero locus of V¢. Define S to be the largest subscheme of Spec(Ka; ;]) such that
Ve defines a smooth flat genus one curve C/S embedded by fc in P4 and so that
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M acts fixed-point free on every geometric fiber. Then & is an open part of a
closed subscheme of Spec(K{a; ;]). Let £ = f5(O(1)).

Theorem 4.1. (C, L, [M]) is a 5-prepared curve over S. Moreover, any 5-pre-
pared curve over K is the pullback of a K-point of S to C.

Proof. (C,L,[M]) is a 5-prepared curve by construction. Let (C,L,\) be a
5-prepared curve over K. By Theorem 2.3 we may assume A lifts to M. By
Remark A we get an embedding of C' in P} as a degree 5 curve. Then C will
be the intersection of five quadrics, or equivalently will be the zero locus of a 5
dimensional vector space generated by quadrics in P%.. That we can choose this
basis to be an orbit of one quadric under the action of A\ follows from the same
argument as in the proof of Theorem 2.3. O

Theorem 4.2. The Jacobian £ = E4 of C is given by the quadrics
So = :vg — Xox3 + T1x4, S1 = m% — xoxLo + Ax3xy, So = x% —x123 — Axoxy,

S3 = IB% — Tox1 — Toly, Sy = —A xi + 2129 — Tox3,
H?:O Q(v;)
[Ti—o Bvi,v: +2)
Remark. The Jacobian map is given by sending a 5-prepared curve C to the
point on X (5) corresponding to the elliptic curve E4 as above. In other words,

A is a parameter on X1 (5) identifying it with P.

We will first give an abstract algorithm to find the Jacobian of any 5-prepared
curve over K. We will then concretely apply this algorithm to any K’-fiber of C.
The proof of Theorem 4.2 follows from this by the same argument as in Theorem
3.3.

We fix notation. Let (C, L, \) be a 5-prepared curve over the field K, where
[M7] € PGL5(K) represents A and b € K*/K*5 is the associated cohomological
invariant (see Theorem 2.6). Let (E, Lg, [D]) be its associated 5-prepared Jaco-
bian, where D = diag(1,(5,¢2,...,¢3) and Og = (1:1:1:1:0) (Claim 2.2).
Let xp be a K*P-point of C satisfying the conditions of Theorem 2.4, so that
the map ¢, from Ckser to Egeer extends to PGL5(K*P). Finally, let ¢, be
represented in PGL5(K*°P) by the matrix &~ 1.

Choose eigenvectors vy, ...,vs of Mt defined over the field K (\5/5) such that
each v; has eigenvalue vb¢i and so the set {v;} is fixed under the action of
Gal(K (V/b/K)) (see Corollary 2.2).

where A = and with Og = (1:1:1:1:0).

Claim 4.1. With the above notation, and with a possible permutation of the
names of the v;, xo = and the map py, = [®~] is given by

b = (7)() 9’1)1 92a2 V2 03053 V3 94a4 114),

Q(Ul) B(Ul,vz)az 5 Q(UO)
where g = ———"—, a3 = —— "2 P = L
2 B(Uo,vg) 3 B(’Ug,l}g) OéQOégB(UQ,Ug)
 Q(wo)e
and oy =

953(1}1, U4) '
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Proof. By Theorem 2.4 there are 25 choices of the base point ¢ which each give
rise to a matrix ®. Let us fix a choice of zg. By Claim 2.3 we have Ar g @5, =
YzoAT,c; in terms of matrices this means

[De~'] = [&7" Mr] = [® D] = [Mr 9]
Write ® = (wp wy we w3 wy) for some vectors w;. Then
[(wo w1Cs wald wsl® waCs)] = [(Mpwo Mypwy Mrwy Mrws Mpwy)];

we conclude that the w}s are eigenvectors of My with distinct eigenvalues. In
other words, they are multiples of the v; from above, and once we have know for
which j we have wy = pv;, the other v;’s are fixed by checking eigenvalues.
Remark. We will see that once we fix j we have fixed x¢ up to translation by
some multiple of T’ since Y417 = A\_T,E ¥z, = AilE ¥z, and by the theorem
multiplying ® by D amounts to changing our choice of a fifth root of §. Similarly
changing j amounts to translating xy by some 5-torsion point independent of T

With possible rescaling of ® and relabeling of the v; we may assume wy = vy,
wy is some multiple 8 of v, wo is some multiple 8?5 of vo, w3 is some multiple
02 a3 of w3, and wy is some multiple 6* oy of v4. We may now compute the
quadrics that define E, expanding in terms of the bilinear form B associated to
Q* and defining oy = o1 = 1:

Qe(r) = Q(®x) = Qvozg + Ovizy + 02 vaxs + Pazvsas + 0 ay vaxy)

4

= ZG% o? Q(v;) 2?7 + Z 0't aa; B(vi,v;) 23
i=0 0<i£j<4

The quadrics in the orbit of Qg under D also define E; define Qg () to be the

quadric Qg(D¥z). We introduce new quadrics R; to define E determined by the

equations Ei:o CngE,k = HR;. Then we have

Ry = Q(vo)x% + 95a4B(v1,v4)x1m4 + 0%420433(1}2, v3) T3,
R1 = (Q(v1)x? + asB(vo, vo)xora + 0°asoy B(vs, v4)r324)02,
Ry = (a5Q(v2)a5 + ayB(vo, va)xozs + a3 B(v1, v3)z123)0%,
Rz = (0°a3Q(v3)x3 + B(vo, v1)wox1 + 0° a0y B(va, v4)1274)0,
Ry = (0°a3Q(vy) x5 + azB(vo, v3)woxs + aaB(v1, vo)x122)0°.

Since the point O = (1:1:1:1:0) is on E, are able to deduce the following:
Q(v1)

———— from
B(U()v UQ)

From the equation R;(Og) = 0 we deduce the value ag = —

B('Ul, 'U2)a2

, and from the equation
B(Uo, Ug)

the equation R4(Og) = 0 the value ag = —
Q(vo)

——————— . Scaling, the equation Ry becomes
azazB(vg,v3)

Ro(Og) = 0 the value 6° = —

 4Define B(w,v) = Q(w +v) — Q(w) — Q(v).
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650443(?)1, U4)

Q(vo)

space; by their shapes we see each R; is conjugated to a multiple of itself by
0>y B(vy,vy)

Q(Uo)

. Moreover by scaling x4 by % we can assume € = 1. [

So = x% — Toxs3 + x1z4. The R;’s generate a K-rational vector

any Galois element. In particular € K, so for some € € K we can

953(1}1, '04)

write aq =

Remarks. 1) We may freely divide by the values of @ and B on the vectors
v; : first, if for any ¢« we had Q(v;) = 0, then v; would correspond to a fixed
point on the curve C under M. Second, since Q(v;) # 0,all the values of B in
the equations R;(Og) = 0 for i = 0,1,2, and 3 are nonzero - moreover if both
values of B in the equation R4(Og) = 0 were zero, then R4 would be a reducible
quadric. 2) We have two extra equations R2(Op) = 0 and R3(Og) = 0 from
which we may infer identities on the ) and B values:

Q(v1)Q(v2)B(vg,v3) = —B(v1, v3)B(vg, v2) B(v1,v2) and
Q(v0)Q(v3) B(v1,v2) = —B(vo, v1)B(v2,v3) B(vo, v3).
More generally,

Lemma 4.3. For all i we have the following identities:

Qi+1)QWi+2)B(vi, vit3) _ Qui)Qit3)B(vit1,vit2)

B(vit1,vi43)B(vi, viy2) B(vig1,viv2)  B(vi, vig1) B(vig2, viy3) B(vi, vigs)

=—1

Proof of Lemma. By the Remark on page 138, choosing a different xq is tan-
tamount to cyclically permuting the indices of the v;, and the columns of the
associated matrix ® would be similarly permuted and scaled by elements in K.
Note that identities such as those above are unaffected by scaling each v;. O

By construction the first quadric Sy defining E is given by Sy = 22 —
xows + w1x4. After scaling Ry (using the definition of as) and defining A =
6°asasB(vs,va) _ B(ui,ve)Bug,v)Qvo)  _ [lio Qv

Q(v1) B(vo,v3)B(vo, v2) B(v1,v4) [T, Bvi,vi +2)
above lemma multiplying by both terms when i = 1) we obtain S; = 22 —

B
Qy 2(’007114) and

a3Q(v2)
; after expanding we see the latter is -1 by the above lemma; divid-

Q(v0)Q(v2)B(vs,v4)
B(vg, v2)B(vo,v4)B(va, v3)

lemma. We conclude that So = 22 — 2173 — Azgz4. Scaling Rz (and using the
definition of the «; and the above lemma when i = 0) we need only identify

(by the

ToTo + Axsxy. After scaling Ry we have the two coefficients

Oé3B('Ul, 1)3)
a3Q(v2)
ing A by the former simplifies

= —1 again by the
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alphasayB(vy,vs)  Q(vo)Q(v1)B(v2,v4)
a3Q(v3) B(vo, v2) B(vo,v1)B(v1,v4)
lemma. We get S5 = x?,) — xor1 — Tox4. Finally, scaling R4 and using the defini-

(95 2
07030(Ws) 1y iding this by A
OézB(Ul, UQ)

the coefficient = —1 by the

tion of ag we need only identify the coefficient

Q(v1)Q(v4) B(v2,v3)
B(v1,v2)B(v3,v4) B(v1, v4)
Sy, =—-A xi + 129 — ToT3. O

simplifies to = —1 by the lemma, and we conclude
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