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RESONANCE EXPANSIONS AND RAYLEIGH WAVES

Plamen Stefanov

1. Introduction

In this paper we study expansions of solutions of the wave equation in a com-
pact set with initial data supported in the same set. We consider the general
framework of the “black box scattering” introduced by Sjöstrand and Zworski
[SjZ] (see sec. 2). In particular, this includes the classical case of scattering by ob-
stacle with Dirichlet or Neumann boundary conditions and metric perturbations
of the Laplacian with a metric equal to the Euclidean one outside a large ball.
Denote by U(t) the solution group corresponding to the wave equation in the en-
ergy space and let χ be the multiplication with a compactly supported function
χ(x) equal to 1 on some compact set containing the “black box” (the scatterer).
Then we are interested in asymptotic expansions of χU(t)χ, as t → ∞.

If we study the wave equation in a bounded domain, then one can use the
Fourier method to get expansion of U(t) in terms of the eigenvalues and eigen-
functions of the corresponding Laplacian (with self-adjoint boundary conditions).
In the case under consideration, one gets expansions in terms of the resonances
and resonance states. This has been confirmed in the non-trapping case by Lax-
Phillips [LP] and Vainberg [Va1] in odd dimensions (see also [Va2]) and in the
black box setting by Tang and Zworski [TZ2]. In this case,

χU(t)χg =
∑

Im λj≤A

mj∑
m=1

eitλj tm−1wj,m(x) + O(e−(A−ε)t)g, g ∈ D, ε > 0.(1)

Here u(t, x) = U(t)g is the solution to the wave equation with initial data u|t=0 =
0, ut|t=0 = g (see also sec. 2), D is the domain of the corresponding Hamiltonian
and mj is the order of singularity of the Laurent expansion of the resolvent at
the resonance λ = λj . The functions wj,m(x) are resonance states (see also
section 3). In this paper we accept the convention that resonances lie in the
upper half-plane Imλ > 0. Note that the sum above is finite.

Much less is known in case of trapping scatterers. We will study here systems
with a sequence of resonances λj converging rapidly to the real axis, i.e., Imλj =
O(|λj |−∞). Such “almost real” resonances exist for example in the classical
obstacle scattering assuming the existence of non-degenerate elliptic periodic ray
[SV2] (see also [TZ1], [S]); for the system of linear elasticity in exterior domain
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with Neumann boundary conditions [SV1], [SV2], [Vo], [S2]; for transparent
obstacles [PV]. Recently, Tang and Zworski [TZ2] obtained for the first time an
expansion of the type (1) for trapping systems (having “almost real” resonances)
in the black box setting. They showed that

χU(t)χg =
∑

Im λj≤〈λ〉−K−1

mj∑
m=1

eitλj tm−1wj,m(x) + EK(t)g, g ∈ DM ,(2)

where K � 1, M � 1. For the error term we have ‖EK‖DM→H ≤ CN t−N , if
the space dimension n is odd, ‖EK‖DM→H ≤ t−n+1 for n even and N can be
chosen arbitrary large by choosing M large enough. This expansion is proved
under the following separation condition: for K � 1, ∃k > 0, such that |λ−µ| ≥
C max{|λ|, |µ|}−k for any two distinct resonances λ and µ in Imλ ≤ 〈λ〉−K and
the algebraic multiplicities of those resonances are uniformly bounded. The sum
above is infinite and the outer sum is absolutely convergent, while the absolute
convergence of the double sum is unclear. The main argument in proving (2) is
showing that the cut-off resolvent is polynomially bounded on a contour around
each resonance near the real axis. This estimate relies on a priori exponential
estimate of the resolvent first observed by Zworski [Z] and on the “semi-classical
maximum principle” [TZ1, Lemma 2] (see also Lemma 1 below), which in turn is
a significant improvement over [SV2, Lemma 1]. The approach in [TZ2] is used in
[CZ] to obtain resonance expansions in two hyperbolic cases where the separation
condition holds. In a recent paper, Burq and Zworski [BZ] showed that one can
sum up in (2) over resonances λj with |λj | ≤ tε with ε = ε(M, K) > 0 and
this gives an error term of the same type with larger K and M but without any
assumptions on the resonances.

In this paper we present a generalization of the result in [TZ2]. We study
a case, where the resonances near the real axis are separated from the other
resonances by a polynomial region of the type 〈λ〉−K ≤ Im λ ≤ 〈λ〉−K+2n#+ε,
ε > 0, K � 1 and our main result is formulated in Theorem 1. We do not assume
however that the resonances below that region are separated from each other.
Our assumption is satisfied for example for the system of linear elasticity with
Neumann boundary conditions and we discuss this in section 4. The general case
remains open. It should be noted also that our results can be also formulated
in the semiclassical setting.

Below we will denote by C different positive constants that may change from
line to line.

2. Assumptions and main result

We will recall briefly the black box scattering formalism as introduced in [SjZ]
(see also [TZ2]). Let H be a complex Hilbert space with orthogonal decomposi-
tion

H = HR0 ⊕ L2(Rn \ BR0),
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where BR0 := {x ∈ Rn; |x| < R0} and R0 is fixed. Let P be a self-adjoint
operator in H with domain D ⊂ H such that 1Rn\BR0

D = H2(Rn \ BR0),
1Rn\BR0

P = −∆|Rn\BR0
, (P + i)−1 is compact and P ≥ 0. For simplicity,

we will assume that P has no eigenvalues. Those conditions guarantee that
R(λ) := (P − λ2)−1 : H → D admits a meromorphic extension as an operator
from Hcomp to Dloc from the lower half-plane to the whole complex plane when n
is odd, and to the logarithmic plane if n is even. The poles of this extension that
we will still denote by R(λ) are called resonances and we will denote the set of
resonances by R(P ). Each resonance has finite multiplicity defined as the rank of
the residue and the Laurant expansion at the pole has finite order of singularity
not exceeding the multiplicity. We will always include resonances according
to their multiplicities. We also assume that for the “reference operator” P#,
constructed from P , on HR0 ⊕L2(M \BR0), M := (R \RZ)n for some R > R0,
we have

N(P#, r) := #{λ2 ∈ spec P#; 0 ≤ λ ≤ r) = O(rn#
)

with some n# ≥ n. Then (see [Sj] and the references herein), for some θ > 0 for
the number of resonances Nθ(r) in {|λ| ≤ r, arg λ < θ} we have

Nθ(r) ≤ Cθr
n#

, r ≥ 1.(3)

The solution to the wave equation (∂2
t + P )u = 0 with initial conditions u|t=0 =

f1, ∂tu|t=0 = f2 can be expressed in the corresponding energy space by the
unitary group

U(t) = exp
(

0 I
−P 0

)
t =

(
∂tU(t) U(t)
∂2

t U(t) ∂tU(t)

)
,

where U(t) : Dk → Dk+1 and u = U(t)f solves the wave equation (∂2
t +P )u = 0

with initial data (u, ut)|t=0 = (0, f). In particular, this shows that in order to
study the local behavior of U(t), it is enough to study U(t). We will also use
the notation Dk := (P + i)−kH.

We are ready now to formulate our main result.

Theorem 1. Assume that for some K > 7n#/2 there are no resonances of P

in 〈λ〉−K ≤ Im λ ≤ 〈λ〉−K+2n#+ε, ε > 0, for |λ| � 1. Then

(4) χU(t)χg =

− i
∞∑

l=1

∑
λj∈R(P ); Re λj∈Il

Im λj<〈λ〉−K

χRes{eitλR(λ), λj}χg + EK(t)g, g ∈ DM ,

M ≥ (K + 1)/2, where Res{f(z), z0} stands for the residue of f at the pole
z0. Here Il = [al, bl], al < bl < al+1 is any sequence of intervals such that
dist{Il, Il+1} = bl+1 − al ≥ a−k

l , k > n#, and Re (R(P ) ∩ {Im λ < 〈λ〉−K}) ⊂
∪lIl. The outer sum is absolutely convergent. The error term EK(t) satisfies
‖EK(t)‖DM→H ≤ CN t−N , N = (2M − K)/(K − n# + 1 + ε), n odd, and
‖EK(t)‖DM→H ≤ Ct−min(n−1,N), n even.
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Remark 1. Even though the outer sum is absolutely convergent, we cannot
guarantee that the double sum is absolutely convergent or even convergent (see
also [TZ2]).
Remark 2. For any resonance λj , we have

χRes{eitλR(λ), λj}χg =
mj−1∑
m=0

eiλjttmwj,q(x)

(compare with (1)). Since Imλj > 0, each term above decreases exponentially
fast, while the error term Ek(t) tends to zero only at a polynomial rate! The
exponential rate of decay however depends on λ and becomes small for large
λ’s. We do not have effective lower bounds on wj,q’s, but based on the upper
bounds (see (20)), we expect that the terms in (4) corresponding to resonances
close to the upper boundary Imλ = 〈λ〉−K would be comparable to the error
term EK(t), while if λj is close to the real axis, for example exponentially close,
then the corresponding terms will dominate over EK(t). Also, we may have the
accumulative effect of infinite many wj,q.
Remark 3. The assumption of a resonance free zone 〈λ〉−K ≤ Im λ ≤
〈λ〉−K+2n#+ε, |λ| � 1 can be relaxed. It is enough to assume that in this
zone we have the following property: There exist k0 > 0 and n0 > 0 such
that for any a > 0 large enough the number of resonances in this zone with
a ≤ Re λ ≤ a + a−k0 does not exceed n0. Then Theorem 1 still holds with dif-
ferent M and N depending on k0, n0. Also, we may have to deform the contour
Im λ = 〈λ〉−K in order to include in (4) a possible sequence of resonances above
it that may converge to this curve faster than any polynomial of 1/|λ| as in
[BZ]. Notice that the so relaxed assumption is satisfied if the resonances there
are “separated” as in [TZ2].

3. Proof of Theorem 1

Technically, it is convenient to work in the semiclassical setting. Set P (h) :=
h2P , where 0 < h < 1. The poles of the analytic continuation of the resolvent
R(z, h) := (P (h) − z)−1 : Hcomp → Hloc from Ω ∩ {Im z < 0} to Ω, where Ω
is a neighborhood of some energy level E > 0 are resonances of P (h) and with
some abuse of notation we will denote them by R(P (h)). Thus the relation-
ship between the resonances λ ∈ R(P ) of P and the resonances z ∈ R(P (h))
is given by λ = h−1z1/2. Here and below we denote by χ the multiplication by
a compactly supported function χ(x) equal 1 on BR, R > R0. More precisely,
χ = 1HR0

⊕ χ̃, where χ̃ is the multiplication by the restriction χ̃(x) of χ(x) on
Rn \ BR0 . It is convenient to assume that 0 ≤ χ ≤ 1. We will use the nota-
tion Rχ(z, h) := χR(z, h)χ and Rχ(λ) := χR(λ)χ. Sometimes we will denote
Rχ(z, h) simply by Rχ(z).

First we formulate an a priori exponential estimate on the resolvent. As
mentioned in the Introduction, this estimate was first observed by M. Zworski
[Z]. In this generality it was proved in [TZ1], [TZ2].
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Proposition 1. Under the conditions above, let Ω be a simply connected com-
pact neighborhood of E > 0 in Re z > 0. Then for 0 < h < h0 with some h0 > 0
we have

‖Rχ(z, h)‖H→H ≤ eCΩh−n#
ln(1/g(h)), for z ∈ Ω,

|z − zj | ≥ g(h) , ∀zj ∈ R(P (h)), g(h) � 1.

The following “semi-classical maximum principle” is a modification of [TZ2,
Lemma 4.1] (see also [TZ1, Lemma 2] and [SV2, Lemma 1]). We formulate here
a more general version of this lemma suitable for our purposes.

Lemma 1. Fix k > 0, n# > 0. Let 0 < h < 1 and a(h) ≤ b(h). Suppose that
F (z, h) is a holomorphic function of z defined in a neighborhood of

Ω(h) = [a(h) − 5w(h), b(h) + 5w(h)] + i[−S−(h), S+(h)h−n#−ε],

where 0 < S−(h) ≤ S+(h) ≤ w(h)h3n#/2+2ε, ε > 0 and w(h) → 0, as h → 0. If
F (z, h) satisfies

|F (z, h)| ≤ AeAh−n#
ln(1/h) on Ω(h),(5)

|F (z, h)| ≤ M(h) on [a(h) − 5w(h), b(h) + 5w(h)] − iS−(h)(6)

with M(h) → ∞, as h → 0, then there exists h1 = h1(S−, S+, A, k, ε) > 0 such
that

|F (z, h)| ≤ 2e3M(h),

∀z ∈ Ω̃ := [a(h) − w(h), b(h) + w(h)] + i[−S−(h), S+(h)], for h ≤ h1.

Sketch of the Proof. The proof follows those of [TZ2, Lemma 4.1] and [TZ1,
Lemma 2] with some modifications. Set

f(z, h) := (πα2)−1/2

∫ b(h)+3w(h)

a(h)−3w(h)

exp
(
− (x − z)2

α2

)
dx, α := S+(h)h−n#−ε.

Then f(z, h) is holomorphic in Ω(h) and for h � 1 satisfies:

|f(z, h)| ≤ e in Ω(h),(7)

|f(z, h)| ≥ 1
2

in Ω̃(h),(8)

|f(z, h)| ≤ Ce−h−n#−ε

, in Ω(h) ∩ {Re z ≤ a(h) − 4w(h)

or Re z ≥ b(h) + 4w(h)}.
(9)

Next, we apply the maximum principle to the function

G(z, h) := eiz/S+(h)f(z, h)F (z, h)

in Ω(h). On the upper part of ∂Ω(h), the exponential function above com-
pensates for the exponential growth (5) of F , so |G| = o(1), as h → 0, there.
On the sides, the exponential function is bounded by exp(S−(h)/S+(h)) < e
and the exponential growth of F is controlled by f in view of (9) so we have
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again |G| = o(1). On the lower part Im z = −S−(h) of ∂Ω(h), we have
|G| ≤ e|fF | ≤ e2M(h) by (7) and (6). Thus |G| ≤ e2M(h) on ∂Ω(h) for
h � 1. By the maximum principle, this is true in Ω(h) as well. Using the fact
that |eiz/S+(h)| ≥ 1/e on ∂Ω̃(h) and (8), we get

1
2e

|F | ≤ |eiz/S+(h)||F ||f | ≤ e2M(h),

which proves the lemma.

Typically, Lemma 1 is applied to Rχ(z) (or to some multiple of it) and then
one can use the classical estimate ‖Rχ(z)‖ ≤ 1/|Im z| in the lower half-plane
Im z < 0, so in this case M(h) = 1/S−(h).

Let Ω(h) be as above with

w(h) := hk, S+(h) := hk+3n#/2+2ε, k > 0, ε > 0.

Let z1(h), z2(h) . . . zp(h) be all resonances in Ω(h) and denote by m1, . . . , mp

the corresponding multiplicities. Set m := m1 + · · · + mp. Assume also that
all resonances in Ω(h) actually lie in [a(h), b(h)] + i[0, S−(h)] with S−(h) :=
hk+5n#/2+2ε. Let

z̃j(h) := z̄j(h) − 2iS−(h), j = 1 . . . p,

where the bar denotes complex conjugate (see Figure 1). Note that zj and z̃j

are symmetric about the line Im z = −S−(h) (the lower part of ∂Ω(h)). Set

G(z, h) :=
(z − z1)m1 . . . (z − zp)mp

(z − z̃1)m1 . . . (z − z̃p)mp
.

Ω(h)

b+h
k

a-h
k

a-5h
k

b+5h
k

h
k+n / 2+ε

0

#

∼

ba

-3S_(h)

Ω(h)

-S_(h)

S+= h
k+3n / 2+2ε

#

S_= h
k+5n / 2+2ε

#

Figure 1: Resonances zj are denoted by •; z̃j are denoted by ◦



RESONANCE EXPANSIONS AND RAYLEIGH WAVES 113

It is easy to see that

|G(z, h)| ≤ 1 for Im z ≥ −S−(h).(10)

The function F := GRχ is holomorphic in Ω(h) and satisfies the assumptions
of Lemma 1 if we assume that dist(∂Ω(h),R(P )) ≥ ChK with some K > 0.
Indeed, by Proposition 1, the exponential estimate is satisfied in the complement
(in Ω(h)) of disks centered at the resonances with radii hN with fixed N � 1 (see
[TZ2]). Those disks may intersect but can form connected unions of size not more
than O(hN−n#

) that will stay away from ∂Ω(h). Since F is holomorphic in those
disks, applying the maximum principle, we get the exponential estimate in the
whole Ω(h) (see also the proof of Theorem 1 in [S]). Note that this condition and
therefore the exponential estimate are automatically satisfied if we increase ε and
k. On the lower part of ∂Ω(h) we have the resolvent estimate ‖Rχ(z)‖ ≤ 1/|Im z|
for Im z < 0 and (10), thus ‖GRχ‖ ≤ 1/S−(h) on ∂Ω(h) ∩ {Im z = −S−(h)}.
By Lemma 1, ‖GRχ‖ ≤ 2e3/S−(h) in Ω̃(h) for h small enough.

We now claim that

1/C ≤ |G(z, h)| on ∂Ω̃(h).(11)

with some C > 0 depending only on the constant in (3). It is enough to estimate
(z − z̃j)/(z − zj) on ∂Ω̃(h). We have

(12)
∣∣∣∣z − z̃j

z − zj
− 1

∣∣∣∣ =
∣∣∣∣zj − z̃j

z − zj

∣∣∣∣ ≤ 4S−(h)
hk+3n#/2+2ε/2

= 8hn#
,

∀z ∈ ∂Ω̃(h) \ {Im z = −S−(h)},
for 0 < h < 1/2 because |z − zj | ≥ hk+3n#/2+2ε −hk+5n#/2+2ε ≥ hk+3n#/2+2ε/2
for h < 1/2 if Im z = hk+3n#/2+2ε and we have greater lower bound for z on the
right and left sides of ∂Ω̃(h). Therefore,∣∣∣∣z − z̃j

z − zj

∣∣∣∣
mj

≤ (1 + 8hn#
)mj , ∀z ∈ ∂Ω̃(h) \ {Im z = −S−(h)}

On the other hand, (12) is trivially true on the lower side Im z = −S−(h) of
∂Ω̃(h) because |(z − z̃j)/(z − zj)| = 1 there. Since (1 + x)1/x < e, 0 < x < ∞,
we get

|G(z, h)| ≤ (1 + 8hn#
)m1+···+mp = (1 + 8hn#

)m ≤ (1 + 8hn#
)Ch−n#

≤ e8C .

This proves our claim.
The estimate we got on GR and (11) together imply ‖Rχ‖ = O(1/S−(h)) =

O(h−k−5n#/2−2ε) on ∂Ω̃(h). We have therefore proved the following.

Lemma 2. Assume that all resonances in

[a(h) − 6hk, b(h) + 6hk] + i[0, hk+n#/2]

lie in [a(h), b(h)] + i[0, hk+5n#/2+ε], ε > 0. Then

‖Rχ‖ = O(h−k−5n#/2−ε) on ∂Ω̃(h),
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where Ω̃(h) := [a(h) − hk, b(h) + hk] + i[−hk+5n#/2+ε, hk+3n#/2+ε].

We note that we increased Ω(h) in order to make sure that all resonances
outside the original Ω(h) are at distance at least hK with some K > 0 and we
also replaced 2ε by ε.

The rest of the proof follows closely that of [TZ2]. We have

χU(t)χg =
1
2π

∫ ∞−iα

−∞−iα

eitλRχ(λ)g dλ, g ∈ D, α > 0.(13)

In what follows we will assume that g is compactly supported (we can always
assume that). Assume first that n is odd. Then we are going to lift the contour
of integration to the pole-free zone such that Rχ is polynomially bounded on
the new contour as well. Using (3) one can show (see [S], [SjV]) that for any
k > n# + 1 all resonances in Λ := {Im λ < 〈λ〉−K} can be grouped into clusters
Ul with Re (Ul) ⊂ Il, where the intervals Il := (al, bl) are as in Theorem 1 with
the properties: |Il| = O(λ−k+1+n#

) and dist(Il, Il+1) ≥ 4λ−k+1, 1 � λ ∈ Il.
Set h = hl := a−1

l and P (h) := h2P , h ∈ {hl}∞l=1. Then under the scaling
λ �→ h2λ2 =: z the interval Il transforms into (1, b2

l /a2
l ) =: (a(h), b(h)) and

we get that there are no resonances z of P (h) (such that λ(z) ∈ Λ) with real
parts in [a(h) − 7hk, b(h) + 7hk] \ [a(h), b(h)]. Simple calculations show that
the condition Imλ = 〈λ〉−K implies Im z = (2 + o(1))hK+1. Therefore the
assumption that there are no resonances of P in 〈λ〉−K ≤ Im λ ≤ 〈λ〉−K+2n#+ε,
λ � 1, guarantees that all resonances of P (h) in [a(h) − 7hk, b(h) + 7hk] +
i[0, hK−2n#+1−ε] actually lie in [a(h), b(h)] + i[0, 3hK+1] for h small enough. So
in particular they lie in [a(h), b(h)] + i[0, hK+1−ε/2] for h small enough. Set

k := K − 5n#/2 + 1 − ε.(14)

Then k > n# + 1 for ε � 1 and we are in position to apply Lemma 2 with ε
replaced by ε/2 to get ‖Rχ(z)‖ = O(h−K−1+ε/2) on ∂Ω̃(h). We also used the
classical estimate ‖Rχ(z)‖ ≤ 1/|Im z| for Im z < 0, so M(h) = 1/S−(h) in (6).

Applying the transform z �→ h−1
√

z =: λ, λ ∈ [al, bl], h = 1/al, we get that

‖Rχ(λ)‖ = O(|λ|K−1) on Γl,(15)

where Γl is asymptotically close to the boundary of the rectangle

al − 1
2
a−k+1

l ≤Re λ ≤ bl +
1
2
a−k+1

l ,

−1
2
a
−k−5n#/2−ε/2+1
l ≤Im λ ≤ 1

2
a
−k−5n#/2−ε/2+1
l .

(16)

Since we have the freedom to perturb al by ca−k+1
l , c � 1, we can actually

assume that Γl exactly coincides with the boundary of the rectangle above.
It remains to estimate the resolvent in the gaps between the intervals Il.

We know that there are no resonances λj in Λ with real parts in (bl, al+1),
l = 1, 2, . . . and moreover al+1 − bl ≥ 4b−k+1

l . We can replace the constant
4 there by any other by increasing k (this is not necessary in fact, since the
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terms ±5hk in Lemma 1 can be replaced by ±(1 + ε)hk, ∀ε > 0). So, we have
al+1 − bl ≥ 20b−k

l . Assume first that al+1 − bl ≤ b−1
l . Set h := b−1

l , apply
Lemma 1 and then go back to the λ variables. We get that

‖Rχ(λ)‖ = O(|λ|K−n#/2−1+ε) in Πl,(17)

where Πl is given by

Πl := [bl + 5b−k
l , al+1 − 5b−k

l ] +
i

2
[−a

−k−3n#/2−2ε
l , a

−k−3n#/2−2ε
l ].(18)

Clearly the curve γ := Im λ = 1
2 〈λ〉−K+n#−1−ε (see (14)) lies below the upper

boundary of Πl, so we have in particular that (17) is satisfied on γ∩Πl. Note that
Πl and the rectangle (16) enclosed by Γl overlap for l large enough. Similarly, Πl

and Γl+1 intersect for the same reason. If the assumption al+1 − bl ≤ b−1
l is not

satisfied, we can cover (bl, al+1) by a sequence of overlapping intervals of length
O(|λ|−1) and apply similar arguments to get that the polynomial estimate (17)
holds on γ ∩ {bl + 5b−k

l ≤ Re λ ≤ al+1 − 6a−k
l+1}.

We are ready to construct the contour Γ. For bl +5b−k
l < Re λ < al+1−7a−k

l+1,
we choose Γ to coincide with γ. For al ≤ λ ≤ bl, we set Γ to be that part of Γl

that lies above γ (see Figure 2). We define Γ in Reλ ≤ 0 as a symmetric image
of Γ in Reλ ≥ 0.

al bl al+1 bl+1

Γl Γl+1
γ

Figure 2: The contour Γ

To finish the proof of Theorem 1, we will lift the contour of integration in
(13). To this end, let us choose the following closed (positively oriented) curve
Cl: the upper part is Γ ∩ {|Re λ| ≤ 1

2 (bl + al+1)}, the lower part is {Im λ =
−α, |Re λ| ≤ 1

2 (bl + al+1)}, and the sides are {Re λ = ± 1
2 (bl + al+1), −α ≤

Im λ ≤ 1
2 〈λ〉−K+n#−1−ε}. By (15) and (17), ‖Rχ(λ)‖ = O(|λ|K−1) on Cl, ∀l.

We can improve this estimate by letting Rχ(λ) act on smoother functions in
view of the inequality (see e.g. [TZ2])

‖Rχ(λ)‖DM→H ≤ CM |λ|−2M‖Rχ′(λ)‖, M > 0,(19)

where χ′ ∈ C∞
0 is such that χ′ = 1 on suppχ. This yields

‖Rχ(λ)‖DM→H = O(|λ|−2) on Cl, ∀l, with M ≥ (K + 1)/2.(20)

As mentioned above, without loss of generality we can assume that g is of com-
pact support and χ = 1 on supp g. Integrating over Cl and taking into account
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that integrals over the vertical sides tend to zero, as l → ∞ in view of (20), we
see that (13) transforms into

χU(t)χg =
∞∑

l=1

wl(t, x) + E(t)g, g ∈ DM

where

wl(t, x) : =
∑

λj∈R(P ); Re λj∈Il

Im λj<〈λ〉−K

−iχRes{eitλR(λ), λj}χg

=
∑

λj∈R(P ); Re λj∈Il

Im λj<〈λ〉−K

eiλjt

mj−1∑
m=0

tmwl,m(x)
(21)

and
E(t)g =

1
2π

∫
Γ

eitλRχ(λ)g dλ.

Using (19) and the fact that on Γ we have Imλ ≥ 1
2 〈λ〉−K+n#−1−ε, we get (see

[TZ2] for more details)

‖E(t)g‖H = ‖
∫

Γ

eitλRχ(λ)g dλ‖

≤ C

( ∫ ∞

1

e−tx−K+n#−1−ε/2x−2M+K−1 dx + O(e−Ct)
)
‖g‖DM

= O(t−(2M−K)/(K−n#+1+ε))‖g‖DM .

To finish the proof for n odd, we notice that the intervals Il with the required
properties exist because of the polynomial estimate (3) of the number of res-
onances. In (4) one can sum over a different family of intervals as long as
dist{Il, Il+1} ≥ a−k

l , k > n#. If |Il| != O(a−k+n#

l ), then one can split Il into
several subintervals with gaps between them of required minimal length and then
we apply what we already proved.

In the even dimensional case we have to deform the contour in a different way
near λ = 0 (see [TZ2]) and the contribution of λ = 0 is O(t−n+1) (as in the
unperturbed case).

The statement about the absolute convergence of the outer sum in (4) follows
from the bound (15) on Γl. For wl (see (21)) we have

(22) ‖wl(t, ·)‖ ≤ etcl

2π

∮
Γl

‖Rχ(λ)g‖ |dλ|

≤ Cetclλ−2|Γl|‖g‖DM ≤ Cetclλ−2|Il|‖g‖DM ,

where λ ∈ Il and cl = O(a−K+1
l ). This estimate easily implies the convergence

of the outer sum in (4) for any fixed t.
The estimate above grows exponentially as t → ∞, which is unnatural. Below

we will show that the left hand side of (22) admits a similar estimate with exp(tcl)
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replaced by a decaying term. Next proposition is an analogue of the classical
estimate ‖(P −λ2)−1‖ ≤ 1/dist{λ2, spec (P )} for a self-adjoint P . It holds under
the a priori exponential estimate (23). An estimate of this type with q = 1 has
been proved by Burq [B1], [B2] for a large class of elliptic operators in the
exterior of an obstacle.

Notice that below we do not assume the resonance free zone condition of
Theorem 1.

Proposition 2. Assume that ∃q > 0, such that

Im λj ≥ C1e
−C2|λj |q for all resonances λj.(23)

Let d(λ) := min{dist(λ,R(P )), |λ|1−δ}, δ > 0 fixed, and set N# := n# + q.
Then for any ε > 0 we have

‖Rχ(λ)‖ ≤ C|λ| 3N#
2 −1+ε

d(Re λ)
for 0 ≤ Im λ ≤ d(Re λ)

21|λ| 3N#
2 +ε

, |λ| � 1.(24)

Proof. Let λ0 � 1 and set h := 1/λ0. Assume that

λ ∈ W (λ0) := [λ0 − 1
2
d(λ0), λ0 +

1
2
d(λ0)] + i[0, d(λ0)λ

−N#/2−ε
0 ].

Then there are no resonances in W (λ0) for λ0 � 1. Apply the transform z =
h2λ2. The image of W (λ0) under that transform contains the domain

Ω0(h) := [1 − 3
4
hd(h−1), 1 +

3
4
hd(h−1)] + i[0,

3
2
d(h−1)hN#/2+1+ε]

and there are no resonances z of P (h) in this domain. By Proposition 1, Rχ(z)
satisfies the exponential estimate (5) with n# replaced by N# in the smaller
domain

Ω(h) := [1 − 1
2
hd(h−1), 1 +

1
2
hd(h−1)] + i[0, d(h−1)hN#/2+1+ε],

because the distance between Ω(h) and the closest resonance is at least g(h) =
1
2
d(h−1)hN#/2+1+ε and ln(1/g(h)) = ln 2+ln(1/d(h−1))+(N#/2+1+ε) ln(1/h)

≤ Ch−q. Set 5w(h) := 1
2hd(h−1). Then we can apply Lemma 1 to get

‖Rχ(z)‖ ≤ Ch3N#/2+1+2ε

d(h−1)
,

for z ∈ [1 − 1
10hd(h−1), 1 + 1

10hd(h−1)] + i[0, 1
10d(h−1)h3N#/2+1+2ε],

for h � 1. Applying the inverse transform λ = h−1z1/2 = λ0z
1/2, we get the

required estimate for λ ∈ Ω̃(h) and in particular for λ = λ0(1 +
i

2
(

1
10

d(λ0)

λ
−3n#/2−1−2ε
0 (1 + O(λ−1

0 )))). Replacing 2ε by ε, we complete the proof of the
proposition.
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Next proposition shows that although the resolvent may not be polynomially
bounded near the real axis, integral of it over bounded intervals is.

Proposition 3. Assume (23). Then for µ > 0 large enough
∫ µ+1

µ

‖Rχ(λ + iα)‖DM→Hdλ ≤ Cµ
5N#

2 −1+ε−2M

for 0 ≤ α ≤ min{d(λ); µ ≤ λ ≤ µ + 1}
22µ

3N#
2 +ε

.

Proof. Let µ be as above. We can assume that dist(λ,R(P )) ≤ 1 for λ � 1,
otherwise the estimate follows easily from Lemma 1. So, d(µ) = dist(µ,R(P ))
for µ � 1. By Proposition 2 and (19), for α as above,

‖Rχ(λ + iα)‖DM→H ≤ Cλ
3N#

2 −1+ε−2M

d(λ)
≤ Cλ

3N#
2 −1+ε−2M

∑
j

1
|λ − λj | ,

where the summation is taken over all resonances satisfying λj ∈ [µ− 1, µ+2]+
i[0, 2], if µ ≤ λ ≤ µ + 1. According to (3), there are O(µn#

) such resonances.
We therefore get∫ µ+1

µ

‖Rχ(λ + iα)‖DM→Hdλ

≤ Cµ
3N#

2 −1+ε−2M
∑

j

∫ µ+1

µ

dλ

|λ − λj |

= Cµ
3N#

2 −1+ε−2M
∑

j

∫ µ+1

µ

dλ√
(λ − Re λj)2 + (Im λj)2

≤ Cµ
3N#

2 −1+ε−2Mµn#
max

j
ln

1
Im λj

≤ Cµ
3N#

2 −1+ε+n#+q−2M .

This proves the proposition.

We are ready now to prove an improved version of estimate (22) by lifting
the lower part of Γl above the real axis. More precisely, we replace the contour
Γl there by the boundary Γ′

l of the rectangle (compare with (16))

al − 1
2
a−k+1

l ≤ Re λ ≤ bl +
1
2
a−k+1

l ,

1
23

dla
−3N#/2−ε
l ≤ Im λ ≤ 1

2
a
−k−5n#/2−ε/2+1
l ,

where dl = minj(Im λj), with the minimum taken over all resonances λj with
real parts in Il = [al, bl]. Arguing as in (22) and using Proposition 3, we get for
2M > 5N#/2 + 1 + ε

‖wl(t, ·)‖ ≤ Ce−tαlλ−2|Γl|‖g‖DM ≤ Ce−tαlλ−2|Il|‖g‖DM(25)

where αl := 1
23dla

−3N#/2−ε
l and λ ∈ Il.
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This estimate implies the following.

Theorem 2. Under the assumptions of Theorem 1, assume also that Im λj ≥
S(Re λj) with a decreasing positive function S, such that −S′(λ)/S(λ) ≤ Cλq−1

for λ > 0 large enough. Assume also that K > 7n#/2 + q − 1. Then ∀ε > 0,
∃c > 0 such that we have the following estimate for 1 � A < B

(26)
∑

Il⊂[A,B]

∥∥∥ ∑
λj∈R(P ); Re λj∈Il

Im λj<〈λ〉−K

χRes{eitλR(λ), λj}χg
∥∥∥

≤ C

∫ B

A

e−tS̃(x)

x2
dx‖g‖DM , S̃(x) := c|x|−3N#/2−εS(x)

for any g ∈ DM with 2M > max{K + 1, 5N#/2 + 1 + ε}, N# = n# + q.

Proof. The theorem follows directly from (25). Under the assumptions of the
theorem, (23) is satisfied. Thus dl = Im λj0 ≥ S(Re λj0), where λj0 is a resonance
with real part in [al, bl]. Our assumption on S implies that S(λ) ≤ CS(λ + h)
for h = O(λ1−q), λ � 1. Tracing back the construction of Il, we see that |Il| =
O(λ1−q) for K as in the theorem. This implies dl ≥ cS(λ) for any λ ∈ Il with
c > 0 independent of l and λ. Therefore, in (25) we have αl > cS(λ)λ−3N#/2−ε,
∀λ ∈ Il. This implies (26) easily.

4. Rayleigh resonances

Let Ω ⊂ Rn be the complement of a strictly convex obstacle and consider the
elasticity system with Neumann boundary conditions. The elasticity operator
∆e, acting on vector valued functions, has the form

∆ev = µ0∆v + (λ0 + µ0)∇(∇ · v),

where λ0 and µ0 are the Lamé constants satisfying µ0 > 0, nλ0 + 2µ0 > 0. We
denote by P the self-adjoint realization of P with Neumann boundary conditions
on the boundary Γ = ∂Ω

(Bv)i :=
n∑

i=1

σij(v)νj |Γ = 0, i = 1, . . . n,

where σij(v) := λ0∇ · vδij + µ0(∂xj vi + ∂xivj) is the stress tensor and ν is the
outer normal to Γ.

It is known [SV1] that in this case there exist a sequence of resonances λj with
0 < Re λj = O(|λj |−∞) and a symmetric sequence −λ̄j . This result is proven
in [SV1] for n = 3 but it also holds in any space dimension (see also [SjV]). If
the boundary is analytic, the convergence is at an exponential rate [Vo]. There
is also a logarithmic resonance free zone, i.e., there are no other resonances in
Λ := {Im λ ≤ C1 ln Reλ−C2} with some C1 > 0, C2 > 0. Moreover, there is an
asymptotic formula for the counting function N(r) = {λ-resonance, λ ∈ Λ, |λ| ≤
r} of the form N(r) = Crn + O(rn−1), as r → ∞ (see [SjV]). Resonances with
this density exist for arbitrary boundary as well [SV2], [S2] but then we may



120 PLAMEN STEFANOV

not have a resonance free zone. Existence of those resonances can be explained
by the existence of Rayleigh surface waves propagating on the boundary with
speed CR slower than the two sound speeds of the elasticity system. Those
surface waves trap the energy near the boundary and in particular, there are
singularities propagating on the boundary [T].

An application of Theorem 1 immediately yields a resonance expansion of the
solution operator U(t) for this system. This result also holds under the weaker
assumptions on the geometry of the boundary considered in [SjV] that require a
polynomial resonance free region for the Dirichlet problem (there are no surface
waves for the Dirichlet problem) and an additional assumption on the Neumann
operator. In the case of a strictly convex obstacle one can actually improve the
estimate on the remainder. Denote by N (λ) the Neumann operator related to
this system defined as follows

N (λ) : Hs(Γ) $ f �→ Bv ∈ Hs−1(Γ),

where v is the λ-outgoing solution of the equation (∆e +λ2)v = 0 in Ω satisfying
v = f on Γ (see also [SV1]). In [SV1] it is shown that

‖N−1(λ)‖ ≤ C

ln |λ| for Imλ = a ln |Re λ|, |Re λ| > 2,(27)

with any fixed a > 0 and ‖ · ‖ can be any Hs norm, s ≥ 0. Let RD(λ) be the
outgoing Dirichlet resolvent and let KD(λ) : f → u be the outgoing solution
operator of the homogeneous problem with Dirichlet data f on Γ. Then

R(λ) = RD(λ) − KD(λ)N−1(λ)BRD(λ),(28)

where R(λ) is the Neumann outgoing resolvent related to P (see e.g. [SjV]).
Now we can use the fact that RD(λ) and KD(λ) are polynomially bounded in
a logarithmic neighborhood of the real axis because the Dirichlet problem is
non-trapping. This, together with (27), allows us to conclude that Rχ(λ) is
polynomially bounded on Imλ = a ln |Re λ|. Let Γ be as above. Then the region
above Γ and below the curve Imλ = a ln |Re λ|, |Re λ| � 1 is free of resonances
[SV1]. By the Phragmén-Lindelöf principle, ‖N−1(λ)‖ is polynomially bounded
there. This allows us to lift the contour of integration from Γ to a line Imλ =
const. > 0 to obtain an exponential bound for the error term. As a result we get
the following.

Theorem 3. Let U(t) be associated with the Neumann problem in linear elas-
ticity, assume that the obstacle O is strictly convex and let s > (7n/2+1). Then
for any A > 0,

(29) χU(t)χg

= −i
∞∑

l=1

∑
λj∈R(P ); Re λj∈Il

Im λj<A

χRes{eitλR(λ), λj}χg + EK(t)g, g ∈ Hs,



RESONANCE EXPANSIONS AND RAYLEIGH WAVES 121

where the error term EK(t) satisfies ‖EK(t)‖Hs→L2 ≤ Ce−(A−ε)t, ε > 0, n odd,
and ‖EK(t)‖Hs→L2 ≤ Ct−n+1, n even. Here Il are as in Theorem 1 such that
all resonances in Im λ < A have real parts in ∪Il.

Theorem 3 admits the following interpretation: near the boundary, each
smooth enough solution of the elastic wave equation with Neumann boundary
conditions is a superposition of Rayleigh waves plus an exponentially decaying
term.

4.1. The 3D case. In what follows we will restrict next ourselves to the 3D case
where it is known [S2] that the resonances near the real axis are O(|λ|−∞) per-
turbations of the eigenvalues of a self-adjoint classical ΨDO P on the boundary
with principal symbol cR|ξ|. They are also the poles of the Neumann operator
N (λ). Our main result here is (39) which gives a formula for the wl’s modulo
an error term. We assume below that λ ∈ Λ.

As shown in [SV1], one can construct a parametrix for the Neumann operator
N (λ). Here we are using pseudodifferential operators with large parameter λ ∈ Λ
and we will denote the corresponding class by Lm,k (see e.g. [SV1], [SjV]). We
have five microlocal regions related to P because the elasticity operator has two
wave speeds – a hyperbolic one, an elliptic one, two glancing ones and a mixed
one which is hyperbolic with respect to one of the wave speeds and elliptic
withe respect to the other one. The parametrix has a characteristic variety
Σ := {cR|ξ|x = 1} in the elliptic region and is elliptic or hypoelliptic in the other
regions (see [SV1]) for more details). Moreover, near Σ we have the following:
if WFλ(X) is near Σ, then for the parametrix Ne in the elliptic region we have
in block form (see [S2])

V ∗(λ)Ne(λ)V (λ)X(λ) =
(

A − λ 0
0 Q(λ)

)
X(λ) + R(λ).(30)

Here V (λ) is a classical ΨDO and V (λ) ∈ Ψ1 uniformly in λ, invertible for large
λ uniformly in λ, A = cR(−∆Γ)

1
2 mod Ψ0 is self-adjoint independent of λ and

Q(λ) ∈ L1,1 is elliptic and self-adjoint for real λ, R(λ) = O(|λ|−∞) is smoothing.
For N (λ) we have

N (λ) = N(λ) + R(λ),(31)

where R(λ) stands for (another) smoothing operator with norm O(|λ|−∞) in
each Hs space. Here N(λ) is the parametrix constructed using the parametrices
in each region via a suitable partition of unity.

Proposition 4. There exists a function 0 < S(λ) = O(|λ|−∞), such that

‖N−1(λ)‖ ≤ C

dist(λ, spec A) − S(λ)
for λ ∈ Λ, dist(λ, spec A) > S(λ).

Sketch of the Proof. As in [SV1], we estimate N f from below in all microlocal
regions. If X is a λ-ΨDO with wave front set outside the characteristic variety
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Σ := {cR|ξ| = 1}, then we have

‖Xf‖ ≤ C|λ|−2/3+ε‖N f‖ + O(|λ|−∞)‖f‖, λ ∈ Λ.(32)

Outside the glancing regions we have O(|λ|−1) in the first term. If WFλ(X) is
near Σ, then we can use (30) to get as in [SV1, (5.5)–(5.7)]

dist(λ, spec P )‖Xf‖ ≤ C‖N f‖ + O(|λ|−∞)‖f‖.(33)

Therefore,

‖Xf‖ ≤ Cdist(λ, spec P )−1
(‖N f‖ + O(|λ|−∞)‖f‖) , λ ∈ Λ.(34)

Here X has a symbol supported near Σ in the elliptic region. Combining (32)
and (34), we get

‖f‖ ≤ Cdist(λ, spec P )−1
(‖N f‖ + O(|λ|−∞)‖f‖) , λ ∈ Λ.(35)

Here we used the fact that dist(λ, spec P ) ≤ |λ|2/3−ε, λ ∈ Λ, |λ| � 1, because of
the known asymptotics of spec P . This implies the proposition.

Relations (30) and (31) imply that

N (λ)X(λ) = X1(λ)(V ∗)−1(λ)
(

A − λ 0
0 Q(λ)

)
V −1(λ) + R(λ)

with X and R as in (30) and X1 a zero order λ-ΨDO such that this yields

N−1X1 = XT−1 −N−1RT−1, where

T−1(λ) := V (λ)
(

(A − λ)−1 0
0 Q−1(λ)

)
V ∗(λ),

(36)

By Proposition 4, if dist(λ, spec A) > S(λ) + S1(λ), then ‖N−1(λ)‖ ≤ C/S1(λ).
On the other hand, under the same assumption, ‖(A−λ)−1‖ ≤ 1/(S(λ)+S1(λ)).
Thus, for the remainder term above we get ‖N−1RT−1‖ ≤ ‖R‖/S2

1 . Below we
choose S(λ) + S1(λ) = C|λ|−k+1, S(λ) = O(|λ|−∞), and this guarantees that
‖R‖/S2

1 = O(|λ|−∞) in this case.
Following similar arguments, we also get

N−1X̃1 = O(|λ|−∞)(37)

if WFλ(X̃1) ∩ Σ = ∅ and λ is separated from spec A as above.
Let now λj , j = 1, . . . ,∞ be the resonances near the positive real axis. Since

λj are O(|λj |−∞) perturbations of the eigenvalues µj of A (see [S2]), the estimate
on the remainder term in (36) and estimate (37) are valid if λ ∈ Λ is at a distance
at least C|λ|−k, k > 0 from the resonance set. Let Γl be the boundary of the
rectangle (compare with (15))

al − 1
2
a−k+1

l ≤ Re λ ≤ bl +
1
2
a−k+1

l , −1
2
a−k+1

l ≤ Im λ ≤ 1
2
a−k+1

l .
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Here Il = (al, bl) are intervals as in section 3 and k − 1 > n# = n = 3. By
Proposition 4,

‖N−1(λ)‖ ≤ C|λ|k−1 on each Γl.(38)

Proposition 4 also implies that (38) is fulfilled in the gap between two consecutive
Γl’s, i.e., in [bl +a−k+1

l /2, al+1−a−k+1
l+1 /2]+ i[−1, 1]. This allows us to construct

a contour Γ as in section 3 and N−1 will satisfy (38) on Γ and also on small
vertical bars between two consecutive Γl’s. By the symmetry, we have similar
bounds near the resonances −λ̄j close to the negative real axis. Let Ba be a
ball with radius a � 1 such that the obstacle is included in Ba and denote
Ωa := Ω ∩ Ba. The following estimates

RD(λ) = O(|λ|) : L2(Ωa) −→ H2(Ωa),

KD(λ) = O(|λ|) : H1/2(Γ) −→ H1(Ωa), for |Im λ| ≤ 1

follow easily from the fact that the Dirichlet problem is non-trapping for the
elasticity system and RD(λ) = O(1/|λ|) : L2(Ωa) −→ L2(Ωa). This allows us to
conclude that on Γ and on the verticals bars we have

‖Rχ(λ)‖DM→H = O(|λ|−1−ε), 2M ≥ k + ε, ε > 0.

Since k − 1 > n = 3, we get that in the three dimensional case, Proposition 4
holds with s = 5 which is an improvement over the requirement on s.

We will use (36) and (37) to estimate

wl(t, x) =
1
2π

∮
Γl

eitλRχ(λ)g dλ

(see also (21)). Since A is self-adjoint, the algebraic multiplicity of each eigen-
value of A is 1 (while the geometric multiplicity, i.e., the dimension of the asso-
ciated eigenspace can be greater that 1). Using this, we find that

(39) wl(t, x)

=
∑

µj∈Il

ieitµj KD(µj)V (µj)diag(Πj , 0)V ∗(µj)BRD(µj)g + Rl(t, x)g, ∀l � 1,

where Πj is the projection associated with the eigenvalue µj of A and

‖Rl(t, ·)‖DM→H = eO(λ−∞)tO(λ−∞), λ ∈ Il, ∀M > 0.(40)

In order to get (40), we used the fact that k can be chosen to be any (large
enough) number. Although this estimate is not uniform with respect to t, it
shows that the remainder term Rl(t, x) is uniformly O(λ−∞) for t in an interval
of length larger that CNλN , ∀N > 0. If the boundary is analytic, then (40) is
uniform for 0 ≤ t ≤ CeCλ since the resonances in this case converge exponen-
tially fast to the real axis [Vo]. It is unclear whether one can prove an estimate
uniform in t (this would probably require replacing the eigenvalues µj in the
exponential term eitµj above by the resonances λj). Nevertheless, (39) gives the
structure of wl(t, x) in this case.
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