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STRENGTHENING THE THEOREM OF EMBEDDED
DESINGULARIZATION

A. Bravo AND O. VILLAMAYOR U.

1. Introduction

Resolution of singularities is one of the central areas of research in Algebraic
Geometry. It is a basic prerequisite for the classification of algebraic varieties
up to birational equivalence, since it allows to consider only regular varieties.
Hironaka’s monumental work [Hil] gave a non-constructive, existence proof of
resolution of singularities over fields of characteristic zero. Constructive versions
of Hironaka’s Theorem have been proposed in [BM], [V1], [V2] and [EV1], while
simplified weak non-constructive versions can be found in [AJ], [AW] and [BP].

Here we announce the following stronger form of resolution of singularities:

Theorem 2.2 Let X be a reduced subscheme embedded in a scheme W, smooth
over a field k of characteristic zero, and let Z(X) be the sheaf of ideals defining
X. There exists a proper, birational morphism © : W, — W, obtained as a
composition of monoidal transformations, such that if X, C W, denotes the
strict transform of X C W, then:
(i) X, is reqular in W, and Reg(X) ~ 7~} (Reg(X)) via 7.
(ii) X, has normal crossings with m=*(Sing(X)), which is a union of hyper-
surfaces with normal crossings.
(iii) The total transform of Z(X) at Ow, factors as a product of an invertible
sheaf of ideals L supported on the exceptional locus, times the sheaf of
ideals defining the strict transform of X (i.e. Z(X)Ow, = L -Z(X,)).

Parts (i) and (ii) are the usual conditions of embedded desingularization (Hi-
ronaka’s Theorem). Part (iii) is new and provides, in an elementary way, equa-
tions defining the embedded desingularization, from the equations defining the
original singular scheme (X C W). This result answers a question formulated
by A. Nobile, which was the starting point of this research. A complete proof
can be found in [BV].
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In Section 3 we present an example in order to explain the difference between
our results and previous algorithms that follow Hironaka’s line of proof, which
are based on the notion of strict transforms of ideals (cf. [BM], [V1], [V2]
and [EV1]). This example shows that such algorithms will never yield in a
direct fashion the result contained in Theorem 2.2 (iii). We also discuss the
simplification introduced by Theorem 2.2 from an algorithmic point of view, and
we point out that it provides a form of lifting Koszul complexes (cf. Corollary
3.1).

As it happens with a previous algorithm described in [EV3], the proof of
Theorem 2.2 avoids the notion of strict transform of ideals: Desingularization is
achieved as a byproduct of a much simpler problem, namely that of algorithmic
principalization of ideals (see Definition 2.3). The only invariant involved is the
order of an ideal; so Hilbert Samuel functions, normal flatness, and Hironaka’s
iterated use of strict transforms of ideals, are avoided in the proof of desingu-
larization with this strategy. In Sections 4 and 5 we sketch the answer to the
following question:

How can we desingularize a singular scheme without considering the strict
transform of the corresponding ideal ?

Note that even if we start with a prime ideal defining a singular subscheme,
after applying monoidal transformations the total transform of this prime ideal
will have, together with the strict transform, several other primary components.
Now Theorem 2.2 (iii) says that by making all other primary components locally
principal (principalization!), the strict transform is obtained by factoring out a
locally principal ideal. In 5.5 we give a simple geometric description of how to
achieve this.

The fact that algorithmic principalization of ideals implies immediately res-
olution of singularities appears for the first time in [EV3] (see also the section
“added in proof” of [EV2], pp. 224-225 for an elementary resolution of irre-
ducible schemes). While the algorithm from [EV3] does not yield Theorem 2.2
(iii), it does open the gates to a generation of algorithms (including ours) based
on a philosophy different from Hironaka’s. One of the advantages of this new
generation of proofs, is that they provide algorithms of resolutions of singular-
ities that can be implemented in computer programs. In fact the algorithm of
principalization indicated in the addendum of [EV2] has been implemented in
MAPLE by G. Bodnar and J. Schicho (cf. [BS1], [BS2]).

The idea that principalization implies desingularization has also been used
in [ENV] to study equiresolution of families of schemes. Finally, we mention
that the result from [EV3] has been extended to the non-equidimensional case
in [EH].
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We are indebted to Prof. J. M. Aldaz for several useful suggestions during
the preparation of this note.

2. Formulation of the Main Theorem

We briefly explain the notions of pairs and transformation of pairs suitable for
the formulation of both Strong Embedded Desingularization and Principalization
of Ideals (cf. Theorem 2.2 and Definition 2.3 below).

Definition 2.1. [EV2]. Let W be a pure dimensional scheme, smooth over a
field k of characteristic zero, and let £ = {Hy,...,H,} be a set of smooth
hypersurfaces in W with normal crossings (i. e. UJ_; H; has normal crossings).
The couple (W, E) is said to be a pair. A regular closed subscheme Y C W is
said to be permissible for the pair (W, E) if Y has normal crossings with E.

If Y ¢ W is permissible for a pair (W, E), we define a transformation of

pairs in the following way: Consider the blowing-up with center Y, W RLE W1,
and define Fy = {H],... ,H|, H-+1}, where H| denotes the strict transform of
H;, and H,,; = II"1(Y) the exceptional hypersurface in W;. Note that W is
smooth and that Fy has normal crossings. We say that (W, E) «— (W1, Ey) is
a transformation of the pair (W, E).

2.2. Main Theorem. (of Strong Embedded Desingularization) Let (Wy, Eg =
{0}) be a pair and let Xo C Wy be a closed subscheme defined by T(Xo) C Ow, .
We assume that the open set Reg(X) of reqular points is dense in X (e.g. X
reduced ). Then there is a finite sequence of transformations of pairs

(2.2.1) (Wo, Eg) «— -+ «+— (W,., E,),

inducing a proper birational morphism Il : W, — Wy, so that setting F, =
{Hy,... ,H.} and X, C W, the strict transform of Xg:

(i) X, is regular in W,., and W, — U_ H; ~ Wy — Sing(X). In particular
Reg(X) 2 117! (Reg(X)) C X, via II,.
(ii) X, has normal crossings with E, = Ul_, H; (the exceptional locus of IL,.).
(iii) The total transform of the ideal Z(Xy) C Ow, factors as a product of ideals
m OWT N
T(X)Ow, = £ -T(X,),

where now I(X,) C Ow, denotes the sheaf of ideals defining X,, and
L=T(Hy)™-...-I(H,)* is an invertible sheaf of ideals supported on the
exceptional locus of I1,..

The proof of Theorem 2.2 follows from the simpler problem of principalization:
It is indicated in the addendum in [EV2] that desingularization follows from
principalization (see below).
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Definition 2.3. Let I C Oy be a sheaf of ideals. A principalization of I is
a proper birational morphism W; — W such that W; is regular and IOw,
is an invertible sheaf of ideals. A strong principalization of I is a chain of
transformations of pairs

(Wo, Eo =0) = (W, E) «— ... «— (W, E;)
such that W «— W, defines an isomorphism over the open subset W \ V(I),
and
L=10w, =I(Hy)" ... -I(H)%,
where E' = {H;, Hs,...,Hs} are regular hypersurfaces with normal crossings
and all ¢; > 1. In case that V(1) is of codimension > 2, this means that E' = E,.

and the total transform of [ is locally spanned by a monomial supported on the
exceptional locus of II,. : W,, — W.

3. Total transform versus strict transform
Let Wy = A} = Spec(Q[x1, 2, x3]) and consider the curve C' defined by
I(C) =< w1, wow3 + 25 + 25 > .

Set Wy RLE W1 the quadratic transformation at the origin, H C W; the ex-
ceptional divisor, and C the strict transform of C'. This defines an embedded
desingularization of C, in the usual sense, since both (i) and (ii) of Theorem 2.2
hold.

A) (On condition 2.2 (4ii)). Since the ideal Z(C') has order 1 at the center of the
quadratic transformation, the total transform of Z(C'), namely Z(C)Oyw,, can be
factored as a product, Z(C)Ow, = Z(H)'J; for some coherent ideal J; C Oy,
which does not vanish along H.

Note that Z(C) is a primary component of J;. However, J; & Z(C1), and
hence Theorem 2.2(iii) does not hold. To see why, it is convenient to express
both ideals in terms of conductors: By definition,

J1=(Z(C)Ow, : Z(H)").
On the other hand, the ideal of the strict transform is
Z(C1) = Ug>0(Z(C)Ow, : Z(H)F),
or, in other words, Z(C;) = (Z(C)Ow, : Z(H)N) for N large enough, since
(Z(C)Ow, : Z(H)*) C (Z(C)Ow, : Z(H)**1).

In this example H ~ Pé and C; cuts Pé transversally at two different points.
Let L C P2 be the line defined by these two points, and let Z(L) C Oy, be the
ideal of L(C W7). Here

J1 = (Z(C)Ow, : I(H)) G Z(C1) = (Z(C)Ow, : Z(H)?).
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In fact, looking at a suitable affine chart it follows that Z(L) is a primary com-
ponent of Jq, and (of course), not of Z(C4). Therefore (iii) of Theorem 2.2 does
not hold for the embedded desingularization defined by II.

In Hironaka’s line of proof the centers of monoidal transformations are always
included in the strict transform of the scheme. In the case of our singular curve,
the first monoidal transformation must be the one we have defined above, and
any other center will have dimension zero. Now Z(L) is a primary component of
J1 supported on L, which has dimension 1; so we will never eliminate Z(L) by
blowing up closed points; hence (iii) will never hold for any desingularization of
this curve defined as in Hironaka’s proof.

In order to achieve (iii) one must blow up L (or some strict transform of
L). Using the new algorithm that we propose, we first consider the quadratic
transformation II : W; — W, and then we blow-up at L. Since L C H, the
first isomorphism in (i) is preserved after such monoidal transformation.

B) (On a question of complexity). We think of a subscheme X of a smooth
scheme W at least locally, as a finite number of equations defining the ideal
Z(X). Fix X € W. An algorithm of desingularization should provide us with:

1. A sequence of monoidal transformations over the smooth scheme W, say
Wy, — Wy_1 — ... — Wp — Wy = W so that conditions (i) and (ii)
Theorem 2.2 hold for the strict transform of X at W,,.

2. A pattern of manipulation of equations defining X, so as to obtain, at least
locally at an open covering of W,,, equations defining the strict transform
of X, X, at W,,.

So (2) indicates how the original equations defining X have to be treated at an
affine open subset of W,, in order to obtain local equations defining X,,. While
this is very complicated in Hironaka’s line of proof, here it is a direct consequence
of (iii). In fact, for algorithms that follow Hironaka’s proof, for both (1) and
(2) one must consider the strict transform of the ideal of the subscheme at each
monoidal transformation. In that setting one has to choose a standard basis of
the ideal, which is a system of generators of the ideal of the subscheme, but such
choice of generators must be changed if the maximum Hilbert Samuel invariant
drops in the sequence of monoidal transformations. All of these complications are
avoided in our new proof, which simplifies both (1) and (2). The simplifications
attained in (2) are illustrated by the following corollary of Theorem 2.2:

Corollary 3.1. Under the assumptions and with the notation of Theorem 2.2,
if X is a complete intersection then, the resolution of Ox in terms of free Oy -
modules,

— AN — Ao — L

induces the resolution of Ow,,

= LTEAR O — LTFTARL Oy —
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in terms of locally free Oy, —modules.

Sketch of the proof. Assume that W is affine, and that X C W is defined by
the complete intersection ideal I(X) =< fi, fa,..., fr >C Ow. A resolution of
Ox by free Oy —modules can be defined in terms of a Koszul complex. This
complex is defined by taking the tensor product of

C; = 0— Ow.e; — Oy — 0,

where each such complex C; is defined by e; — f;, fori=1,...,7.
In the setting of 2.2 we have that Oy C Oy, and that f; € £L C Ow,. In
particular each C; induces a complex

C =0—Lte — Ow, — 0.

12

Finally note that Theorem 2.2 (iii) says that the tensor product of these exact
sequences defines a resolution of O in terms of locally free Oy, -modules. [J

The curve of our example C' C W = A% is a complete intersection; note that
the result in this corollary will never hold for a desingularization of this curve
given within Hironaka’s line of proof, since condition (iii) of our Theorem will
never hold as seen in A).

4. Basic objects

To achieve our results we use the notions of basic objects and resolution of
basic objects (cf. [EV2]) (Definitions 4.1 and 4.2). Both Embedded Desingular-
ization and Strong Principalization of Ideals can be obtained from a resolution
of suitably defined basic objects.

Definition 4.1. A basic object is a triple that consists of a pair (W, F), an ideal
J C Ow such that (J)¢ # 0 for any £ € W, and a positive integer b. It is denoted
by (W, (J,b), E). The singular locus of the basic object is the closed set:

Sing(J;b) = {£ € W [v;(§) = b} CW.

If the dimension of W is d, then (W, (J,b), E) is said to be a d—dimensional basic
object. A regular closed subscheme Y C W is permissible for (W, (J,b), E) if Y is
permissible for the pair (W, E) and Y C Sing(J,b). We define a transformation
of basic objects in the following way: Consider the blowing-up , W «— Wy, with
center Y (having normal crossings with £ = {Hy, ..., H,}), and denote by H; C
W1 the exceptional hypersurface. This blowing-up induces a transformation of
pairs (W, E) «— (W3, Eq) as in 2.1. If Y is irreducible and ¢; is the order of J
at the generic point of Y (i.e. v7(Y) = ¢ > b), then there is an ideal J; C Oy,
such that

(4.1.1) JOw, = I(H1)* J;.
We define the ideal
(4.1.2) Jy=I(Hy)" T,
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and set (W, (J,b),E) «— (W1, (J1,b), E1) as the transformation of the basic
object (W, (J,b), E).

Note here that J; does not vanish along H; (i.e. H; ;Cé V(J1)). In general,
given a sequence of transformations

(4.1.3) (Wo, (Jo,b), Eo) «— -+ «— (Wi, (Jr,b), Ex) ,
we obtain, for each index i, 0 < ¢ < k, expressions

(4.1.4) Ji =I(Hpy)™ - I(Hp )" J;

and

(4.1.5) JoOw, = I(Hy 1) - I(Hpy3) 5,
with ¢; > a; > 0, in other words,

(4.1.6) JoOw, = L;J; = L;J;

for some invertible ideals L;, L;.

Definition 4.2. Sequence 4.1.3 is a resolution of (Wy,(Jo,b),Ep) if

So if (4.1.3) is a resolution, then W) — Wy defines an isomorphism over
Wo\V(Jy), and JoOw, = LiJi, where Ly, is an invertible sheaf of ideals and Jj
has no points of order > b (in Wy). In particular Strong Principalization follows
by taking a resolution of a basic object with b = 1 and Jy = I, (where I is as in
Definition 2.3) .

A resolution of basic objects is usually approached by means of an algorithm
of resolution of basic objects. To prove Theorem 2.2 we modify the algorithm of
resolution of basic objects which appears in [EV1].

5. On the proof of Theorem 2.2
5.1. Let (Wy, Ey = 0) and X be as in Theorem 2.2. Assume that, for some

index k£ < r we have defined a sequence

by setting W; «— W,11 a monoidal transformation with center Y;. For each
such index i, let [Sing(X)], (C W;), be the strict transform of Sing(X) C W, If
we assume that each center Y; C [Sing(X)]; Un,er, Hj, it will then follow that
there is an isomorphism of open sets:
Vie := Wi \ ([Sing(X)]k U (UHjeEkHj)) ~ V= Wy \ Sing(X).
We will also obtain an expression for the total transform
I(X)Ow, = Li.Jy,

where L, = Z(Hl)al ..+ I(Hg)*, with a; > 0. This expression is unique if we
require that J; do not vanish along any H;. Let X C W} be the strict transform
of X. Note that Ty = (Z(X)Ow, : Ly), whereas Z(X},) = (Z(X)Ow, : L, ) for



86 A. BRAVO AND O. VILLAMAYOR U.

N large enough, so clearly J; C Z(Xj). On the other hand J;, = Z(X},) = Z(X)
when restricted to the open subset Vi (~ V) of Wi.

Assume, for simplicity, that Reg(X) = X \ Sing(X) C V; is of pure codi-
mension e. Via the isomorphism of open subsets Vi, ~ Vi we see that at any
point y € Vj, either (Ji), = Ow, 4, or there is a regular system of parameters
{z1,... , 24} C Ow, 4 so that (Ji), = Z((X%))y =< x1,...,x >. This gives an
idea of what J looks like locally at points of Vi C Wj. To deal with all points
of W}, we need an additional definition:

Definition 5.2. Let (W, E) be a pair, and let I C Oy be a sheaf of ideals.
1) We shall say that I has relative local codimension > a at a point y € W, if

either I, = O, or there is a regular system of parameters {x1,2s,... ,2,} at
Ow,y, such that:
i <z,29,...,2 >C I, C Ow,, and

ii. any hypersurface H; € FE containing the point y has a local equation
I(HZ) =<4 >C OWJ/, with ij > a.
2) We shall say that I has relative codimension > a in (W, E), if both conditions
in 1) hold at every point y € W.

Remark 5.3. Note that if I is of relative codimension > a, then the closed
subscheme V(1) is in fact of codimension > a in W. Note also that any ideal I
is of relative codimension > 0 since such condition is empty.

Let X be under the assumptions of Theorem 2.2. Let us first consider the
case when X is of pure codimension e. Then the local codimension of Jy = I(X)
at any point of Vj = Wy — Sing(X) is e. Therefore one can check that Jy will
be of relative codimension > a in (Wy, Jy) for some a < e. Now Theorem 2.2
follows from Lemma 5.4 and 5.5.

Lemma 5.4. Assume that sequence 5.1.1 is defined so that Z(X)Ow, = LiJ
and the relative codimension of Jy in (Wi, Ey) is > a. Let Uy C Wy be a
non empty open set such that for any y € Uy, the local codimension of (jk)y 18
> a+ 1. Then we can define an enlargement of the sequence 5.1.1,

(5.4.1) (W, Eg) «— ... «— (Wn, En)
so that:
(i) Z(X)Ow,y = LyJn and Jn has relative codimension > a + 1.

(ii) The birational morphism Wy «—— Wy defines an isomorphism over the
open set U, C W.

Sketch of the proof. Fix a point y € V(J), and set < z1,... 24 >C (Ji)y
as in Definition 5.2. We replace W} by an open neighborhood of y so that
V¢ = V(< z1,...,84 >) C Wy is smooth of codimension a. We attach to
(W, (Jk, 1), Ei) a new basic object

(542) (Vkav (C(Jk)7 l)aEk:)a
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where C(J) = JrOye, and E}, are the induced hypersurfaces in V2, as in
Definition 5.2 (ii).

We next apply [EV1, Proposition 4.15] with b = 1, to show that every sequence
of transformations

(5‘4'3) (Vkaa (C(Jk)7 1)7Ek) A (Vﬁ], (C(JN)7 1)’FN)7
induces a sequence
(5.4.4) (Wi, (Jg, 1), Eg) «— -+ — (Wn, (Jn, 1), EN),

and that Sing(C(J;), 1) = Sing(J;, 1) (see [EV2, Definition 9.3] for the notion of
coefficient ideal). In particular, a resolution of (C'(Jx), 1) induces a resolution of
(Jg, 1).

Functions w—ord, ([EV1, 5.19]) and n. ([EV1, 6.17]) are defined at the closed
set Sing(C(J;),1) = Sing(J;, 1), and these functions globalize because they are
independent of all choice (of the neighborhood, of the point, etc). At a point
y € U, NV (J}y), we observe that (w — ord®(y),n*(y)) = (1,0). We assume that
sequence (5.4.3) is defined by the first N steps of the constructive resolution,
where N is the least index for which the maximum value of (w — ordY,nl) is
(1,0). Weset C(J)y = L'y -C(J)y as in 5.1. We argue now as in [EV1, 6.16.1]
by blowing-up smooth centers of pure codimension a + 1 in Wy (codimension
1in V§). We may assume that C(J)y = C(J)y. This last step amounts to
blowing-up I(L) in the case of our example (see Section 3 A)). We finally check
in this case that the induced sequence (5.4.4) fulfills the requirements of the

lemma. O

5.5. How does Theorem 2.2 follow from Lemma 5.4 7 Assume that
the sequence of transformations in (5.4.1) can be defined so that we obtain a
factorization of the total transform Z(X)Oy, = LiJx, where J}, is of relative
local codimension > e. We will first make some elementary geometric remarks
on the closed set V(J) C W:

(a) V(J) has local codimension > e at any point. Let
VJg)=FU...UFUC 1 U...UCy,

be the union of irreducible components (each of codimension at least e
in Wy), where the F; are those components of codimension e. Set F =
FU...UF.
(b) Each component Fj, is a smooth and connected component of V' (Jy).
(c) V(Ji)NVi, = FNV,, =~ X \ Sing(X) (V4 and Vj as in 5.1).
Conditions (a) and (b) can be checked from Definition 5.2. Condition (c¢) will
follow because we will define the sequences (5.1.1) and (5.4.1) so that Vi ~ V.
If we assume that X is of pure codimension e, then (b) and Definition 5.2
assert that:

(d) If X C Wy denotes the strict transform of X, then X = F; U...U Fy
(I’ <1) is a disjoint union of closed regular sets.
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Condition (2) in Definition 5.2 asserts that conditions (i) and (ii) of Theorem
2.2 hold for Wj, — Wj. Now by (d) above, we conclude:

(e) Forany y € X = F4 U...UFy,
(J1)y = (Z(Xk))y C Owyy -

In fact, we know that I(X}y), is a primary component of (J),, thus (Jj), C
(Z(X}))y; if this inclusion were proper, then V(.J;) would have codimension > e
locally at y (but y € F C V(Ji)). Note that (e) is saying that condition (iii) of
Theorem 2.2 holds locally at each point in F} U...U Fyr.

Since V (Jy) is a disjoint union of F1U...UF,, and Fy 1 U.. .UFUC U. . .UC),,
we can express Jj as a product of two ideals, Jj = [Ag]1 - [Ak]2, so that

V([Akl1) = F1U...UFp and V([Agl2) = Frpa U...UFUCLU...UC,,.

Note finally that V ([Ag]2) C Wi \ Vi. In case X is of pure codimension e, then
(iii) of Theorem 2.2 is finally achieved by setting

(Wk, Eg) «— ... — (W, E})

so as to define a principalization of [Ax]s C Ow,. The non-pure-dimensional
case follows in the same fashion.
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