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ON CERTAIN ELEMENTARY TRILINEAR OPERATORS

Michael Christ

1. Introduction

Consider the family of multilinear operators, acting on locally integrable func-
tions fj defined in Rd by

T (f1, . . . , fm)(x) =
∫
|t|≤1

m∏
j=1

fj(Sj(x, t)) dt ,(1)

where the Sj : Rd+d �→ Rd are surjective linear mappings. In this paper we
focus primarily on the trilinear case m = 3. Writing S0(x, t) ≡ x, we exclude
degenerate cases by assuming always that for any two indices i �= j, the mapping
(x, t) �→ (Si(x, t), Sj(x, t)) is invertible; in that case we say that {Sj : 0 ≤ j ≤ 3}
is nondegenerate.

Under these hypotheses, for m = 3, T (F ) is well-defined as a measurable
function of x ∈ Rd, for all F = (f1, f2, f3) belonging locally to Lp ⊗ Lp ⊗ Lp,
provided that p ≥ 3/2. Indeed, it follows directly from Fubini’s theorem that T
maps L1 ⊗L1 ⊗L∞ to L1, and L1 ⊗L∞ ⊗L∞ to L∞, and that the same holds
if the roles of the functions fj are interchanged in an arbitrary way. Multilinear
interpolation then yields the conclusion that T maps Lp⊗Lp⊗Lp to Lq, whenever
1 + q−1 = 3p−1 and 3/2 ≤ p ≤ 3.

Our main result specifies which trilinear expressions (1) are well defined on
Lp ⊗Lp ⊗Lp for some p < 3/2; this turns out to be equivalent to the extension
of Lp ⊗ Lp ⊗ Lp �→ Lq inequalities below p = 3/2. In this range, T (F ) will fail
to be locally integrable for some F , and the natural conclusion to seek is that it
should belong to Lq for some exponent q strictly less than one. The case q < 1
is more subtle than q ≥ 1, and has Diophantine aspects. Such subtleties arise
neither for linear operators, nor for the bilinear case, m = 2, which amounts to
ordinary convolution after a change of variables; L1 ⊗ L1 is mapped to L1. We
will comment briefly on the case m > 3, which presents further complications
and is not yet resolved.

Standard arguments fail to apply when q < 1. For instance, since Lq is
not locally convex, one cannot dualize to convert the problem to estimation
of a multilinear scalar-valued form I(f0, f1, f2, f3) =

∫
T (f1, f2, f3)(x) f0(x) dx;
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rearrangement inequalities such as Theorem 3.8 of [11] are thus of no use here.
Indeed, we will see that in opposition to the behavior of multilinear forms I,
symmetric nondecreasing functions are far from being extremal for multilinear
operators (1).

This problem was posed by Kenig and Stein [8], who analyzed more singular
operators of fractional integral type, but whose analysis relied substantially on
inequalities for less singular operators such as (1). Their results included global
estimates in Lq for some q < 1, but they worked in a range of exponents p
for which Lp ⊗ · · · ⊗ Lp is mapped to L1

loc, as is never the case for (1) when
m = 3, p < 3/2. Overlapping results were obtained by Grafakos and Kalton [3].

A second motivation was the work of Lacey and Thiele [9, 10] on a still
more singular operator, the bilinear Hilbert transform; their investigations have
to date left open the question of boundedness when the target exponent q is
≤ 2/3. Moreover, very little is known concerning trilinear analogues such as∫

R
f(x − t)g(x + t)h(x − θt) t−1 dt. Unfortunately, our analysis seems not to be

directly relevant to either of those issues. A final motivation is that our analysis
makes strong contact with both recent [1, 7] and ancient [6] investigations of the
Kakeya problem.

Definition. Suppose that {Sj} is nondegenerate. The collection of linear map-
pings {Sj : 0 ≤ j ≤ 3} is said to be rationally commensurate if there exist linear
automorphisms hj of Rd such that the vector subspace of endomorphisms of R2

generated by Q-linear combinations of {hj ◦ Sj : 0 ≤ j ≤ 3} has dimension two
over Q.

Theorem 1. Suppose that {Sj} is nondegenerate. If {Sj} is rationally com-
mensurate, then there exists p < 3/2 such that the trilinear operator∫

Rd

3∏
j=1

fj(Sj(x, t)) dt

maps Lp ⊗ Lp ⊗ Lp boundedly to Lq, where 1 + q−1 = 3p−1.
If on the other hand {Sj} is not rationally commensurate, then for any p <

3/2, there exist nonnegative functions fj ∈ Lp and a set E ⊂ Rd of positive
Lebesgue measure such that T (f1, f2, f3)(x) = +∞ for all x ∈ E.

Given any p < 3/2, there exist rationally commensurate {Sj}, nonnegative
functions fj ∈ Lp, and a set E as above, such that for all x ∈ E,
T (f1, f2, f3)(x) = +∞.

For any {Sj} there exist p > 1, functions fj ∈ Lp, and a set E as above, such
that T (f1, f2, f3)(x) = +∞ for all x ∈ E.

The integral defining the operator is taken over all of Rd in the first conclusion,
but over a bounded region in the other statements.

At least two interesting questions remain unresolved. Firstly, what is the
optimal range of exponents p for each rationally commensurate {Sj}? Secondly,
what is the situation for multilinear operators of higher order? Although the
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trilinear analysis settles many higher order cases, the generic case remains open;
see §7 for some discussion. To obtain sharper bounds for certain higher-order
operators might lead to improved estimates on the Kakeya problem [7].

The first and third parts of Theorem 1 may be equivalently reformulated in
a discrete setting; this is carried out in §5. We will discuss the one-dimensional
case first, leaving the simple modification for d > 1 to §6.

2. The irrational case

We begin with the one-dimensional case

T (f1, f2, f3)(x) =
∫ 1

−1

3∏
j=1

fj(νj · (x, t)) dt ,(2)

where the νj ∈ R2 are nonzero vectors, ν0 = (1, 0), (x, t) ∈ R2, and no two
elements of the set {νj : 0 ≤ j ≤ 3} are linearly dependent.

Simple symmetries can be used to reduce the multilinear operator T to a
canonical form. One type of symmetry is to replace fj by f̃j(s) = fj(λjs) for
each j, with λj �= 0. t may be replaced by any linear combination t̃ of (x, t), so
long as the transformation (x, t) �→ (x, t̃) is nonsingular. And x may be replaced
by λ0x. By choosing λ1, λ2 so that (λ1ν1 + λ2ν2) · (x, t) = 2x, then setting
t̃ = (λ1ν1 −λ2ν2) · (x, t), and finally introducing λ3 as needed, we may reduce to
T (F ) =

∫
f1(x + t)f2(x− t)f3(x− θt) dt for some parameter θ ∈ R\{0,−1,+1},

or to
∫

f1(x + t)f2(x − t)f3(t) dt.
Such transformations may alter the endpoints ±1 of the interval of integration,

but it is easily verified that no such alteration has any effect on the boundedness
of the operator. Moreover, the notion of rational commensurability is invariant
under such transformations. The operator

∫
f1(x+t)f2(x−t)f3(t) dt corresponds

to a rationally commensurate set of vectors νj , while
∫

f1(x + t)f2(x− t)f3(x−
θt) dt corresponds to a rationally commensurate set if and only if θ ∈ Q.

Let θ be irrational, and consider Tθ(f, g, h)(x) =
∫ 1

−1
f(x + t)g(x − t)h(x −

θt) dt. Then (see Theorem 185 of [4]) the continued fraction expansion of (1 +
θ)/(1 − θ) generates sequences {pn}, {qn} of integers tending to ∞, such that
pn, qn are relatively prime for each n, and so that∣∣∣∣1 + θ

1 − θ
− pn

qn

∣∣∣∣ <
1
q2
n

.

The exponent 2 on the right-hand side will be essential to the construction.
Henceforth we drop the subscript n, writing simply p, q; all assertions are to be
uniform in n.

Set N = q and δ = C1N
−2, where C1 is a sufficiently small constant. Thus

N → ∞ as n → ∞.
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Let f, g, h respectively be the characteristic functions of the following sets
F, G, H:

F =
p⋃

j=1

{x : |x − jp−1| < δ},

G =
q⋃

k=1

{|x − kq−1| < δ},

H =
p+q⋃
l=1

{|x − ly| < C2δ},

where y = (1 − θ)/2q, and C2 is a large constant to be chosen later. Thus
f =

∑p
j=1 fj , where each fj is the characteristic function of the j-th component

interval of F ; likewise g =
∑

gk and h =
∑

hl.
Since N → ∞ and N2δ ∼ 1, Nδ → 0 as N → ∞. Each of our three functions

f, g, h has Lp norm ∼ (Nδ)1/p ∼ N−1/p.
Observe that Tθ(fj , gk, 1) has size ∼ δ on the interval of length δ centered at

(jp−1 + kq−1)/2, and is supported on the concentric interval with length 4δ.
We claim two things. First, the p · q functions Tθ(fj , gk, 1) have pairwise

disjoint supports1. This implies that Tθ(f, g, 1) ∼ δ at every point of a set EN

of measure � N2δ ∼ 1. Moreover, the sets EN are subsets of a fixed compact
subset of R, independent of N .

It is convenient to modify the definition of Tθ by replacing the limits of in-
tegration ±1 by ±M for a large but fixed constant M ; by scaling, it suffices
to prove the stated result for this operator. The second claim is then that
Tθ(f, g, h) ≡ Tθ(f, g, 1), provided M is sufficiently large. Thus

Tθ(f, g, h)(x)/‖f‖p‖g‖p‖h‖p � δ(Nδ)−3/p ∼ N
3
p−2

for all x ∈ EN , for all N . If p < 3/2 then this exponent 3
p − 2 is positive.

To verify the first claim we need only note that the points jp−1 + kq−1 are
separated by more than 8δ for distinct pairs of indices j, k. This holds because
p, q are relatively prime, whence |ap−1+bq−1| ≥ (pq)−1 ∼ N−2 whenever (a, b) �=
(0, 0).

To verify the second claim it suffices to show that there exists C2 such that
whenever x + t = jp−1 and x − t = kq−1, there exists an integer l such that
|(x − θt) − ly| ≤ C2δ. Now

(x − θt) = 1
2 [(1 + θ)jp−1 + (1 − θ)kq−1]

= 1
2 (1 − θ)(j + k)q−1 + jp−1 · O(N−2) = (j + k)y + O(N−2),

so it suffices to set l = j + k.

1Since there are ∼ N2 such functions, each of whose supports is an interval of length ∼ δ,
and since these are all supported in a fixed set independent of n, a necessary condition for this
disjointness is that N2δ � 1; that explains the choice δ ∼ N−2.
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To complete the proof is now a straightforward matter. Abusing notation, we
let {Nν} be a subsequence of the sequence {Nn} constructed above, satisfying
Nν ≥ 2ν . Denote by fν , gν , hν the associated functions constructed above,
and write Eν for the associated sets on which Tθ(fν , gν , hν) is large. Fix p <
3/2, and choose a sequence {cν} of positive constants such that

∑
ν cν < ∞,

but cν2ν( 1
p− 2

3 ) → ∞. Define f =
∑

ν cνN
1/p
ν fν , g =

∑
ν cνN

1/p
ν gν , and h =∑

ν cνN
1/p
ν hν . Thus f, g, h ∈ Lp. Moreover, Tθ(f, g, h) ≥ ∑

ν c3
νTθ(fν , gν , hν),

so that Tθ(f, g, h)(x) ≥ c3
ν2ν( 3

p−2) for all x ∈ Eν , for every ν. Since all the sets
Eν are contained in a fixed compact set, and their measures are bounded below
by a uniform positive constant, the set of all x belonging to infinitely many sets
Eν has positive measure. Since c3

ν2ν( 3
p−2) → ∞, the proof is complete.

3. The rationally commensurate case

The proof for the rationally commensurate case is an adaptation from the
discrete to the continuum setting of an argument of Katz and Tao [7], who
sharpened an estimate of Bourgain [1]. Their result directly rules out the ex-
istence of any examples resembling those constructed in the preceding section,
but does not seem to directly imply any positive Lp inequalities. Instead, we
will deduce from the method of proof in [7] continuum analogues of variants of
its conclusion2.

We continue to assume that d = 1. It suffices to show that there exist δ ∈ (0, 1)
and 0 < r1, r2, s, depending on {νj} and satisfying r1 + r2 + s = 2 − δ, such
that for any measurable sets A, B, C ⊂ R and any λ > 0, the set E = {x :
T (χA, χB , χC)(x) > λ} satisfies

λ1−δ|E| � |A|r1 |B|r2 |C|s.(3)

Indeed, T maps L2 ⊗ L2 ⊗ L1 boundedly to L1, and so there is always the
relatively trivial bound

λ|E| � min
(|A|1/2|B|1/2|C|1, |A|1/2|C|1/2|B|1, |B|1/2|C|1/2|A|1).(4)

Raising (3) to a power θ ∈ [0, 1] and multiplying by any powers, summing to
1− θ, of the three permutations of (4), produces another inequality of the form
(3). Choosing the powers appropriately yields an inequality (3) with r1 = r2 = s,
albeit with a smaller δ. Writing it as a restricted weak type estimate λq0 |E| ≤
(|A| · |B| · |C|)

q0
p0 , we find that q0 < 1 and 3q0

p0
= 1 + q0, whence p0 < 3/2. From

multilinear interpolation [5, 8] we then conclude easily that for any p > p0, T
maps the threefold tensor product of Lp boundedly to Lq where 3

p = 1 + 1
q .

In an attempt to make the exposition more easily digestible, we will discuss the
special case T (f, g, h)(x) =

∫ ∞
−∞ f(x + t)g(x− t)h(t) dt first. Here the argument

2The conclusion of Katz, Tao, and Bourgain concerns the cardinality of a certain image
set; the variant we require also takes into account cardinalities of sets of preimages. Compare
Theorem 2 with its corollary, below.
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is based rather directly on [7]. By replacing B by −B, C by 1
2C = {s/2 : s ∈ C},

and E by 1
2E, we may arrange that for each x ∈ E,

|{t ∈ C : t + x ∈ 2A and t − x ∈ 2B}| ≥ λ.(5)

Let

G̃ = {(a, b) ∈ A × B : a + b ∈ C and a − b ∈ E} .(6)

Select a measurable subset G ⊂ G̃ such that for each x ∈ E, |{(a, b) ∈ G :
a − b = x}| = λ, and denote the latter set by Gx. Here the measure in question
is one-dimensional Lebesgue measure on a line, determined by x, in R2. From
this and the definition of G̃, it follows that

|G| = λ|E|.(7)

Define

V = {(a, b, b′) ∈ R3 : (a, b) ∈ G and (a, b′) ∈ G}.(8)

Then

|V | ≥ |G|2/|A|.(9)

Indeed, consider the map π : G �→ A defined by π(a, b) = a. Set ρ(a) = |π−1{a}|,
for a ∈ A, where | · | denotes one-dimensional measure on the fibers. Then

|V | =
∫

A

ρ(a)2 da ≥ |A|−1(
∫

A

ρ)2 = |A|−1|G|2.(10)

Define S ⊂ V 4 to be the set of all points (v0, v1, v2, v3) satisfying all of the
following relations3

a0 + b0 = a1 + b1, a0 + b′0 = a1 + b′1,

b1 = b2, b′1 = b′2,

a2 + b2 = a3 + b3, b′2 = b′3.

S is contained in a linear subspace of R12 of dimension 6. As coordinates for S,
we use V × A × B2 � (v0, a2, b3, b

′
3) = (a0, b0, b

′
0, a2, b3, b

′
3). It follows from the

discussion in [7] that all other coordinates aj , bj , b
′
j of any point of S may be

determined from these six coordinates by various linear relations. Thus |S| �
|A| · |B|2 · |V |.

By reasoning similar to that in Lemma 2.1 of [7] and the above discussion of
(9), we find that

|S| � |V |4/|B|3|C|3 .(11)

The details are left to the reader.

3There is a typographical error in the last equation of formula (15) in [7], which should
read b′1 = b′2.
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The key point of the proof is that a special algebraic relation holds, allowing
a sharpening of the upper bound on |S|, as follows. It is shown in [7] that if
(v0, v1, v2, v3) = s ∈ S, then

a3 − b′3 = a2 + b0 − b′0 − b3.(12)

Thus once the coordinates a2, b0, b
′
0, b3 of a point s of S are known, a3−b′3 can be

computed. But since ϕ(s) = (a3, b
′
3) belongs to G by construction, ϕ(s) ∈ Gx,

where x = a2 + b0 − b′0 − b3. Projecting ϕ(v) onto its second coordinate, we
conclude that for any (a2, b0, b

′
0, b3), for any s ∈ S sharing these four coordinates,

the coordinate b′3 of s must belong to the projection of Gx onto the b′3 axis, and
the measure of this projection is ≤ √

2 ·λ. Thus we arrive at the crucial estimate

|S| � λ|A| · |B| · |V | .(13)

Combining (11) with (13), we deduce that

λ|A| · |B| · |V | � |V |4|B|−3|C|−3,(14)

so

|V | � λ1/3|A|1/3|B|4/3|C|.
Since |V | � |G|2/|A|, this yields

|G| � λ1/6|A|2/3|B|2/3|C|1/2.

Since |G| = λ|E|, this can be rewritten as

λ5/6|E| � |A|2/3|B|2/3|C|1/2.(15)

If the roles of A, B, C could be symmetrized, this would then yield λ5/6|E| �
(|A| · |B| · |C|)11/18, which would yield exponents p = 15/11 and q = 5/6 in our
final conclusion. But such a symmetrization does not seem to follow directly
from the above setup, and since there is little reason to believe that p = 15/11 is
optimal, we have not labored to obtain it. Instead, the discussion of (3) yields
a conclusion of the desired form, for all p > 7/5. This concludes the discussion
of the simplest case in which estimates do hold with p < 3/2.

In the general rationally commensurate case, one has nonzero integers m, k
such that c = a + b ∈ C and e = ma + kb ∈ E whenever (a, b) ∈ G̃. Moreover,
(m, k) ∈ Z2 is not a scalar multiple of (1, 1). By replacing e by a constant
multiple, we may assume m, k to be relatively prime. We may also suppose
them to have opposite signs. If for instance both are positive and m > k, then
we interchange the roles of the sets B, C, replace a by ã = −a, and express b, e in
terms of (ã, c) by b = c− a = ã+ c and e = ma+ kb = (k−m)ã+ kc, producing
coefficients with opposite signs. Other cases are similar. Thus we need only
consider the situation where m, k are strictly positive and relatively prime.

Letting L, L′ be nonnegative integers to be chosen below, let V be the set of
all (L+L′ +2)-tuples4 (a0, . . . , aL, b0, . . . , bL′

) such that (ai, bj) ∈ G for all such
i, j ≥ 0. V is a subset of a Euclidean space of dimension L+L′ +2. To estimate

4These superscripts are not exponents.
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the Lebesgue measure of V , define V0 to be the set of all (a, b0, . . . , bL′
) such

that (a, bj) ∈ G for all 0 ≤ j ≤ L′. Consider the Cartesian product V L+1
0 , give

it coordinates (a0, b
0
0, . . . , b

L′
0 ), . . . , (aL, b0

L, . . . , bL′
L ), and regard V as the set of

all points in V L+1
0 satisfying the L(L′ + 1) equations bj

n = bj
n−1 for all j and all

1 ≤ n ≤ L. As in (9), |V0| ≥ |G|L′+1|A|−L′
. Thus

|V | � |V0|L+1|B|−L(L′+1) � |G|(L+1)(L′+1)|A|−L′(L+1)|B|−L(L′+1).(16)

Setting M = L + L′, we define S ⊂ V M+3 to be the set of all (vM+2, . . . , v0)
satisfying certain linear relations. For each 1 ≤ n ≤ M + 2 we will impose
L + L′ + 1 = dim(V ) − 1 linear relations, linking vn to vn−1. For each n =
M +2, M +1, . . . , 3, one of only two types of collections of relations will be used.

Type I:

{
ai

n + bs
n = ai

n−1 + bs
n−1 for all i,

bj
n = bj

n−1 for all j �= s,

where s ≤ L′ is any nonzero index, depending on n. The second type is the
same, but with the roles of the a and b variables interchanged.

Type II:

{
at

n + bj
n = at

n−1 + bj
n−1 for all j,

ai
n = ai

n−1 for all i �= t,

where t ≤ L is any nonzero index, depending on n. Each superscript s, t will be
used in this way exactly once; in aggregate over all 2 ≤ n ≤ M + 2, the Type I
will relations will be used L′ times, and the Type II relations, L times. A useful
consequence of these relations is that for all n,

ai
n − a0

n = ai
n−1 − a0

n−1 and bj
n − b0

n = bj
n−1 − b0

n−1(17)

for all i, j, except for i = t in the Type II case, and for j = s in the Type I case.
The cases n = 2, 1 will be different and will be discussed later.

In order to explain which of the two types of sets of relations is employed
at each step, we begin with the calculation dictating their selection. Suppose
without loss of generality that m < k. Our ultimate goal is an analogue of (12),
expressing ma0

n − kb0
n in terms of (other) coordinates, still to be selected, for S.

The first step in deriving such a representation is to write

[ma0
M+2 − kb0

M+2] = ma0
M+2 + mb1

M+2 − kb0
M+2 − mb1

M+2

= m(a0
M+1 + b1

M+1) − kb0
M+1 − mb1

M+2

= [ma0
M+1 − (k − m)b0

M+1] + m(b1
M+1 − b0

M+1) − mb1
M+2.

This effectively reduces the pair (m, k) to (m, k − m), as will be shown below.
To pass from the first line to the second we have used (a subset of) the Type I
relations, with s = 1.

Since m, k are relatively prime, so are m, k − m. Which of the two types is
used at the next step depends on which of m, k − m is larger. If k − m < m,
we let k̃ = k −m, reverse the roles of the a, b variables, and employ the Type II
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relations, which permit us to write the main term remaining after the preceding
step as

[ma0
M+1 − k̃b0

M+1] = −k̃(a1
M+1 + b0

M+1) + ma0
M+1 + k̃a1

M+1

= −k̃(a1
M + b0

M ) + ma0
M + k̃a1

M+1

= [(m − k̃)a0
M − k̃b0

M ] + k̃(a0
M − a1

M ) + k̃a1
M+1.

The variable a1
M+1 will serve as one of the coordinates for the ambient vector

space in which S sits, as will b1
M+2. From the first step, there remains m(b1

M+1−
b0
M+1), which iequals m(b1

M − b0
M ) by (17). If on the other hand k − m > m,

then we use the Type I relations again.
Thus in the subcase where k − m < m < k, after two steps we have

ma0
M+2 − kb0

M+2 = m̃a0
M − k̃b0

M

modulo a linear combination of two coordinates b1
M+2, a

1
M+1, and modulo a

linear combination of two differences, b1
M − b0

M and a1
M − a0

M . Here m̃, k̃ are
nonnegative, are ≤ m, k, respectively, and at least one of them is positive. If
both are positive, then they are relatively prime, and at least one is strictly less
than m, k, respectively.

This process is repeated until ma0
M+2 − kb0

M+2 equals a multiple of either a0
2

or b0
2, modulo a linear combination of differences bj

2−b0
2 and ai

2−a0
2, and modulo

a linear combination of all the coordinates ai
n, bj

n, with 1 ≤ i ≤ L, 1 ≤ j ≤ L′.
The only change is that the role of the superscript 1 is taken by larger numbers
s, t. This process generates exactly one coordinate variable, either ai

n or bj
n, for

each 3 ≤ n ≤ M + 2 = L + L′ + 2. At each step n, any difference bj
n − b0

n

remaining from the preceding step n + 1 can be expressed as bj
n−1 − b0

n−1, by
(17); such indices j arising after step n + 1 will never equal the index s used in
the Type I relations at step n, so that (17) does apply. Likewise for differences
ai

n − a0
n.

The numbers L, L′ are determined by the condition that upon starting with
n = M + 2 = L + L′ + 2, this procedure reduces ma0

M+2 − kb0
M+2 to a multiple

of a0
2 or b0

2 at n = 2.
Suppose that we are in the subcase where ma0

M+2 − kb0
M+2 equals a multiple

of b0
2 modulo the other terms just described; the case of a0

2 is completely parallel.
Then we link v2 to v1 by imposing the relations bj

2 = bj
1 for all j ≥ 0, and ai

2 = ai
1

for all i ≥ 1. Finally, we link v1 to v0 by a0
1 + bj

1 = a0
0 + bj

0 for all j ≥ 0, and
ai
1 = ai

0 for all i ≥ 1.
In this subcase, as coordinates for the ambient vector space we take for each

step 3 ≤ n ≤ M +2 either some at
n or bs

n, as described above, giving M = L+L′

coordinates. To these we adjoin v0, a
0
2 and b0

M+2. The various other cases and
subcases are similar, and the details are left to the reader. The total number of
coordinates is L + L′ + (L + L′ + 2) + 1 + 1 = 2(L + L′ + 2). Since V L+L′+3 has
dimension (L+L′ +3)(L+L′ +2) and we have imposed (L+L′ +2)(L+L′ +1)
relations, there should indeed be 2(L + L′ + 2) coordinates. We thus have
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a key identity expressing ma0
M+2 − kb0

M+2 as a linear combination of all the
coordinates, excluding b0

M+2 itself, modulo the relations.
Assuming that these coordinate variables do form a valid coordinate system,

we find by calculations analogous to those in the special case (m, k) = (1, 1)
that |S| � |V |L+L′+3|A|−r1 |B|−r2 |C|−r3 for certain positive integer exponents rl

whose sum r1+r2+r3 equals the total number of relations, (L+L′+2)(L+L′+1).
There is also a lower bound, |S| � λ|A|s|B|s′ |V | where s + s′ = L + L′ + 1.
Together with (16), these lead to an inequality of the form (3), as desired.

It remains to verify that any of the variables ai
n, bj

n can be expressed as an
appropriate linear combination of the 2(L+L′+2) coordinates described, modulo
the relations imposed. b0

M+2 is a coordinate, and a0
M+2 can be calculated in terms

of coordinates, as a consequence of the key identity. We claim, by descending
induction on n = M +1, M, . . . , 2, that a0

n, b0
n may each be expressed as a linear

combination of coordinates and of differences (bj
n − b0

n), (ai
n −a0

n). Indeed, there
is for each n a formula of the general type m̃a0

n+1− k̃b0
n+1 = m′a0

n−k′b0
n modulo

coordinates and differences (bj
n−b0

n), (ai
n−bi

n), along with one of the two relations
b0
n+1 = b0

n or a0
n+1 = a0

n. Moreover, (17) always gives ai
n − a0

n = ai
n−1 − a0

n−1

and bj
n − b0

n = bj
n−1 − b0

n−1 for all i, j arising at step n.
Now consider n = 2. a0

2 is, in this subcase, a coordinate. We have derived an
equation expressing b0

2 in terms of coordinates and of differences bj
2− b0

2, ai
2−a0

2,
with i, j ≥ 1. The assumed relations linking v2 to v1 and thence to v0 imply
that bj

2 − b0
2 = bj

0 − b0
0 and ai

2 − a0
2 = ai

0 − a0
0 for i, j ≥ 1, so all the differences

bj
2 − b0

2, a
i
2 −a0

2 can be expressed ultimately in terms of coordinates. Thus for all
n ≥ 2, each a0

n, b0
n may be expressed as a linear combination of coordinates. b0

1

equals b0
2, which has already been captured, and the relation a0

1 + b0
1 = a0

0 + b0
0

then determines a0
1; of course, a0

0, b
0
0 are coordinates. With this information in

hand, it is straightforward to recover each vn from v0 and from the coordinates
at

n, bs
n by ascending induction on n.

4. The threshold exponent

In the rationally commensurate case, there exists p0 = p0(ν1, ν2, ν3) < 3/2
such that T (F ) is almost everywhere finite whenever each fj ∈ Lp and p > p0.
Here we will show that the threshold p0 can be arbitrarily close to 3/2, via a
construction related to Kahane’s construction [6] of a Kakeya set, and to certain
examples in [7].

Let r, s be any two relatively prime positive integers, and consider the case
where ν1 + ν2 = (1, 0) and r−1ν1 + s−1ν2 = ν3; thus (a, b) ∈ G̃ implies that
a + b ∈ E and r−1a + s−1b ∈ C. Consider the following sets, which depend on
r, s and on a large parameter K. Let A = {∑K

n=1 an(rs)−n +z} where each an ∈
{0, r, 2r, . . . , (s− 1)r} and |z| ≤ 2(rs)−K and likewise B = {∑K

n=1 bn(rs)−n + z}
where each bn ∈ {0, s, 2s, . . . , (r − 1)s} and |z| ≤ 2(rs)−K}. Set C = r−1A +
s−1B. Then |A| ∼ sK(rs)−K = r−K , and likewise |B| ∼ s−K . Finally, any
element of C may be expressed as

∑K
n=1 cn(rs)−n + z where 0 ≤ cn ≤ r + s −
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2 is an integer, and |z| ≤ 4(rs)−K . Thus |C| � (r + s)K(rs)−K . We have
T (χA, χB , χC)(x) � (rs)−K whenever x is within distance (rs)−K of any sum∑K

n=1(inr + jns)(rs)−n with 0 ≤ in < s and 0 ≤ jn < r. Any two such sums
are distinct, so the set of all of them has cardinality (rs)K , and any two such
sums differ by at least (rs)−K . So T (χA, χB , χC)(x) � (rs)−K for all x in a
set whose measure is bounded below by a constant, uniformly in r, s, K. Thus
for any q > 0, the Lq norm of T (χA, χB , χC) is � (rs)−K , uniformly in r, s, K.
A necessary condition for an Lp ⊗ Lp ⊗ Lp �→ Lq inequality, with r, s fixed, is
therefore that

(rs)−K � r−K/ps−K/p(r + s)K/p(rs)−K/p.

Letting K → ∞, we find that a necessary condition is that

1 ≤ r1− 2
p s1− 2

p (r + s)
1
p .

To deduce that p must be arbitrarily close to 3/2, it suffices to choose relatively
prime r, s with s/r arbitrarily close to 1.

As in §2, it is easy to deduce from the same examples that the threshold
exponent p0 for almost everywhere finiteness must satisfy the same restriction.

The final conclusion of Theorem 1 follows from the same construction.

5. Discrete analogues

The following discrete analogue is a descendant of results of Bourgain [1],
and of Katz and Tao [7], and is related to work Gowers [2]. Denote by |S| the
cardinality of any finite set S.

Theorem 2. Suppose that (m, k), (m′, k′) ∈ Z2 and that no two of the vectors
(1, 0), (0, 1), (m, k), (m′, k′) are linearly dependent. Then there exist p < 3/2
and K < ∞, depending only on m, k, m′, k′, such that for any torsion-free
Abelian group G, for any finite subsets A, B, C ⊂ G, the multiplicity function

µ(x) = |{(a, b, c) ∈ A × B × C : c = m′a + k′b and x = ma + kb}|
satisfies for every λ > 0∑

x∈G

µ(x)q ≤ K|A|q/p|B|q/p|C|q/p(18)

where 1 + q−1 = 3p−1.

The relation 1 + q−1 ≤ 3p−1 is necessary in the discrete case, whereas 1 +
q−1 ≥ 3p−1 is necessary in the continuum setting of Theorem 1; for each version,
the case of equality 1 + q−1 = 3p−1 trivially implies the appropriate cases of
inequality.

As noted in [7], whenever (18) holds uniformly for all groups (with 1 + q−1 =
3p−1), it must actually hold with K = 1. This is seen by taking M -fold products
and letting M → ∞.
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Theorem 2 may be deduced from the argument in §3 for the continuous case;
simple changes of variables reduce matters to the case (m′, k′) = (1, 1). Alterna-
tively, it is easy to show directly that either of Theorems 1, 2 implies the other.
For instance, to deduce Theorem 2 from Theorem 1, consider arbitrary finite sets
A, B, C in any torsion-free Abelian group. The subgroup generated by them is
isomorphic to some Zd; any finite subset of Zd can be embedded isomorphically
into Z1 ⊂ R1. The resulting image Ã of A is a collection of points xj ∈ Z1;
define A′ = ∪j [xj − 1, xj + 1]. Define B′, C ′, E′ analogously. The bound for the
Lq norm of T (χA′ , χB′ , χC′) resulting from Theorem 1 can then be converted
into a bound for the discrete analogue of T , applied to A, B, C. The reverse
implication uses a limiting argument, in which a discrete set is approximated by
its δ-neighborhood, and δ → 0. Details are left to the reader.

Corollary. There exists δ > 0, depending only on m, k, such that for any
torsion-free Abelian group G, any positive integer N , and any finite subsets
A, B, C ⊂ G such that |A|, |B|, |C| ≤ N ,

|{ma + kb : (a, b, m′a + k′b) ∈ A × B × C}| ≤ N2−δ.(19)

The case where (m, k) = (1,−1) and (m′, k′) = (1, 1) was treated in [1], and
an improved estimate for δ was obtained in [7]. To deduce the corollary from
the preceding theorem, observe that the exponent 3q

p = 3
3−p is < 2.

6. Higher dimensions

Consider (1) in arbitrary dimension d > 1, in the trilinear case m = 3.
By simple changes of variables, we may reduce to the situation in which E =
{a + Θb : (a, b, a + b) ∈ A × B × C}, where Θ : Rd �→ Rd is a surjective linear
transformation. If Θ is a rational scalar times the identity mapping, then the
analysis of §3 applies without any changes. Alternatively, this case is a corollary
of Theorem 2, by the same limiting argument used to derive Theorem 1 from it
in the one-dimensional case.

For purposes of illustration, consider next the special case where d = 2, and

Θ =
(

0 1
1 0

)
. Define AN = BN = CN = {(j, 0) : 1 ≤ j ≤ 2N}. Then

E ⊃ {(i, j) : 1 ≤ i, j ≤ N}, so |E| ≥ N2 while |AN | = |BN | = |CN | = 2N .
Hence there is no valid bound (19). Nor, in the continuum version, is there
boundedness from Lp ⊗ Lp ⊗ Lp to Lq for some p < 3/2, no matter how close q
may be to zero.

For the Zd analogue, we may argue in general as follows. If Θ is not a scalar
multiple of the identity, then there exists 0 �= v ∈ Rd such that Θ(v) is not
a scalar multiple of v. For the discrete analogue, with A, B, C, E ⊂ Zd, one
can then repeat the discussion of the example two paragraphs above, taking
A = B = C = {jv : 1 ≤ j ≤ 2n}. For Rd, taking δ-neighborhoods of these
sets, and considering the limit δ → 0, we conclude that there is no (Lp)3 �→ Lq

estimate with 1 + q−1 = 3p−1.
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For the continuum situation, we note instead that there exists a linear sub-
space W ⊂ Rd of dimension d−1, such that W +Θ(W ) = Rd. Take B to be the
unit ball in W , and let A, B, C be δ-neighborhoods of B. Then T (χA, χB , χC) is
≥ cδ2 in a fixed ball in Rd, uniformly in δ. If T : (Lp)3 �→ Lq, then δ2 ≤ Cδ3/p,
whence p ≥ 3/2.

Finally, if Θ equals an irrational scalar times the identity, then the construc-
tion of §2 applies; now we take for instance A to be a δ-neighborhood of the set
of all points (j1p−1, . . . , jdp

−1) with 1 ≤ ji ≤ p for all 1 ≤ i ≤ d.

7. Remarks

1. In the rationally commensurate case, we have proved boundedness of∫
Rd

∏
j f(νj · (x, t)) dt, with the integral taken over the whole space Rd. Ho-

mogeneity then forces the relation 1 + q−1 = 3p−1.
2. Homogeneity considerations likewise imply that even when we integrate

only over a bounded region of t as in (1), Lp ⊗Lp ⊗Lp is not mapped to Lq
loc for

any larger value of q (take each fj to be the characteristic function of a small
interval (−δ, δ)). It follows as in [8] and [3] that for all p > p0, Lp ⊗ Lp ⊗ Lp is
mapped to Lq whenever it is mapped to Lq

loc and q ≥ p/3. Thus for all p > p0,
T maps Lp ⊗ Lp ⊗ Lp boundedly to Lq if and only if q−1 ≤ 3p−1 ≤ 1 + q−1.

3. We see no reason to believe that the range of exponents p obtained by our
analysis is optimal.

4. The case of higher-order multinearity presents further complications, al-
though certain partial results follow from our analysis of the trilinear case. Given
finitely many distinct coefficients θj �= ±1, consider the multilinear operator

T (f, g, h1, . . . , hn)(x) =
∫ 1

−1

f(x + t)g(x − t)
n∏

j=1

hj(x − θjt) dt .

It maps the tensor product of n+2 copies of L(n+2)/2 to L1, and we ask whether
it is well-defined on a product of copies of Lp for some p < (n + 2)/2.

If at least one θj is rational, then T is indeed well-defined on Lp ⊗ · · · ⊗ Lp

for some p < (n + 2)/2, as follows from the corresponding result for trilinear
operators. Renaming indices so that j = 1, we know from the trilinear case that
there exist r < 3/2 and q > 0 such that Lr ⊗Lr ⊗Lr ⊗L∞⊗· · ·⊗L∞ is mapped
boundedly to Lq. An interpolation concludes the proof.

To discuss the irrational case, suppose that θ1 /∈ Q. Define the quantities
γj = (1 + θj)/(1 − θj). If all ratios γj/γ1 are rational, then by the construction
in §2, for any p < (n + 2)/2, there exist nonnegative f, g, h1, . . . , hn ∈ Lp for
which T (f, g, h1, . . . )(x) = +∞ for all x in a set of positive measure. More
generally, certain restrictions on the exponents (p, q) may be deduced in this
way, if γ1 is irrational and there exists an infinite sequence qn → ∞ such that
for each n, j there exists pn,j such that |γj− pn,j

qn
| ≤ Cq−2

n , with C independent of
n, j, and such that the ratios pn,j/pn,k are sufficiently close to being independent
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of n as n → ∞. The case in which all θj are irrational, but no such simultaneous
Diophantine approximations exist, remains open.

The examples of §4 have natural analogues for higher-order operators, with
all θj ∈ Q.

5. It is legitimate to ask what might be the optimal estimates of the form T :
Lp1⊗Lp2⊗Lp3 �→ Lq; we have restricted attention to the case of equal exponents
pj primarily for simplicity. Our analysis of the rationally commensurate case
actually yielded inequalities with distinct pj , which we interpolated with trivial
inequalities to make all exponents equal.
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