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ON THE HASSE LOCUS OF A CALABI-YAU FAMILY

Arthur Ogus

A classic theorem of Deuring and Igusa asserts that the Hasse invariant of
a modular family of elliptic curves has at most simple zeroes: in other words,
the supersingular locus is reduced [4]. More generally, one can define the Hasse
invariant for any family of Calabi-Yau varieties, and its zeroes form a well-defined
closed subscheme of the base, called the “Hasse locus.” Since it is locally defined
by a single equation, this subscheme has codimension at most one, and one can
ask, by analogy with the result of Deuring and Igusa, how singular it can be
for modular families. For example, in the moduli space of polarized K3 surfaces
of degree prime to the characteristic, the Hasse locus is a divisor with isolated
singularities. In fact, the singularities are ordinary double points and occur
exactly at the so-called “superspecial” K3 surfaces [8]. In other words, the
Hasse invariant has simple zeroes except for superspecial surfaces, where it has
zeroes of order exactly two. In this note we show that it is reasonable to expect
that for versal Calabi-Yau families of relative dimension n, the Hasse invariant
can vanish to order at most n, and we prove that this is so for hypersurfaces in
projective space of characteristic greater than n. Philosophically, the reason for
this is that the order of vanishing is controlled by the weight of the underlying
variation of Hodge structure, rather than the order of the differential equation
satisfied by the Hasse invariant.

A smooth projective and geometrically connected scheme X/k over a field
k of dimension n is usually said to be a Calabi-Yau variety if Hi(X,OX) van-
ishes for i �= 0, n and dimHn(X,OX) = 1. Serre duality implies that this
condition is equivalent to the assertion that Hi(X, Ωn

X/k) vanishes for i �= 0, n

and H0(X, Ωn
X/k) is one-dimensional. By an n-dimensional “Calabi-Yau fam-

ily” we shall mean a smooth projective morphism f : X → S all of whose fibers
are Calabi-Yau varieties of dimension n. It then follows that Rnf∗(OX) and
f∗(Ωn

X/S) are invertible sheaves on S and that the natural map

f∗f∗(Ωn
X/S) → Ωn

X/S

is an isomorphism. Let L := f∗(Ωn
X/S); there is a canonical duality isomorphism

L−1 ∼= Rnf∗(OX). If S has characteristic p (as we shall assume from now on),
then the absolute Frobenius endomorphism of X defines a map

h : F ∗
S(Rnf∗(OX)) → Rnf∗(OX)(1)
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called the Hasse invariant of X/S; it can be viewed as map L−p ∼= F ∗
S(L−1) → L,

or equivalently as a section of the invertible sheaf Lp−1. A choice of a local basis
for L determines also local bases for L−1 and F ∗

S(L−1); the matrix of h with
respect to these bases is the Hasse-Witt matrix of X/S. The ideal it generates
is independent of the choices, and the corresponding closed subscheme Sh of S
is the Hasse locus of X/S. If the Hasse-Witt matrix is a nonzero divisor, then
Sh is an effective Cartier divisor in S; in any case Sh has codimension at most
one in S. If s is a closed point of Sh and n ∈ N then Sh has multiplicity at least
n if the ideal Ih of Sh in S is contained in mn

s , in which case we say that the
Hasse invariant vanishes to order n.

Let X/S be a Calabi-Yau family, where S is a smooth scheme over an al-
gebraically closed field k. Consider the following conditions (the last of which
depends on the choice of a natural number m):

1. The Hodge spectral sequence of each of the fibers of X/S degenerates at
E1, and all the sheaves Rif∗(Ω

j
X/S) are locally free.

2. The Kodaira-Spencer mapping TS/k → R1f∗(TX/S) is surjective.
3. For a fixed integer m, the natural maps induced by cup product and interior

multiplication

Symj R1f∗(TX/S) ⊗ f∗(Ωn
X/S) → Rjf∗(Ω

n−j
X/S))

are surjective for all j less than m.

Condition (1) is technical in nature; it seems to hold often, but not always [3].
It implies in particular that the Hodge filtration F of the relative De Rham
cohomology Hn

DR(X/S) := Rnf∗(Ω·
X/S) is a filtration by local direct factors,

and that formation of the Hodge sheaves and the Hodge filtration is compatible
with any base change S′ → S. Condition (2) is what we mean by saying that
X/S is “versal”; in the case of polarized K3 surfaces one needs to work with a
primitive version [8]. The last condition is more subtle. It is a nondegeneracy
condition about the “Yukawa coupling.” Since X/S is a Calabi-Yau family, there
are natural isomorphisms

R1f∗(TX/S) ∼= R1f∗ Hom (Ωn
X/S ,Ωn−1

X/S) ∼= Hom (L, R1f∗(Ωn−1
X/S)).

Thus condition (3) is always verified with m = 2. Furthermore, the above
isomorphisms and condition (1) imply that formation of R1f∗(TX/S) commutes
with base change and that condition (3) is compatible with passage to the fibers.
In particular, (3) will hold in some neighborhood of a point s if and only if it
holds for the fiber over s. Let us also note that if (2) holds, (3) is equivalent to
the injectivity of the dual map

Rn−jf∗(Ω
j
X/S) → Γj(R1f∗(TX/S)) ⊗ Rnf∗(OX).

Here we have identified the dual of Symj(TX/S) with the divided power con-
struction Γj(Ω1

X/S), using [1, A10].
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Recall that there is a second spectral sequence of hypercohomology: Ei,j
2 =

Hi(X, Hj), where Hj is the Zariski sheaf associated to the presheaf U �→
HDR(U/S). In characteristic p, this spectral sequence is often called the con-
jugate spectral sequence, and the associated filtration the conjugate filtration.
Thanks to the Cartier isomorphism, (2) above implies that the conjugate spec-
tral sequence degenerates at E2, and that the conjugate filtration Fcon is a
filtration by local direct factors whose formation commutes with base change
(see [5, 2.3.2] and the ensuing discussion).

Theorem 1. Let X/S be a Calabi-Yau family, let i < p be a natural number,
and let s be a closed point of S. Suppose that conditions (1) and (2) hold at s,
and let Xs be the fiber of X/S over s. If Fn

conHDR(Xs/k) ⊆ F iHDR(Xs/k) then
the Hasse invariant of X/S vanishes to order i at s. The converse is true if in
addition condition (3) holds with m = i.

Since (2) trivially holds with m = 1, the following result of Katz [5, 2.3.4.1.7]
is a special case of theorem (1). However, we hasten to point out that Katz’s
result is in fact the fundamental starting point of the proof of (1).

Corollary 2. Let X/S be a Calabi-Yau family satisfying conditions (1)–(3).
Then a closed point s of S lies in the Hasse locus Sh if and only if

Fn
conHDR(Xs/k) ⊆ F 1HDR(Xs/k).

Condition (1) implies that Fn
conHDR(Xs/k) �= 0, and since Fn+1HDR(Xs/k)

vanishes, the theorem also provides a (conditional) bound on the order of van-
ishing of the Hasse invariant.

Corollary 3. Let X/S be a Calabi-Yau family of relative dimension n less than
p satisfying conditions (1)–(3) for all m. Then the order of vanishing of the
Hasse invariant at any closed point of S is less than or equal to n.

Proof of Theorem 1. The theorem can be conveniently explained in terms of
the F-T crystal on S to which X/S gives rise [7]. However, for the sake of
concreteness, we shall give a more direct treatment which does not make explicit
use of this notion or of the crystalline topos.

Let HDR(X/S) or just E denote the relative De Rham cohomology of X/S,
together with its Gauss-Manin connection ∇ and its Hodge and conjugate filtra-
tions F and Fcon. The Hasse invariant of X/S fits into a commutative diagram

F ∗
SHn

DR(X/S)
Φ✲ Hn

DR(X/S)

F ∗
SHn(X,OX)

F ∗
S(π)

❄ h✲ Hn(X,OX)

π

❄
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In fact, Φ annihilates F ∗
SF 1Hn

DR(X/S); since this is the kernel of the surjective
map F ∗

S(π), Φ factors through a map

Φ0 : F ∗
SHn(X,OX) → Hn

DR(X/S).

As Katz proves in [5], the degeneration of the Hodge and conjugate spectral
sequences imply that this map is injective, and its image is precisely the invertible
OS-module Fn

conHn
DR(X/S). Let us recall the argument: if F : X → X ′ is the

relative Frobenius map, then F∗H0 ∼= OX′ , so in the conjugate spectral sequence,

En,0
2 = Hn(X, H0) ∼= Hn(X ′, F∗H0) ∼= Hn(X ′,OX′) ∼= F ∗

SHn(X,OX).

Let η be a local generator for Fn
conHn

DR(X/S), let ζ be a local generator for
Hn(X,OX), and write π(η) = aζ with a ∈ OS . Then a is a local equation for
the Hasse locus. Note that the same formulation works after any base change
T → S.

It is now apparent how to prove corollary 2. By definition, s belongs to
the Hasse-Witt locus if and only h(s) is zero, i.e., if and only if the image
Fn

conHDR(Xs/k) is contained in the kernel F 1HDR(Xs/k) of π.
The theorem is a consequence of Griffiths transversality and the invariance

of Fn
conHDR(X/S) is invariant under the Gauss-Manin connection. Since i < p,

the connection can be used to trivialize E up to order i. More precisely, let Si

denote the spectrum of OS,s/mi+1. Since i+1 ≤ p, the maximal ideal of Si has a
divided power structure in which γp(a) = 0 for every a ∈ m [1, 3.2.4]. In general,
if f and g are two morphisms from a k-scheme T to S which agree modulo a
divided power ideal (I, γ), the connection furnishes a canonical isomorphism

ε(g, f) : g∗E → f∗E.

To make this explicit, let us suppose that there exists a coordinate system
(t1, . . . tm) for S/k, defining an étale map from S to affine m-space. Note that
g∗(ti) − f∗(ti) ∈ I, so that we can take its divided powers. Then, in standard
multi-index notation, ε(g, f) is given by:

ε(g, f)(g∗(e)) =
∑

I

γI(g∗(ti) − f∗(ti))f∗(∇∂I
(e))(2)

for any e ∈ E. Griffiths transversality asserts that the connection moves the
Hodge filtration by at most one step, and so it follows from the formula above
that if e ∈ F iE(X/S), then

ε(g, f)g∗(e) ∈ f∗F iE + If∗F i−1E + I [2]f∗F i−2E + · · · + I [i]f∗E.

Here I [i] means the ith divided power of the ideal I [1, 3.24].
To use these ideas to prove the first statement of the theorem, choose a

local basis η of Hn(X,OX). Then F ∗(η) = (1 ⊗ η) is a horizontal section of
F ∗Hn(X,OX), and Φ(1 ⊗ η) is a horizontal basis of Fn

conHDR(X/S). Let f be
the natural inclusion Si → S and let g : Si → S be the projection Si → Spec k
followed by the inclusion Spec k → S. Assume that Fn

conE(s) ⊆ F iE(s). Then

g∗Fn
conE ⊆ g∗F iE,
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and taking I = m/mi+1 with its divided power structure γ, we find by (2)

ε(g, f)g∗Fn
conE ⊆ ε(g, f)g∗F iE ⊆ f∗F iE + If∗F i−1E + · · · I [i]f∗E

Since η is horizontal η = ε(g, f)g∗η, and so it follows that Fn
conE ⊆ F 1E + I [i]E.

Writing π(η) = aζ as above, we find that a ∈ I [i], and since i < p, I [i] = Ii and
a ∈ mi.

To investigate the converse, we need to express the highest order term in
the equation (2) in terms of the Kodaira-Spencer mapping. Again we give a
self-contained and what we hope is a down-to earth treatment of a result which
already appears in the literature [6], and is widely known in characteristic zero.

The Kodaira-Spencer mapping

ξ : TS/k → End−1 GrF E

is the map induced by the connection, using Griffiths transversality. For any se-
quence (D1, . . . Di) of elements of TS/k, denote by ξ(D1, . . . Di) the composition
ξ(D1) ◦ · · · ξ(Di) ∈ Endi(GrF E). It follows from the integrability of ∇ that this
composition is independent of the ordering of (D1, . . . Di), and hence ξ defines
a map

ξi : Symi(TS/k) → End−i(GrF E),

or, equivalently, an element ξ[i] of Γi(Ω1
S/k)⊗End−i(GrF E). If TS/k is free with

basis (∂1, . . . ∂n) and (ω1, . . . ωn) is the dual basis for Ω1
S/k, then in multi-index

notation

ξ[i] =
∑

|I|=i

ω[I] ⊗ ξi(∂I).(3)

In particular, ξ[1] =
∑

j ωj ⊗ ξ(∂j), and ξ[i] = (ξ1)[i].
If (I, γ) is a PD-ideal of T defining a closed subscheme T ′ of T and if f and

g are maps T → S with the same restriction h to T ′, then for any i and j ≥ 0,
the reduction modulo I [i+1]E + F j−i+1E of ε(g, f) is a map

ξi,j(g, f) : h∗ Grj
F E → I [i]/I [i+1] ⊗ h∗ Grj−i

F E.

Putting these together for various j, we find

ξi(g, f) ∈ I [i]/I [i+1] ⊗ End−i h∗(GrF E).

In fact, ξi(g, f) can be expressed in terms of first-order data as follows. The
maps (g, f) give a map δ : h∗Ω1

S/k → I/I2, and hence one gets a commutative
diagram

h∗Γi(Ω1
S/k)

Γi(δ)✲ Γi(I/I2)

❅
❅

❅
❅

❅
γi(δ)

❘
I [i]/I [i+1]

❄
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Then the key formula is

Lemma 4. With the above notation, ξi(g, f) = (γi(δ) ⊗ id)(h∗(ξ[i])).

To check this formula, suppose that there exists a coordinate system (t1, . . . tm)
for S/k, defining an étale map from S to affine m-space. Let zi := g∗(ti) −
f∗(ti) ∈ I, and let ∂1, . . . ∂m be the basis for TS/k dual to (dt1, . . . dtm). Then δ

sends h∗(dti) to the class zi of zi in I/I [2]. If e ∈ F jE, let us consider a typical
term eI := γI(z)f∗(∇∂I

(e)) of ε(g, f)(f∗(e)). If |I| < i, then it follows from
Griffiths transversality that eI belongs to g∗F j−i+1E, and if |I| > i, eI belongs
to I [i+1]E. If |I| = i, the image of f∗(∇∂I

)(e) modulo F j−i+1E is f∗(ξi(∂I)(e)).
Using these facts and equation (3), we see that the reduction of ε(g, f)(f∗(e))
modulo F j−i+1E + I [i+1]E is

∑

|I|=i

γI(z)f∗(ξi(∂I))(e) =
∑

|I|=i

z|I| ⊗ h∗ξi(∂I)(e)

=
∑

|I|=i

γi(δ)(h∗(dt|I|) ⊗ h∗ξi(∂I)(e)

= (γi(δ) ⊗ id)(h∗(ξ[i]))(e).

Now suppose that the Hasse invariant of X/S vanishes to order i at s, where
i < p, and assume that (3) holds with m ≥ i. Let η be a local horizontal basis
for Fn

conHDR(X/S); we prove that η(s) ∈ F iHDR(Xs/k). Using induction on i,
we may assume that η(s) ∈ F i−1HDR(Xs/k). Since the Hasse invariant vanishes
to order at least i, π(η) ∈ mi Gr0F HDR(X/S). Let f and g be as above. Since
η(s) ∈ F i−1HDR(Xs/k), g∗(η) ∈ g∗F i−1HDR(X/S). Since f∗η = ε(g, f)g∗(η)),

π(f∗(η))) = πε(g, f)g∗(η) = ξi−1(g, f)h∗(η)

As we have seen, the dual of (3) says that the map

Gri−1
F HDR(Xs/k) → Γ[i−1](m/m2) ∼= m[i−1]/m[i] ∼= mi−1/mi

is injective. Thus the image of h∗(η) in Gri−1
F HDR(Xs/k) vanishes, and η(s) ∈

F iHDR(Xs/k).

Remark 5. It is easy to prove that conditions (1)–(3) above are verified for the
universal family of smooth hypersurfaces of degree n + 2 in Pn+1. For example,
the degeneration of the Hodge spectral sequence follows from [2]. Condition
(3) follows from the fact that the graded Hodge cohomology can be identified
with the Jacobian algebra in the universal family of hypersurfaces, and cup
product with multiplication [6]. To make this explicit, let Si denote the set of
homogenous polynomials of degree i in the variables T1, · · ·Tm with coefficients in
k, and let f ∈ Sm define a smooth X0. Then if p does not divide m, the primitive
Hodge cohomology Hn−i

prim(X, Ωi
X0/k) can be identified with the quotient of the set

S(n−i)m by the set of polynomials which are multiples of the partial derivatives
of f . Moreover, there is an obvious map from Sm to the normal bundle to X0 in
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its ambient projective space and hence to H1(X0, TX0/k), and the cup product
pairing of condition (3) just identifies with multiplication of polynomials. Thus
the map of (3) is certainly surjective.

Remark 6. For varieties of dimension greater than three, condition (3) doesn’t
look very reasonable, and should probably be replaced by a condition involving
some sort of “very primitive” cohomology. For example, if X/k has dimension
4 the image of the map

H0(Ω4
X/k) ⊗ Sym2 H1(X, TX/k) → H2(Ω2

X/k)

lands in the the annihilator of the image of

Sym2 H1(X, Ω1
X/k) → H2(Ω2

X/k),

since H2(X,OX) = 0.

Remark 7. For versal families of polarized K3 surfaces of odd degree in charac-
teristic two, it is again true that the Hasse invariant can have zeroes of order at
most two [8]. A key ingredient in the proof of this is the fact that the symmet-
ric bilinear form on the crystalline cohomology of such a surface is even. This
allows us to replace the Yukawa coupling Sym2(TS/k) → End−2 GrF H2(X/S)
with a map Γ2(TS/k) → End−2 GrF H2(X/S). Its dual is then an element
of Sym2(Ω2

S/k) ⊗ End−2 GrF H2(X/S), eliminating the use of divided powers
powers on the maximal ideal of a point of s. It would be very interesting
to know if the Yukawa coupling in dimension n is also induced by a map
Γn(TS/k) → End−n GrF Hn(X/S), i.e., a polynomial law of degree n in the
sense of Roby [1, A].
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