
Mathematical Research Letters 7, 757–766 (2000)

HOMOLOGY 3-SPHERES BOUNDING ACYCLIC
4-MANIFOLDS

Y. Fukumoto and M. Furuta

Abstract. Let Σ(a1, a2, . . . , an) be a Seifert fibered homology 3-sphere with
a1 even. We show that if µ(Σ(a1, a2, . . . , an)) = 1 mod 2, then the class of
Σ(a1, a2, . . . , an) has infinite order in the homology cobordism group of homol-
ogy 3-spheres. In the proof we use Seiberg-Witten’s monopole equation on four-
dimensional V-manifolds.

1. Introduction

Let Θ3
H be the homology cobordims group of oriented homology 3-spheres.

Then a class [Σ] ∈ Θ3
H has infinite order if and only if the connected sum of any

number of copies of Σ cannot be the boundary of any acyclic 4-manifold. Our
main theorem is:

Theorem 1. Let Σ(a1, a2, . . . , an) be a Seifert fibered homology 3-sphere. We
assume that one of the ai’s is even. If µ(Σ(a1, a2, . . . , an)) = 1 mod 2, then the
homology cobordism class [Σ(a1, a2, . . . , an)] ∈ Θ3

H has infinite order.

R. Stern [14], S. Akbulut and R. Kirby [1], and A. J. Casson and J. L. Harer
[2] constructed examples of Seifert fibered homology 3-spheres whose classes in
Θ3

H are zero.
The µ-invariant gives a surjective homomorphism µ : Θ3

H → Z2. It implies
that if µ(Σ) = 1 mod 2, then the order of the class [Σ] is even or infinite. R. Fin-
tushel and R. Stern [3] used the Donaldson theory on V-manifolds to obtain a
sufficient condition for [Σ(a1, a2, . . . , an)] to have infinite order. Froyshov [5]
constructed homomorphisms from Θ3

H to Z by using the Donaldson-Floer the-
ory. N. Saveliev [12] also obtained such a sufficient condition by making use of
a theorem proved in [8] by using Seiberg-Witten theory.

In this note we use the Seiberg-Witten theory on V-manifolds to investigate
Seifert fibered homology 3-spheres.

We will define an integer w(a1, a2, . . . , an;m) for pairwise-coprime positive
integers a1, a2, . . . , an and for each integer m, by making use of index formula
of some elliptic operators on 4-V-manifolds.

The main theorem above follows from:
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Theorem 2. 1. If the class [Σ(a1, a2, . . . , an)] has finite order, then for any
m we have

w(a1, a2, . . . , an;m) ≤ 0.

The same conclusion holds when the connected sum of some number of
copies of Σ(a1, a2, . . . , an) is the boundary of some positive definite 4-
manifold.

2. Suppose one of the ai’s is even. If the class [Σ(a1, a2, . . . , an)] has finite
order, then

w(a1, a2, . . . , an; s) = 0, for s =
1
2

{
α

(
2 −

n∑
i=1

(1 − 1
ai

)

)
− 1

}
.

When one of the ai’s is even, the integer w(a1, a2, . . . , an; s) turns out to be
an integral lift of the µ-invariant of Σ(a1, a2, . . . , an).

The Casson invariant is an integral lift of the µ-invariant. The above integer,
however, is not equal to the Casson invariant in general.

In Section 2 we consider almost definite closed 4-V-manifolds by using mono-
pole equation. In Section 3 we consider 4-V-manifolds with boundaries by using
the results of the previous section. In Section 4, we define some classes S(k+, k−)
of oriented homology 3-spheres for non-negative integers k+ and k−. The in-
tegral lift of µ-invariant is constructed on S(k+, k−) when k+ and k− satisfy
k+ + k− ≤ 2. In Section 5 we show that the Seifert fibered homology 3-sphere
Σ(a1, a2, . . . , an) is in the class S(0, 1), if one of ai’s is even. We also give some
examples.

2. Closed V-4-manifolds

We refer the reader to [11] for general properties of V-manifold. Let X be
an oriented closed V-4-manifold. Let bi(X) be the i-th Betti number of X
and b+

2 (X) (and b−2 (X)) the dimension of maximal positive- (and negative-,
respectively) definite subspace of H2(X,R).

We assume b1(X) = 0. Suppose a V-spinc-structure on X is given and fixed.
Fix a V-Riemannian metric on X. Let S+, S− be the associated positive

and negative spinor bundles, and L the associated V-line bundle ∧2S+ = ∧2S−.
From now on we omit the notation “V” in our terminology, since everything is
defined in the category of V-manifolds.

Let DASD(X) be the elliptic operator defined to be:

DASD(X) = d + d∗ : Ω0(X) ⊕ Ω+(X) → Ω1(X),

where Ω+(X) is the space of self-dual 2-forms. For a fixed connection on L, we
can define the Dirac operator

DDirac(X) : Γ(S+) → Γ(S−)

associated with the spinc-structure.
We denote by indDASD(X) and indDDirac(X) the indices of these operators.

Here the index is the difference between the real dimension of the kernel and that
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of the cokernel of the operator. Since the kernel and the cokernel of DDirac(X)
have complex structures, indDDirac is even. These indices can be calculated by
using the index theorem for V-manifold due to T. Kawasaki [10]. The index of
DASD is, however, easily calculated by using harmonic V-forms and Hodge theory
for V-manifold. It is straightforward to extend the usual de Rham theorem to the
V-manifolds. This V-manifold version of de Rham theorem implies the following
lemma.

Lemma 1. indDASD(X) = 1 + b+
2 (X).

Here we used our assumption b1(X) = 0.
The formal dimension of the monopole moduli space for the spinc-structure

is equal to indDDirac(X) − indDASD(X). P. Kronheimer pointed out that for
negative definite closed 4-manifolds the formal dimension must be negative. The
argument can be applied even for non-compact 4-manifolds as long as the mono-
pole moduli space is compact [4]. We use V-manifold version of this statement.
Since X is a closed V-manifold, the moduli space is compact. It implies:

Theorem 3. If b+
2 (X) = 0, then we have indDDirac ≤ 0.

The following theorem is proved in [8] for smooth closed spin 4-manifolds.
This proof can immediately be extended to closed spin V-4-manifolds as well.

Theorem 4. Suppose the spinc-structure is induced by a spin structure. Then
indDDirac(X) is divisible by 4. If indDDirac(X) is not zero, then we have

1 +
1
2
indDDirac(X) ≤ b+

2 .

The right-hand side is equal to indDASD(X)− 1 from Lemma 1. In the proof
of the above theorem we use this equality.

When the spinc-structure is induced by a spin structure, the kernel and the
cokernel of DDirac have the structure of vector space over quaternions, and hence
indDDirac(X) is divisible by 4.

Let −X denote X with reversed orientation. The spin structure of X canon-
ically induces a spin structure of −X. The corresponding Dirac operator is
the formal adjoint of the original one. Hence we have indDDirac(−X) =
−indDDirac(X) and, under the assumption of the above theorem, we obtain:

Corollary 1. Suppose the spinc-structure is induced by a spin structure.

1. If indDDirac(X) is not zero, then we have

1 − 1
2
indDDirac(X) ≤ b−2 .

2. If b+
2 (X), b−2 (X) ≤ 2, then we have indDDirac = 0.

In particular, if X is a spin 4-V-manifold with b2 ≤ 2, then indDDirac must
be zero for the spin structure.
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3. V-4-manifolds with boundaries

In this section, suppose X is a compact oriented V-4-manifold with boundary
Σ. We assume that the singularities of X are contained in its interior. Suppose
Σ is a homology 3-sphere and X has a spinc-structure c.

Let Y be a spin 4-manifold with boundary −Σ. Since H2(Σ,Z) = 0, the
spinc-structure on Σ× (0, 1) is unique, and we have a spinc-structure on X ∪Σ Y
by patching the spinc-structures on X and Y . Moreover, since H1(Σ,Z) = 0,
the patching is unique up to homotopy.

Definition 1. w(Σ, X, c) is defined by:

w(Σ, X, c) :=
1
2
DDirac(X ∪Σ Y ) +

1
8
(b+

2 (Y ) − b−2 (Y )).

Note that each term of the right-hand side is an integer.

Lemma 2. The integer w(Σ, X, c) is independent of the choice of Y and its spin
structure.

Proof. Since this kind of well-definedness is standard, we only give a sketch of
the proof. Consider the elliptic operator 4DDirac ⊕ Dsign, where Dsign is the
signature operator on X ∪ Y , and the coefficient “4” indicates the direct sum
of the four copies of DDirac. The Atiyah-Singer index theorem implies that the
index of this operator vanishes for closed smooth 4-manifolds. Let Y ′ be another
spin manifold with boundary −Σ. From an excision argument of the indices of
the elliptic operators, we can show that the index for X ∪Σ Y is the sum of the
indices of the operators for X ∪Σ Y ′ and (−Y ′)∪Σ Y . (One explicit way to show
this equality is to use Kawasaki’s index theorem for V-manifolds.) This implies
that the indices for X ∪Σ Y and X ∪Σ Y ′ are the same, from which the lemma
immediately follows.

The same excision or localization argument also implies the following addi-
tivity.

Lemma 3. w(Σ0�Σ1, X0�X1, c0�c1) = w(Σ0, X0, c0) + w(Σ1, X1, c1).

Here Σ0�Σ1 is the connected sum of Σ0 and Σ1, and X0�X1 is the boundary
connected sum of X0 and X1.

For i = 1, 2, . . . , m, let Xi be a compact oriented V-4-manifold with boundary
Σi such that its singularities are contained in its interiors. Suppose Σi is a
homology 3-sphere and Xi has a spinc-structure ci for each i.

From Theorem 3 and Lemma 3 we obtain:

Theorem 5. Suppose X1, X2, . . . , Xm are acyclic or negative definite. If the
connected sum Σ1�Σ2� . . . �Σm is the boundary of an acyclic 4-manifold, then we
have

m∑
i=1

w(Σi, Xi, ci) ≤ 0
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Proof. Let Y be the acyclic 4-manifold. Apply Theorem 3 to

(X1�X2� . . . �Xm) ∪Σ1�Σ2�...�Σm (−Y ).

Before considering spin structure we note the following lemma.

Lemma 4. If c is a spin structure of X, then we have

µ(Σ) = w(Σ, X, c) mod 2.

In particular, if Σ is the boundary of an acyclic 4-manifold, then w(Σ, X, c) must
be even.

Proof. Since µ(Σ) = (b+
2 (Y )−b+

2 (Y ))/8 mod 2, it suffices to show that the index
of DDirac is divisible by 4. This follows from the fact that the kernel and the
cokernel of the Dirac operator has the structure of vector bundle over quaternions
when the spinc-structure is indeced by a spin structure.

From Theorem 4 and Lemma 3, by using a similar argument as in the proof
of Theorem 5, we obtain:

Theorem 6. Suppose all the ci’s are spin structures, and the connected sum
Σ1�Σ2� . . . �Σm is the boundary of an acyclic 4-manifold.

1. The sum
∑m

i=1 w(Σi, Xi, ci) is even.
2. If the above sum is not zero, then we have

1 −
m∑

i=1

b−2 (Xi) ≤
m∑

i=1

w(Σi, Xi, ci) ≤ −1 +
m∑

i=1

b+
2 (Xi).

Corollary 2. Suppose c is a spin structure.
1. Suppose b+

2 (X) ≤ 2, b−2 (X) ≤ 2 and w(Σ, X, c) 
= 0. Then the order of
[Σ] ∈ Θ3

H is even or infinite.
2. Suppose b+

2 (X) ≤ 1, b−2 (X) ≤ 1 and w(Σ, X, c) 
= 0. Then the order of
[Σ] ∈ Θ3

H is infinite,

4. An invariant for homology 3-spheres

We introduce the following notation.

Definition 2. 1. Let X be the set of isomorphism classes of the triples
(Σ, X, c) that satisfy the following conditions.
(a) X is a compact oriented spin V-4-manifold such that its singularities

lies in its interior.
(b) Σ is the boundary of X. We assume that Σ is a homology 3-sphere.
(c) c is a spin structure of X.

2. X (k+, k−) is the subset of X given by

X (k+, k−) := {(Σ, X, c) ∈ X | b+
2 (X) ≤ k+, b−2 (X) ≤ k−}.
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3. S(k+, k−) is the set of the isomorphism classes of oriented homology 3-
sphere Σ such that (Σ, X, c) is contained in X (k+, k−) for some X and
c.

Note that the operation of connected sum induces the natural map:

S(k+
0 , k−

0 ) × S(k+
1 , k−

1 ) → S(k+
0 + k+

1 , k−
0 + k−

1 ).

The next theorem is a corollary of Lemma 4 and Corollary 2.

Theorem 7. Suppose Σ is in S(1, 1). If µ(Σ) = 1 mod 2, then the order of
[Σ] ∈ Θ3

H is infinite.

Now we define an integral lift of µ-invariant on S(2, 0), S(1, 1) and S(0, 2).
The invariant w is defined on X .

Theorem 8. Suppose k+ and k− satisfy k+ + k− ≤ 2. Let (Σ0, X0, c0) and
(Σ1, X1, c1) be two triples in X (k+, k−). Then we have

w(Σ0, X0, c0) = w(Σ1, X1, c1).

Proof. Recall that Σ0 and Σ1 are homology cobordant to each other if and only
if the connected sum of Σ0 and −Σ1 is the boundary of an acyclic 4-manifold.
Since X0� − X1 satisfies the assumption of Corollary 2, we obtain

w(Σ0, X0, c0) + w(−Σ1,−X1,−c1) = 0.

In particular we have

w(Σ1, X1, c1) + w(−Σ1,−X1,−c1) = 0.

These two equality implies the required one.

The above theorem implies that the map w descends to a map from S(k+, k−)
to Z for k+ and k− satisfying k+ + k− ≤ 2. We denote this map by w(k+, k−):

w(k+, k−) : S(k+, k−) → Z.

Then the above theorem also implies:

Theorem 9. Suppose k+ and k− satisfy k++k− ≤ 2. Then the map w(k+, k−)
is a homology cobordism invariant.

Remark. The authors do not know if the invariant is a homology cobordism
invariant on the union of S(2, 0), S(1, 1) and S(0, 2).

The main theorem in this section is the following theorem, which is just a
consequence of Lemma 4 and Corrollary 2

Theorem 10. Let Σ be an oriented homology 3-sphere in S(k+, k−).
1. Suppose k+ + k− ≤ 2. Then the µ-invariant µ(Σ) is given by:

µ(Σ) = w(k+, k−)(Σ) mod 2.

2. Suppose k+ + k− ≤ 2 and w(k+, k−)(Σ) 
= 0. Then the order of [Σ] ∈ Θ3
H

is even or infinite.
3. Suppose k+ + k− ≤ 1 and w(k+, k−)(Σ) 
= 0. Then the order of [Σ] ∈ Θ3

H

is infinite.
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5. Seifert fibered homology 3-spheres

In this section we give some examples of Seifert fibered homology 3-spheres,
which are classified as follows.

Let Z be a V-Riemann surface whose underlying space is CP1 with n marked
points for n ≥ 3. Let a1, a2, . . . , an be the order of the cyclic isotropy groups at
the singular points. Assume that ai’s are pairwise coprime to each other. Then
the abelian group consisting of all the isomorphism classes of V-line bundles
is an infinite order cyclic group [9]. The first Chern class of one of the two
generators is equal to 1/α for α = a1a2 . . . an. Let L0 be a V-line bundle with
c1(L0) = −1/α. Then other V-line bundles are of the form Lk

0 for some integer
k.

We consider the disk bundle X = D(L0) as an oriented V-4-manifold. In
general, when the isotropy representation at each singular point of Z acts freely
on the fiber of a V-line bundle L except for the origin, the total space of the
associated V-circle bundle S(L) has natural smooth structure. The V-line bundle
L0 satisfies this condition. Hence we have a smooth oriented 3-manifold S(L0) =
∂X. We write Σ(a1, a2, . . . , an) for this oriented 3-manifold. It is easy to check
that this is a homology 3-sphere, and that every oriented Seifert fibered homology
3-sphere is of the form ±Σ(a1, a2, . . . , an). See [9] for details. The canonical line
bundle of the total space of L0 is isomorphic to the dual of the pull-back of
L0 ⊗TZ. Note that TZ is isomorphic to Lk

0 for some k. Then the canonical line
bundle is isomorphic to the pullback of L

−(k+1)
0 .

The total space of L0 has a canonical spinc-structure induced from its complex
structure. As an open subset of L0, we have a canonical spinc-structure of X.

Theorem 11. The V-4-manifold X has a spin structure if and only if one of
the ai’s is even.

Proof. Let Gn be the subgroup of U(n) × U(1) consisting of (g, z) satisfying
det g = z2. Then Gn is isomorphic to the fiber product of U(n) → SO(2n) and
Spin(2n) → SO(2n). It implies that a complex manifold has a spin structure if
and only if its canonical line bundle is a square of a line bundle. This argument
holds for complex V-manifolds as well. Since the canonical line bundle of the
total space of L0 is isomorphic to the pullback of L

−(k+1)
0 , the total space is spin

if and only if k is odd. We can calculate k by looking at the Euler characteristic
number of Z [9]:

k =
χ(Z)
−1/α

= α

(
−2 +

n∑
i=1

(1 − 1
ai

)

)
.

Since the right-hand side is odd if and only if one of the ai’s is even, the theorem
follows.

Corollary 3. If one of the ai’s is even, then Σ(a1, a2, . . . , an) is in S(0, 1).
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Let T ∗ denote the complex cotangent bundle. The Dirac operator for the
canonical spinc-structure is identified with the operator

∂̄ + ∂̄∗ : Γ(∧0,0T ∗) ⊕ Γ(∧0,2T ∗) → Γ(∧0,1T ∗).

The determinant of the spinor bundle for the canonical spinc-structure is iso-
morphic to ∧2(∧0,1T ∗) ∼= ∧2T , i.e., the dual of the canonical line bundle. We
have to twist that spinor bundle by a line bundle to obtain the spinor bundle for
the spin structure, Since the determinant of the spinor bundle for spin structure
is trivial, the line bundle we have to use is the square root L

−(k+1)/2
0 of the

canonical line bundle.
Let c(m) be the spinc-structure defined by the twisting of the canonical spinc-

structure by Lm
0 . Then the spin structure is given by c((k + 1)/2).

Now the invariant w(Σ(a1, a2, . . . , an), X, c(m)) is calculated by using V-
version of the Atiyah-Singer index theorem [10]. The details of the arguments
and also a comparison with other invariants of plumbing 3-manifolds are given
in [6]. In this note we only state the result of calculation.

Theorem 12.

w(Σ(a1, a2, . . . , an), X, c(m)) =

1
8

[
− 1

α

{
α

(
−2 +

n∑
i=1

(1 − 1
ai

)

)
+ 1 + 2m

}2

+ 1 −
n∑

i=1

1
ai

ai−1∑
l=1

{
cot

(
πl

ai

)
cot

(
πbil

ai

)

+ cos
(

π(1 + bi + 2mbi)l
ai

)
cosec

(
πl

ai

)
cosec

(
πbil

ai

)}]
,

where bi’s are integers which satisfy
n∑

i=1

bi
α

ai
= −1.

In the introduction we used the notation w(a1, a2, . . . , an;m) to denote this
number.

Theorem 13. Suppose one of the ai’s is even. Then we have

w(Σ(a1, a2, . . . , an)) = w(a1, a2, . . . , an; s),

for

s =
1
2

{
α

(
2 −

n∑
i=1

(1 − 1
ai

)

)
− 1

}
.

Here w = w(1, 1) or w(0, 2).
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More explicitly we have

w(Σ(a1, a2, . . . , an)) =
1
8

[
1 −

n∑
i=1

1
ai

ai−1∑
l=1

{
cot

(
πl

ai

)
cot

(
πbil

ai

)

+ 2εl
icosec

(
πl

ai

)
cosec

(
πbil

ai

)}]
,

where εi’s are defined by

εi =
{

(−1)1−bi ai ≡ 1 (mod 2)
(−1)1−

∑
j �=i bj ai ≡ 0 (mod 2).

We give some examples of Brieskorn homology 3-spheres such that the con-
nected sum of any number of the copies cannot be the boundary of an acyclic
4-manifold. The following is a list of Brieskorn homology 3-spheres for which
Theorem 5 is not applied, but Theorem 6 can be applied.

Brieskorn max{ w } spin case Casson’s invariant
Σ(2, 3, 7) 0 w(−1) = −1 −1
Σ(4, 5, 7) 0 w(−29) = −1 −5
Σ(7, 9, 10) 0 w(−204) = −1 −25
Σ(2, 5, 11) 0 w(−12) = −1 −3
Σ(5, 8, 11) 0 w(−129) = −1 −17
Σ(4, 9, 11) 0 w(−109) = −1 −15
Σ(5, 7, 12) 0 w(−121) = −2 −16
Σ(7, 11, 12) 0 w(−316) = −1 −37
Σ(3, 4, 13) 0 w(−27) = −1 −5
Σ(5, 6, 13) 0 w(−109) = −1 −15
Σ(3, 8, 13) 0 w(−73) = −1 −11

In the above list, Σ(5, 7, 12) has the trivial µ-invariant but non-trivial w-
invariant.

Some other examples of plumbing type are given in [6].
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