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STRONGLY ASYMPTOTICALLY HYPERBOLIC SPIN
MANIFOLDS
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1. Introduction

In this note, we shall generalize Min-Oo’s theorem of scalar curvature rigidity
of strongly asymptotically hyperbolic spin manifolds.

Inspired by Witten’s proof of the positive energy theorem for asymptotically
flat manifolds, Min-Oo introduced strongly asymptotically hyperbolic manifolds
and proved that any strongly asymptotically hyperbolic spin manifold of dimen-
sion n ≥ 3 with scalar curvature R ≥ −n(n− 1) is isometric to hyperbolic space
[3]. This rigid theorem was extended later to locally asymptotically hyperbolic
spin manifolds by Andersson and Dahl [1], and to odd-dimensional complex
hyperbolic manifold by Herzlich [2].

Recall the hyperbolic space (Hn, g0) is Rn endowed with the metric

g0 = dr2 + sinh2(r)dΩ2
n−1(1.1)

in polar coordinates, which has constant sectional curvature K0 = −1 and scalar
curvature R0 = −n(n − 1). For r > 0, we denote by Hr the complement of a
closed ball of radius r around the origin, i.e., Hr = Hn − B̄r(0). A smooth
Riemannian manifold (Mn, g) is said to be strongly asymptotically hyperbolic
(with one end) if there exists a compact subset K ⊂ M and a diffeomorphism
f : M∞ ≡ M −K → Hr for some r > 0, such that, on M∞, the metric g can be
written as (

AX, AY
)

g
=

(
X, Y

)
g0

(1.2)

for some (symmetric, positive definite) gauge transformation A of the tangent
bundle on M∞, where we identify the hyperbolic end M∞ with Hr. Setting
r = dg0(x0, ·), then there exists an ε > 0 such that

(i) A is uniformly bounded from below and above;
(ii) |∇g0A| + |A − Id| = O(e−(n+ε)r) at infinity.

Theorem 1.1. If there exists a real function H on strongly asymptotically hy-
perbolic spin manifold (M, g) and ε′ > 0,

H = O(e−(n+ε′)r)
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at infinity such that

R ≥ −n(n − 1) − n(H2 + 2H) + 2n|dH|,(1.3)

then (Mn, g) is isometric to (Hn, g0). In particular, H ≡ 0.

This rigid theorem is true also for local and odd-dimensional complex hyper-
bolic spaces, as well as the multi-end case, this theorem of course holds for the
assumption of strongly asymptotic hyperbolic via integral conditions on A and
H, for instance,

er(A − Id) ∈ L1,p, erH ∈ Lp

for p ≥ 1.
The positive energy theorem for asymptotically flat spin manifolds whose

scalar curvature satisfies

R ≥ −n(H2 + 2H) + 2n|dH|
for some real function

H = O(r−(1+ε′))

at infinity was considered in [9].
The positive energy theorem was first proved by Schoen and Yau via the

geometric analysis method [5, 6, 7]. So it is interesting to use their method to
prove these rigid theorems.

2. Preliminaries

Let M be an (oriented) Riemannian spin manifold of dimension n ≥ 3 with
spinor bundle S. Let g, g0 be Riemannian metrics on M . Let A ∈ End(TM) be
the symmetric, positive definite ‘gauge transformation’ such that(

AX, AY
)

g
=

(
X, Y

)
g0

.

The gauge transformation A induces a map from SO(M, g0) to SO(M, g). There-
fore it induces a map from Spin(n, g0) to Spin(n, g) and hence a map from the
spinor bundles S(M, g0) to S(M, g) by

A
(
X · φ

)
=

(
AX

)
·
(
Aφ

)
.

Let ∇, ∇g0 be the Levi-Civita connections of g, g0 respectively. We extend
them to the spinor bundle S and denote as ∇, ∇g0 also. To compare the two
connections, we define a connection ∇̄ with respect to the metric g by

∇̄X = A
(
∇g0(A−1X)

)
.(2.1)

This connection has torsion

T̄ (X, Y ) = ∇̄XY − ∇̄Y X − [X, Y ]

= −
(
(∇g0

X A)A−1Y − (∇g0
Y A)A−1X

)
.(2.2)
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Since the connection ∇ is torsionless with respect to the metric g, we obtain

(2.3) 2
(
∇̄XY −∇XY, Z

)
g

=(
T̄ (X, Y ), Z

)
g
−

(
T̄ (X, Z), Y

)
g
−

(
T̄ (Y, Z), X

)
g
.

Now we compare ∇, ∇̄ on spinor bundle S. Let {ei} be a local orthonormal
frame for g, and {ei} be the local orthonormal coframe. Let {σα} be the local
orthonormal frame of the spinor bundle. Denote by ωij , ω̄ij the connection
1-forms for ∇, ∇̄ defined by

ωij = (∇ei, ej)g , ω̄ij = (∇̄ei, ej)g .

For spinor φ = φασα, we have

∇φ = dφα ⊗ σα +
1
4

∑
i,j

ωij ⊗ ei · ej · φ,

∇̄φ = dφα ⊗ σα +
1
4

∑
i,j

ω̄ij ⊗ ei · ej · φ.

Therefore,

∇φ − ∇̄φ =
1
4

∑
i,j

(
ωij − ω̄ij

)
⊗ ei · ej · φ.(2.4)

By (2.2) and (2.3), we obtain∣∣∣(ωij − ω̄ij

)
(ek)

∣∣∣ ≤ C
∣∣∣A−1

∣∣∣∣∣∣∇g0A
∣∣∣,

for some C > 0. Therefore,∣∣∣∇X − ∇̄X
∣∣∣ ≤ C

∣∣∣A−1
∣∣∣∣∣∣∇g0A

∣∣∣|X|,(2.5) ∣∣∣∇φ − ∇̄φ
∣∣∣ ≤ C

∣∣∣A−1
∣∣∣∣∣∣∇g0A

∣∣∣|φ|,(2.6) ∣∣∣Dφ − D̄φ
∣∣∣ ≤ C

∣∣∣A−1
∣∣∣∣∣∣∇g0A

∣∣∣|φ|,(2.7)

where X is a vector, φ is a spinor and D, D̄ are the Dirac operators with respect
to the connections ∇, ∇̄.

3. The Killing connections and Dirac operators

The Killing connection on spinor bundle S is defined by

∇̂X = ∇X +
i
2
X·,(3.1)
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spinors vanish with respect to this connection are called imaginary Killing spinors.
The curvature of connection ∇̂ is

R̂(X, Y )φ =
(
∇̂X∇̂Y − ∇̂Y ∇̂X − ∇̂[X,Y ]

)
φ

= R(X, Y )φ − 1
4
(X · Y · −Y · X·)φ.

Hence if a manifold M has a local basis of imaginary Killing spinors, then R̂
vanishes, so that M has constant sectional curvature −1 and is locally isometric
to hyperbolic space. If a manifold M has an imaginary Killing spinor φ, then

0 =
∑

i

eiR̂(X, ei)φ = −1
2

(
Ric(X) + (n − 1)X

)
· φ ,

therefore M has constant Ricci curvature −(n − 1).
The hyperbolic space Hn has a full set of imaginary Killing spinors {φ0}, see

[1, 3]. Moreover, there is constant C > 0 such that

C−1e−r ≤ |φ0|2 ≤ Cer(3.2)

as r → ∞ by (3.1). This fact is very important in the proof of rigid theorems
for strongly asymptotically hyperbolic manifolds.

Now we define a generalized Killing connection

∇̃X = ∇X +
i
2
(1 + H)X·(3.3)

for some real function H, and a Dirac operator

D̃ = ei · ∇̃i = D − i
2
n(1 + H)(3.4)

with respect to this generalized Killing connection. Since

d(φ, ψ) ∗ ei = (∇iφ, ψ) ∗ 1 + (φ,∇iψ) ∗ 1

=
(
∇̃iφ − i

2
(1 + H)ei · φ, ψ

)
∗ 1

+
(
φ, ∇̃iψ − i

2
(1 + H)ei · ψ

)
∗ 1

=
(
∇̃iφ, ψ

)
∗ 1 +

(
φ, ∇̃iψ − i(1 + H)ei · ψ

)
∗ 1,

d(ei · φ, ψ) ∗ ei = (Dφ, ψ) ∗ 1 − (φ, Dψ) ∗ 1

=
(
D̃φ +

i
2
n(1 + H)φ, ψ

)
∗ 1

−
(
φ, D̃ψ +

i
2
n(1 + H)ψ

)
∗ 1

=
(
D̃φ, ψ

)
∗ 1 −

(
φ, D̃ψ + in(1 + H)ψ

)
∗ 1,
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we have

∇̃∗
i = −∇̃i + i(1 + H)ei· = −∇i +

i
2
(1 + H)ei·,(3.5)

D̃∗ = D̃ + in(1 + H) = D +
i
2
n(1 + H).(3.6)

Note that

∇̂∗∇̂ = ∇̂∇̂∗ = ∇∗∇ +
n

4
.(3.7)

Denote

R̂ = R + n(n − 1).

By (3.7), we have the following Weitzenböck formulas

D̃∗D̃ =
(
D +

i
2
n(1 + H)

)(
D − i

2
n(1 + H)

)
= ∇∗∇ +

1
4

(
R + n2(1 + H)2

)
− i

2
ndH ·

= ∇̂∗∇̂ +
1
4

(
R̂ + n2(H2 + 2H)

)
− i

2
ndH· ,(3.8)

D̃D̃∗ =
(
D − i

2
n(1 + H)

)(
D +

i
2
n(1 + H)

)
= ∇∗∇ +

1
4

(
R + n2(1 + H)2

)
+

i
2
ndH ·

= ∇̂∗∇̂ +
1
4

(
R̂ + n2(H2 + 2H)

)
+

i
2
ndH·(3.9)

Now we derive the integral forms of the Weitzenböck formulas. Since

d(ei · φ, D̃φ) ∗ ei =
(
(D̃φ, D̃φ) − (φ, D̃∗D̃φ)

)
∗ 1,

d(φ, ∇̂iφ) ∗ ei =
(
(∇̂φ, ∇̂φ) − (φ, ∇̂∗∇̂φ)

)
∗ 1,

then

d
(
φ,∇iφ + ei · Dφ − i

2
[n(1 + H) − 1]ei · φ

)
∗ ei

= d
(
φ, ∇̂iφ + ei · D̃φ

)
∗ ei

=

(
|∇̂φ|2 − |D̃φ|2 +

1
4

(
R̂ + n2(H2 + 2H)

)
|φ|2 −

(
φ,

i
2
ndH · φ

))
∗ 1.
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Similarly,

d
(
∇iψ + ei · Dψ +

i
2
[n(1 + H) − 1]ei · ψ, ψ

)
∗ ei

= d
(
− ∇̂∗

i ψ + ei · D̃∗ψ, ψ
)
∗ ei

=

(
|∇̂∗ψ|2 − |D̃∗ψ|2 +

1
4

(
R̂ + n2(H2 + 2H)

)
|ψ|2 +

( i
2
ndH · ψ, ψ

))
∗ 1.

Let

D̂ = ei · ∇̂i = D − i
2
n

and

R̃± = R̂ + n2(H2 + 2H) ± 2indH · .

Note that (1.3) ensures that R̃± is nonnegative. Now we obtain∫
∂M

(
φ,∇iφ + ei · Dφ

)
∗ ei −

∫
∂M

(
φ,

i
2
[n(1 + H) − 1]ei · φ

)
∗ ei

=
∫

∂M

(
φ, ∇̂iφ + ei · D̂φ

)
∗ ei −

∫
∂M

(
φ,

i
2
nHei · φ

)
∗ ei

=
∫

M

|∇̂φ|2 − |D̃φ|2 +
1
4

(
φ, R̃− · φ

)
,(3.10)

and ∫
∂M

(
∇iψ + ei · Dψ, ψ

)
∗ ei +

∫
∂M

( i
2
[n(1 + H) − 1]ei · ψ, ψ

)
∗ ei

=
∫

∂M

(
− ∇̂∗

i ψ + ei · D̂∗ψ, ψ
)
∗ ei +

∫
∂M

( i
2
nHei · ψ, ψ

)
∗ ei

=
∫

M

|∇̂∗ψ|2 − |D̃∗ψ|2 +
1
4

(
R̃+ · ψ, ψ

)
.(3.11)

4. Rigidity for strongly asymptotically hyperbolic manifolds

Let M be a complete spin manifold with R̂ nonnegative and bounded. Let
C∞

0 (S) be the space of smooth sections with compact support. Define an inner
product on S by (

φ, ψ
)

1
=

∫
M

(
∇φ,∇ψ

)
+

n

4

(
φ, ψ

)
and let H1(S) be the closure of C∞

0 (S) with respect to this inner product. Then
H1(S) with the above inner product is a Hilbert space. Now define a bounded
bilinear form B on C∞

0 (S) by

B
(
φ, ψ

)
=

∫
M

(
D̃φ, D̃ψ

)
.
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By (3.10), we obtain

B
(
φ, φ

)
=

∫
M

|∇̂φ|2 +
1
4

(
φ, R̃− · φ

)

=
∫

M

|∇φ|2 +
n

4
|φ|2 +

1
4

(
φ, R̃− · φ

)
.

Since R̃− is bounded also, we can extend B to H1(S) as a coercive bilinear form
if R̃− is nonnegative.

We extend the imaginary Killing spinors {φ0} on M∞ to the whole M . With
respect to the metric g, these Killing spinors can be written as φ̄0 = Aφ0. Now
we show that ∇̂φ̄0 ∈ L2(S): On M∞,

∇̂X φ̄0 =
(
∇X +

i
2
X ·

)(
Aφ0

)
=

(
∇X − ∇̄X

)(
Aφ0

)
+ ∇̄X

(
Aφ0

)
+

i
2
X ·

(
Aφ0

)
=

(
∇X − ∇̄X

)(
Aφ0

)
+ A

(
∇g0

X φ0

)
+

i
2
X ·

(
Aφ0

)
=

(
∇X − ∇̄X

)(
Aφ0

)
− i

2

(
AX

)(
Aφ0

)
+

i
2
X ·

(
Aφ0

)
.

Thus,

|∇̂φ̄0| ≤ C
(
|∇g0A| + |A − Id|

)
|φ0|

by (2.6). Therefore,

|∇̂X φ̄0| ≤ C
(
|∇g0A| + |A − Id|

)
e

r
2 |X|,(4.1)

|D̂φ̄0| ≤ C
(
|∇g0A| + |A − Id|

)
e

r
2(4.2)

as r → ∞. Since the sphere Sr has area of the order e(n−1)r, we know that

∇̂φ̄0 ∈ L2(S),

and hence
D̂φ̄0 ∈ L2(S)

by the assumption of asymptotic hyperbolic metric. Therefore

D̃φ̄0 = D̂φ̄0 − i
2
nHφ̄0 ∈ L2(S)

by the assumption of behavior of H at infinity. Note that φ̄0 is not L2 because
|φ̄0|2 ≥ C−1e−r.

Lemma 4.1. There exists a unique spinor φ1 on H1(S) such that

D̃
(
φ1 + φ̄0

)
= 0

if (1.3 ) holds.
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Proof. Since B
(
·, ·

)
is coercive on H1(S), and D̃φ̄0 ∈ L2(S), ∇̂φ̄0 ∈ L2(S), the

Lax-Milgram lemma shows that there exists a spinor φ1 ∈ H1(S) such that

D̃∗D̃φ1 = −D̃∗D̃φ0

weakly. Let φ = φ1 + φ̄0 and ψ = D̃φ. The elliptic regularity tells us that
ψ ∈ H1(S), and

D̃∗ψ = 0
in the classical sense. Then (3.11) implies

∇̂∗
i ψ = ∇iψ − i

2
(1 + H)ei · ψ = 0.

Therefore, ∣∣∣∂i|ψ|2
∣∣∣ ≤ (1 + H)|ψ|2.

Hence
|∂i ln |ψ|2| ≤ 1 + H

on the complement of the zero set of ψ on M . If there exists x0 ∈ M such that
|ψ(x0)| �= 0, then integrate it along a path from x0 ∈ M gives

|ψ(x)|2 ≥ |ψ(x0)|2e(1+H)(|x0|−|x|).

Obviously, ψ is not in L2(S) which gives the contradiction. Hence ψ ≡ 0, and
the proof of lemma is complete.

Proof of Theorem 1.1. Let φ be the solution of D̃φ = 0 corresponding to the
imaginary Killing spinor φ0 constructed in Lemma 4.1. Submit this φ into
(3.10), we obtain∫

S∞

(
φ, ∇̂iφ + ei · D̂φ

)
∗ ei −

∫
S∞

(
φ,

i
2
nHei · φ

)
∗ ei

=
∫

M

|∇̂φ|2 +
1
4

(
φ, R̃− · φ

)
.(4.3)

Write φ = φ1 + φ̄0 where φ1 ∈ H1(S). Then∣∣∣∣∣
∫

S∞

(
φ, ∇̂iφ + ei · D̂φ

)
∗ ei

∣∣∣∣∣ =

∣∣∣∣∣
∫

S∞

(
φ̄0, ∇̂iφ̄0 + ei · D̂φ̄0

)
∗ ei

∣∣∣∣∣
≤ C

∫
S∞

(
|∇g0A| + |A − Id|

)
er,

and ∣∣∣∣∣
∫

S∞

(
φ,

i
2
nHei · φ

)
∗ ei

∣∣∣∣∣ ≤ C

∫
S∞

|H|er.

By the assumption on the asymptotic behaviors of A and H at infinity, we see
that the left hand side of (4.3) vanishes, and hence

∇̂φ = 0.
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Therefore

0 = D̃φ = D̂φ − i
2
nHφ = − i

2
nHφ.

This implies H ≡ 0. Thus it reduces to the case of Min-Oo’s theorem [3] and
the proof of the theorem is complete.
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