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STRONGLY ASYMPTOTICALLY HYPERBOLIC SPIN
MANIFOLDS

XIAO ZHANG

1. Introduction

In this note, we shall generalize Min-Oo’s theorem of scalar curvature rigidity
of strongly asymptotically hyperbolic spin manifolds.

Inspired by Witten’s proof of the positive energy theorem for asymptotically
flat manifolds, Min-Oo introduced strongly asymptotically hyperbolic manifolds
and proved that any strongly asymptotically hyperbolic spin manifold of dimen-
sion n > 3 with scalar curvature R > —n(n — 1) is isometric to hyperbolic space
[3]. This rigid theorem was extended later to locally asymptotically hyperbolic
spin manifolds by Andersson and Dahl [1], and to odd-dimensional complex
hyperbolic manifold by Herzlich [2].

Recall the hyperbolic space (H", gg) is R™ endowed with the metric

(1.1) go = dr? 4 sinh®(r)dQ2_,
in polar coordinates, which has constant sectional curvature Ky = —1 and scalar
curvature g = —n(n — 1). For r > 0, we denote by H, the complement of a

closed ball of radius r around the origin, i.e., H, = H"™ — B,.(0). A smooth
Riemannian manifold (M™,g) is said to be strongly asymptotically hyperbolic
(with one end) if there exists a compact subset K C M and a diffeomorphism
f: My =M — K — H, for some r > 0, such that, on M., the metric g can be
written as

(1.2) (AX, AY) - (X, Y)

go

for some (symmetric, positive definite) gauge transformation A of the tangent
bundle on M, where we identify the hyperbolic end M., with H,. Setting
r = dg, (20, ), then there exists an ¢ > 0 such that

(i) A is uniformly bounded from below and above;
(ii) |V9°A| + |A — Id| = O(e~("9)") at infinity.

Theorem 1.1. If there exists a real function H on strongly asymptotically hy-
perbolic spin manifold (M, g) and &' > 0,

H = O(e”(n+<)r)
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at infinity such that
(1.3) R> —n(n—1) —n(H?+2H) + 2n|dH|,
then (M™, g) is isometric to (H™, go). In particular, H = 0.

This rigid theorem is true also for local and odd-dimensional complex hyper-
bolic spaces, as well as the multi-end case, this theorem of course holds for the
assumption of strongly asymptotic hyperbolic via integral conditions on A and
H, for instance,

e"(A—1Id) € L*?, e"H¢eLP
for p > 1.

The positive energy theorem for asymptotically flat spin manifolds whose

scalar curvature satisfies

R > —n(H?+2H) + 2n|dH|

for some real function
H = O(r~ (D)

at infinity was considered in [9].

The positive energy theorem was first proved by Schoen and Yau via the
geometric analysis method [5, 6, 7]. So it is interesting to use their method to
prove these rigid theorems.

2. Preliminaries

Let M be an (oriented) Riemannian spin manifold of dimension n > 3 with
spinor bundle S. Let g, go be Riemannian metrics on M. Let A € End(TM) be
the symmetric, positive definite ‘gauge transformation’ such that

(AX, AY)g - (X, Y)go

The gauge transformation A induces a map from SO(M, go) to SO(M, g). There-
fore it induces a map from Spin(n, go) to Spin(n,g) and hence a map from the
spinor bundles S(M, go) to S(M, g) by

A(X : ¢) - (AX) - (A¢).

Let V, V9% be the Levi-Civita connections of g, go respectively. We extend
them to the spinor bundle S and denote as V, V9 also. To compare the two
connections, we define a connection V with respect to the metric g by

(2.1) VX = A(vgo(A—l)()).

This connection has torsion

T(X,Y) = VxY —-VyX—I[X,Y]
(2.2) = - ((V%?A)A”Y - (vf;OA)A*lX).
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Since the connection V is torsionless with respect to the metric g, we obtain

(23) 2(?XY — VY, Z>g _

(T(X, Y),Z) _ (T(X, Z),Y) _ (T(Y, Z),X) .

g 9

Now we compare V, V on spinor bundle S. Let {e;} be a local orthonormal
frame for g, and {e’} be the local orthonormal coframe. Let {c®} be the local
orthonormal frame of the spinor bundle. Denote by w;;, @;; the connection
1-forms for V, V defined by

wij = (Ve e5)q, Wwij = (veivej)g-

For spinor ¢ = ¢“o,, we have

o 1
Vo = d¢*®0aty D wi®eie;d,

,J
_ 1
V¢ = d¢a®0'a+z Z@ij@)ei-ej-gb.
()
Therefore,
— 1
(24) Vqﬁ — V¢ = Z E (wi]’ — (Dij> ® €; ej . ¢

i?j

By (2.2) and (2.3), we obtain

o050}t = ol foms

)

for some C' > 0. Therefore,

(2.5) ‘VX—?X‘ < C‘A‘luvgoA‘\X\,
(2.6) (w—%‘ < C‘A‘legoA‘|gb|,
(2.7) ‘D¢—D¢‘ < C‘A*HVQOAM,

where X is a vector, ¢ is a spinor and D, D are the Dirac operators with respect
to the connections V, V.

3. The Killing connections and Dirac operators

The Killing connection on spinor bundle S is defined by

(3.1) Vx ZVX+%X-,
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spinors vanish with respect to this connection are called imaginary Killing spinors.
The curvature of connection V is

R(X,)Y)p = (ﬁxﬁy ~VyVx — @[X,Y}>¢
— R(X,Y)p— i(x Y Y X6

Hence if a manifold M has a local basis of imaginary Killing spinors, then R
vanishes, so that M has constant sectional curvature —1 and is locally isometric
to hyperbolic space. If a manifold M has an imaginary Killing spinor ¢, then

0= ZeiR(X,eiM = —%(Ric(X) + (n— 1)X> b,

therefore M has constant Ricci curvature —(n — 1).
The hyperbolic space H™ has a full set of imaginary Killing spinors {¢}, see
[1, 3]. Moreover, there is constant C' > 0 such that

(3.2) Cle™ <|go|* < Ce”

as 7 — oo by (3.1). This fact is very important in the proof of rigid theorems
for strongly asymptotically hyperbolic manifolds.
Now we define a generalized Killing connection

(3.3) @X:VX+%(1+H)X-
for some real function H, and a Dirac operator
(3.4) D:ei-@i:D—%n(HH)
with respect to this generalized Killing connection. Since
dd ) xe' = (Vid,9) x 1+ (9, Vi) x1
= (Vio- %(1 + H)er- 6, +1
+(¢, Vit — %(1 + H)e; - ¢) %1
= (Vioow) « 14 (6.Vit — i1+ H)eg ) 1,
d(ei- o, 0) x e’ = (Dd),?!)).* 1— (¢, Dy) =1
- (D¢ + %n(l + H)¢,¢) «1
(9. Du+ %n(l +H)Y) +1
= (Do, v) # 1= (6, D +in(1 + H)p) +1,
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we have

(3.5) Vi = —V,+i(1+ H)e;r = —V; + %(1 + H)e;-,
(3.6) D* = D+in(l1+H) = D+ %n(l + H).

Note that

(3.7) VIV = VV* = V'V + g.

Denote

N

R=R+n(n—1).

By (3.7), we have the following Weitzenbock formulas

DD = <D + %n(l + H)) (D - %n(l + H))
= V'V+ i(R-FT??(l + H)2> - %ndH-

N i
(3.8) - V*V+Z<R+n2(H2+2H)) —%ndH-,

« _ (p_1 i
DD* = (D-gn(1+ H)) (D +gn(l+ H))
= V'V+ 1(R +n?(1+ H)2> + L am .
4 2
A a 1/~ i
(3.9) = V'Vt (Rt n2(H? 4 2H)) + SndH-
4 2
Now we derive the integral forms of the Weitzenbock formulas. Since
de:- ¢, D9)x e’ = ((Dg, Do)~ (6,D°Dg)) *1,
a6, Vig) re' = ((V6,V9) = (6,V"V)) +1,
then
d(#.Vio+e;- Do = Sn(1+ H) = 1ei - ¢) + ¢

= d(gb, @iqﬂ— e; - D(Z)) e’

“ ~ 17/ 4 i
- (|V¢>|2 —|Del* + (R +n2(H? + 2H)> 162 — (¢, %ndH : qs)) 1.
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Similarly,
o
(-

= (v*w D 4 3 (R (B2 4 200) ) + (Snd - Wb)) ‘1

Vb + e Db+ ~ [n(l—i—H)—l]ei-w,w)*

Vil/J—i-ei-D*z/z,w) xe

Let

and
Ry = R+n?(H? + 2H) + 2indH - .

Note that (1.3) ensures that Ry is nonnegative. Now we obtain

/@M (¢’vi¢+ei'D¢> *ei_/aM <¢7i[n(1+H)—1]ei~qﬁ) * e

= /8M (qb,@iqi)—}-ei-]:)gb)*ei—/aM ((b, —nHe; - gb)*ei
[ 196P = Do + 4 (6. R 0).
M

(3.10) 1

and

/8]\/[ (vﬂ,anei-D@ZJﬂﬁ)*eiJr/ (%[ (1+H)—1le; - 1, ¢) o

= /69M<—@f1/1+ei-f)*w,w>*e’—i—/@M(%nHeiw/J,w)*e
= [ R =D+ (R ).

4. Rigidity for strongly asymptotically hyperbolic manifolds

Let M be a complete spin manifold with R nonnegative and bounded. Let
C§°(S) be the space of smooth sections with compact support. Define an inner

product on S by
(06), - [ (95.99)+ 20

and let H'(S) be the closure of C§°(S) with respect to this inner product. Then
H'(S) with the above inner product is a Hilbert space. Now define a bounded
bilinear form B on C§°(S) by

(o) - [, (pe.5v).
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By (3.10), we obtain

B(o.0) = [ Vol +5(0.f o)
- [;ﬁwﬁ+~ﬂ¢ﬁ+1(¢J%-¢)

Since R_ is bounded also, we can extend B to H'(S) as a coercive bilinear form
if R_ is nonnegative.

We extend the imaginary Killing spinors {¢o} on M to the whole M. With
respect to the metric ¢, these Killing spinors can be written as ¢g = A¢y. Now
we show that Vg € L2(S): On M,

Vxgo = (VX + %X : ) (A%)
Vx — VX) A¢0> + Vx <A¢o> ; : (A%)

( (
= (vx- VX)<A¢0)+A<V§§¢O)+;X <A¢0>
(7 = ¥x) (A00) = 5 (4X) (460) + 5 (4.

Vol < C(I9% 4] + |4 - Id]) 6ol
by (2.6). Therefore,

Thus,

(4.1) Vxdol < C(|V™A+ |4 1d])e?

X/,
(4.2) 1Déo| < c(|v90Ay FA - Idy)e%
as r — 0o. Since the sphere S, has area of the order "~V we know that
@QEO € L2(S)7
and hence
Dqgo S L2(S)
by the assumption of asymptotic hyperbolic metric. Therefore
- . i _ )
D¢o = Do — §nH¢o € L*(5)
by the assumption of behavior of H at infinity. Note that ¢o is not L? because
|¢0‘2 > Cler.
Lemma 4.1. There exists a unique spinor ¢, on H'(S) such that
D (<I51 + G30> =0
if (1.3) holds.
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Proof. Since B(-, ) is coercive on H'(S), and D¢y € L%(S), Vo € L*(S), the
Lax-Milgram lemma shows that there exists a spinor ¢; € H'(S) such that
D*D¢y = —D*Déy
weakly. Let ¢ = ¢1 + ¢o and v = D¢. The elliptic regularity tells us that
¢ € HY(S), and
D =0
in the classical sense. Then (3.11) implies
Vi = Vi = 51+ H)es -1 = 0.

Therefore,

Oull| < (1+ D)yl

Hence

0,2 <1+ H
on the complement of the zero set of ¥ on M. If there exists xg € M such that
|t(xo)| # 0, then integrate it along a path from xzo € M gives

(@) |2 > (o) |2+ (ol =lal)

Obviously, 1 is not in L?(S) which gives the contradiction. Hence ¢ = 0, and
the proof of lemma is complete. O

Proof of Theorem 1.1. Let ¢ be the solution of D¢ = 0 corresponding to the
imaginary Killing spinor ¢y constructed in Lemma 4.1. Submit this ¢ into
(3.10), we obtain

[ (oorepeec— [ (ojotio)ee
(4.3) = Ml%lzjti(qb,ﬁz .(,5).

Write ¢ = ¢1 + ¢o where ¢; € H'(S). Then

‘/Sm (6,920 + ec- Do) x

b0, Vigo + e - Do ) * €'
J ! )

IN

c/sw (1veoa] + 14 - 1d])e’,

and

/Soo (¢,%nHei-¢) x e’ SC/SOO |H|e".

By the assumption on the asymptotic behaviors of A and H at infinity, we see
that the left hand side of (4.3) vanishes, and hence

Vo = 0.
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Therefore
0=Dé=D¢— %an) — —%anﬁ.

This implies H = 0. Thus it reduces to the case of Min-Oo’s theorem [3] and
the proof of the theorem is complete. O
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