
Mathematical Research Letters 7, 695–708 (2000)

COMPACT SINGULARITIES OF MEROMORPHIC MAPPINGS
BETWEEN COMPLEX 3-DIMENSIONAL MANIFOLDS

Sergei Ivashkovich and Bernard Shiffman

Abstract. We prove that a meromorphic map defined on the complement of a
compact subset of a three-dimensional Stein manifold M and with values in a
compact complex three-fold X extends to the complement of a finite set of points.
If X is simply connected, then the map extends to all of M .

1. Introduction

The study of the extendibility of holomorphic and meromorphic mappings
began with the classical theorem of Hartogs [Ha] (see [Si]).

Let K be a compact subset of a domain M ⊂ C
n, n ≥ 2, such that

M\K is connected, and let f : M\K → C be a holomorphic function.
Then there exists a holomorphic function f̂ : M → C extending f ,
i.e., f̂ |M\K= f .

Shortly after Hartogs proved his theorem, E. E. Levi [Le] discovered that this
extension result holds true also for meromorphic functions.

A natural problem is to understand under what conditions Hartogs’ Theorem
(respectively Levi’s Theorem) holds when the mapping f takes values in a general
complex manifold X rather than C (respectively CP

1). Of course it is immediate
that Hartogs’ Theorem remains valid for holomorphic mappings with values in a
Stein manifold X, since such a manifold X can be embedded into C

N . It similarly
follows that Levi’s Theorem also remains valid for meromorphic mappings with
values in compact projective manifolds.

In 1971, Griffiths [Gr] and the second author [Sh] independently showed that
Hartogs’ Theorem is valid for holomorphic mappings into manifolds X carrying
a complete Hermitian metric with non-positive holomorphic scalar curvature,
answering a question was asked by Chern in [Che]. Concerning the meromorphic
mapping problem, the first author [Iv1] proved that Hartogs extension holds for
meromorphic maps into compact Kähler manifolds.

We recall two more results here due to K. Stein and M. Chazal. Stein proved
in [St] that Hartogs’ Theorem holds for holomorphic maps if dimX ≤ n − 2.
Recently Chazal [Cha] relaxed this condition to dimX ≤ n−1 and more generally
f can be meromorphic. The next case of interest is the equidimensional case
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dimX = n. It is well known that one doesn’t always have meromorphic extension
in this case, as is illustrated by the (holomorphic) projection f : C

n\{0} → X =
(Cn\{0})/Z to the Hopf manifold. (The Z-action is given by z

n
→ 2nz.) The goal
of this paper is to show that, at least for dimension ≤ 3, the singularity at 0 of
the Hopf map f is the only type of singularity that can occur for equidimensional
meromorphic maps:

Theorem 1. Let K be a compact set with connected complement in a Stein
manifold M of dimension 3, let X be a compact complex manifold of the same
dimension and let f : M \K → X be a meromorphic map. Then there exists a
finite set A = {a1, . . . , ad} ⊂ K such that:

1) f has a meromorphic extension f̂ : M \A → X;
2) for every coordinate ball B(aj) about a point aj ∈ A such that ∂B(aj)∩A =

∅, f̂(∂B(aj)) is not homologous to zero in X.

The same result when both M and X have dimension two was proved by the
first author in [Iv3, Corollary 4(b)]. It is open whether this result if valid for
equidimensional maps of dimension greater than 3. Of course, one cannot expect
to obtain such results when the dimension of X is greater then the dimension of
M ; see the remark in §1 below.

In the case of the Hopf map f : C
3 \ {0} → (C3 \ {0})/Z mentioned above,

A = {0}. Of course, the elements f̂(∂B(aj)) of the fifth homology group are very
special; they are often called spherical shells. If, for example, f̂ is a holomorphic
embedding in a neighborhood of ∂B(aj), then X is of a very restricted type: it
is a deformation of the Hopf 3-fold (see [Ka1]).

In particular, if the singular set (possibly blown up at finitely many points)
A is nonempty, then H5(X, R) �= 0. Poincaré duality then implies the following:

Corollary 2. If under the conditions of Theorem 1, H1(X, R) = 0, then f
extends meromorphically to all of M .

2. Reductions

For degenerate mappings, the result is known and is due to F. Chazal [Cha].
Hence, in the sequel, we always suppose that f is nondegenerate; i.e., rank f = 3.

We let ∆(r) = {z ∈ C : |z| < r} denote the disk or radius r about 0, and
we write ∆ = ∆(1). We consider the polydisk ∆n(r) = ∆(r)n and “annulus”
An(r, 1) = ∆n \ ∆n(r). We shall make frequent use of the following Hartogs
figure in C

3:
H2

1 (r) =
[
∆(1− r)×∆2

] ∪ [
∆×A2(r, 1)

]
.

By the standard method of extending analytic objects (see for example [Si]),
it suffices to prove either of the following two equivalent results:

Proposition 3. Let X be a compact complex 3-fold and let f : H2
1 (r) → X be a

nondegenerate meromorphic map. Then there is a discrete set {aj} ⊂ ∆3\H2
1 (r)
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and a meromorphic extension f̂ : ∆3 \ {aj} → X such that if B(aj) are disjoint
balls in ∆3 centered at aj, then f̂(∂B(aj)) is not homologous to zero in X.

Proposition 4. Let M, W be open sets in C
3, and suppose p ∈ M ∩ ∂W such

that W is smooth and strictly pseudoconvex at p. Let U = M \ W . Suppose
f : U → X is a nondegenerate meromorphic map to a compact 3-fold X. Then
there is an open set Ũ ⊃ U ∪ {p} such that f has a meromorphic extension f̂

to Ũ \ {p}, and either f̂ is meromorphic at p or f̂(∂B(p)) is not homologous to
zero in X, where B(p) is a ball about p contained in Ũ .

We note that Proposition 4 follows from Proposition 3 with the additional
simplifying assumption that f is holomorphic on ∆ × A2(r, 1). To see this, we
observe that the set of points of indeterminacy If of our meromorphic map f
has codimension at least two, i.e., is a curve together with a discrete set of
points. Let M, W, p be as in Proposition 4 and let ∆2

p1
= {p1}×∆2 denote the

vertical bidisk passing through p = (p1, p2, p3). We can assume, after making a
quadratic change of coordinates, that ∆2

p1
∩If contains no curves and ∆2

p1
∩W =

{p}. After translating and stretching coordinates, we then obtain a Hartogs
figure H2

1 (r) contained in U , with p in the corresponding polydisk ∆3, such that
[∆ × A2(r, 1)] ∩ If = ∅, so we can apply the modified Proposition 3 to obtain
the conclusion of Proposition 4 with Ũ = ∆3.

Proposition 3 follows from Proposition 4, since the Hartogs figure can be
exhausted by a family of strictly pseudoconcave hypersurfaces and this family
can be continued to exhaust ∆3. Thus, when proving Proposition 3, we may
assume that f is holomorphic on ∆×A2(r, 1).

Remark: The reader may observe that these results involves extension from
a “1-concave” 3-dimensional domain. It is worthwhile to note that in general
there is no extension of meromorphic maps with values in compact 3-dimensional
manifolds from 2-concave domains, such as the classical Hartogs figure

H1
2 (r) :=

[
∆2(1− r)×∆

] ∪ [
∆2 ×A1(r)

]
.

Namely, M. Kato constructed in [Ka2] an example of a compact complex three-
fold X and a holomorphic mapping f : C

2 \ B̄ → X defined on the complement
of a ball B ⊂ C

2, such that every point of the sphere ∂B is an essential singular
point of f .

We shall prove Proposition 3 in §2 after we make the following reductions:
a) First of all, as was already explained, we can assume that f : H2

1 (r) → X
is nondegenerate and holomorphic on ∆×A2(r, 1).

b) We can further assume that there is no hypersurface in H2
1 (r) which f sends

to a point. If such a hypersurface exists, then by shrinking H2
1 (r) a little

bit, we can suppose that there are finitely many of them. Then by blowing
up the image points sufficiently many times, we obtain a modification X̂

of X together with a lift f̂ of f to a meromorphic map f̂ : H2
1 (r) → X̂
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having the desired property. After extending f̂ , we can push it down to
extend f itself.

c) We write
A2

s = {s} ×A2(r, 1) , s ∈ ∆ .

After again shrinking H2
1 (r) a little, we can suppose that A2

s contains no
curves contracted by f to a point, for all s ∈ ∆. Indeed, since rank f = 3,
there are at most 1-parameter families of contracted curves. We consider
small quadratic changes of the z1 coordinate: z̃1 = z1 +Q(z2, z3), where Q
is a polynomial of degree 2 with small coefficients. The set of such Q such
that z̃1 is constant on a fixed holomorphic curve is of codimension at least
2. Whence, for an open dense set of such Q, the coordinate function z̃1 is
nonconstant on each contracted curve; i.e., for all s ∈ ∆, z̃−1

1 (s) contains
no contracted curves.

d) By the above argument, we can also assume that none of the A2
s are con-

tained in the critical set Cf of f .
e) By the argument below, we can also assume that for all s ∈ ∆, there do

not exist nonempty disjoint open subsets V1, V2 of A2
s with f(V1) = f(V2).

To show that we can realize property (e) after a change of coordinates, we let

U =
[
∆×A2(r, 1)

] \ (If ∪ Cf )

and we consider the set

D = {(z, w) ∈ U × U : z �= w, f(z) = f(w)} ,

which is an analytic subvariety of U × U minus the diagonal. Note that D
is locally given as the graph of a biholomorphic map (and thus is a smooth
3-dimensional submanifold). It suffices to show that we can make a small per-
turbation of coordinates so that

dimD ∩ (∆2
s ×∆2

s) ≤ 1(1)

for all s ∈ ∆.
To show (1), we let P l

n denote the vector space of polynomials of degree ≤ l
on C

n. Note that

dimP l
n =

(
l + n

n

)
.(2)

We also let J l
a(g) ∈ P l

n denote the l-jet of a germ g ∈ nOa (a ∈ C
n). We shall

use the following lemma:

Lemma 5. Let ϕ : ∆m → C
n be a holomorphic map such that ϕ(0) = a and

rank0ϕ = m. Then

codimPl
n
{f ∈ P l

n : J l
0(f ◦ ϕ) = 0} =

(
l + m

m

)
.

Proof. By a change of coordinates, we can assume without loss of generality that
ϕ(z1, . . . , zm) = (z1, . . . , zm, 0, . . . , 0). The result then follows immediately from
(1).
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We let Ql denote the set of polynomials g in P l
3 such that dg does not vanish

on ∆3(2). (Note that small polynomial perturbations of the coordinate function
z1 are in Ql.) Let a = (z0, w0) ∈ D ∩∆6(2) be arbitrary, and let Ba denote the
set of polynomials g in Q5 with

dima{(z, w) ∈ D : g(z) = g(z0), g(w) = g(w0)} > 1 .

We shall show that

codimQ5Ba ≥ 6 .(3)

Since dimD = 3, (3) implies that we can choose g ∈ P5
3 such that g is a small

deformation of the coordinate function z1 and

dimD ∩ (
g−1(s)× g−1(t)

) ≤ 1 for all s, t ∈ ∆ .

If we then replace z1 with z̃1 = g, (1) will be satisfied.
To verify (3), we first consider an arbitrary quadratic polynomial g1 ∈ Q2,

and we let

E = {(z, w) ∈ D : g1(z) = g1(z0)} .

Since D is locally given as a graph and dg1(z0) �= 0, E is smooth at z0. Now
let ϕ = (ϕ1, ϕ2) : ∆2 → E with ϕ(0) = a and rank0ϕ = 2. This implies
that rank0ϕ1 = rank0ϕ2 = 2. Let B′(g1) denote the set of g2 ∈ Q2 such that
J 2

0 (g2 ◦ ϕ2) = 0. By Lemma 5, codimB′(g1) ≥
(
4
2

)
= 6. Furthermore, we note

that if we replace g1 with a germ g̃1 ∈ 3Oz0 with the same 2-jet at z0, then we can
choose ϕ̃2 with the same 2-jet (at 0) as ϕ2 so that (ϕ1, ϕ̃2) : ∆2 → E has the same
2-jet (at 0) as ϕ. Thus if g2 ∈ Q2\B′(g1), we have J 2

0 (g2◦ϕ̃2) = J 2
0 (g2◦ϕ2) �= 0.

Furthermore, if we also replace this g2 with g̃2 ∈ 3Ow0 with the same 2-jet at
w0, then J 2

0 (g̃2 ◦ ϕ̃2) �= 0, and hence

dima{(z, w) ∈ D : g̃1(z) = g1(z0), g̃2(w) = g2(w0)} = 1 .

Now consider the linear map

τa : P5
3 → P2

3 × P2
3 , g 
→ (J 2

z0
(g),J 2

w0
(g)

)
.

By the above discussion, Ba ⊂ τ−1
a (B′

a), where

B′
a = {(g1, g2) : g1 ∈ Q2, g2 ∈ B′(g1)} .

Since τ is surjective, it follows that

codimQ5Ba ≥ codimQ2×Q2B′
a ≥ 6 .

This completes the verification of (1), and hence conditions (a)–(e) above can
be satisfied.
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3. Proof of Proposition 3

We are now prepared to prove the Hartogs extension property. By our con-
struction above, we may assume that the map f : H2

1 (r) → X of Proposition 3
possesses the following properties:

i) f is non-degenerate and holomorphic on a neighborhood of ∆×A2(r, 1);
ii) for all s ∈ ∆, the set A2

s contains no curves contracted by f to a point;
iii) for all s ∈ ∆, there do not exist nonempty disjoint open subsets V1, V2 of

A2
s with f(V1) = f(V2);

We must show that f extends meromorphically to ∆3 minus a discrete set of
points. Denote by W some open subset of ∆ such that f can be meromorphically
extended onto the Hartogs domain

HW (r) :=
[
W ×∆2

] ∪ [
∆×A2(r, 1)

]
.

Let Ω be a strictly positive (2, 2)-form on X with ddcΩ = 0. Existence of such
a form on the compact 3-dimensional manifold X follows from the absence of
nonconstant plurisubharmonic functions on X via duality and the Hahn-Banach
theorem. In fact even more is true. Every Hermitian metric on X is conformally
equivalent to a metric such that the square of its associated (1, 1)-form ω is
ddc-closed, see [Ga]. In the sequel, we shall take Ω = ω2, where ω is such a
Gauduchon form. Denote by T the pull-back of Ω by f , i.e. T = f∗Ω. More
accurately, f∗Ω is defined in the case of meromorphic f as follows. Let Γ̃f denote
the desingularization of the graph Γf ⊂ HW (r)×X of f and let π1 : Γ̃f → HW (r)
and π2 : Γ̃f → X be the natural projections. Note that π1 is proper by the very
definition of meromorphic map. Define

f∗Ω := π1∗π∗
2Ω .(4)

The current T = f∗Ω is a positive bidegree (2, 2) current on HW (r). Being the
push-forward of a smooth form (on a desingularization of Γf ), T has coefficients
in L1

loc(HW (r)).
To see that the push-forward of a smooth form η by a modification π : M̃ → M

has coefficients in L1
loc, it suffices to show that π∗η has no mass on the center

C of π. (In our case C = If .) But for any test form ϕ on M and any sequence
ρn → χC with 0 ≤ ρn ≤ 1, we have (π∗η, ρnϕ) =

∫
M̃

η ∧ π∗(ρnϕ) → 0. Hence
‖π∗η‖(E) = 0. (In fact, this holds when π is any surjective holomorphic map
that is proper on Supp η.)

It follows immediately from (4) that ddcT = 0. Moreover, T is smooth on
HW (r) \ If , since outside the set If of indeterminacy points of f , it is the usual
pull-back of the smooth form Ω.

We write ∆2
s := {s} ×∆2, for s ∈ ∆. The function

µ(s) :=
∫

∆2
s

f∗Ω
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is well defined for all s ∈ W , since by the above, (f∗Ω)|∆2
s

= (f∆2
s
)∗Ω is a

positive, bidegree (2, 2)-current on a neighborhood of ∆2
s and is in L1

loc. We
remark that µ(s) is nothing but the volume of f(∆2

s) with respect to Ω counted
with multiplicities.

Lemma 6. The function µ is positive and smooth on W , and its Laplacian ∆µ
smoothly extends onto the whole unit disk ∆.

Proof. (We follow the method of proof of [Iv2, Lemma 3.1].) The positivity of
µ follows from the positivity of f∗Ω and property (ii) above. To show that ∆µ
extends to the unit disk, we begin by writing

T =
3∑

α,β=1

tαβ̄dz
α∨ ∧ dz̄

β∨ ,

where dz
1∨ = dz2 ∧ dz3, dz

2∨ = −dz1 ∧ dz3, dz
3∨ = dz1 ∧ dz2. The function µ is

then given by

µ(z1) =
∫

∆2
t11̄(z1, z2, z3)dz2 ∧ dz̄2 ∧ dz3 ∧ dz̄3 .

Let

T ε =
3∑

α,β=1

tεαβ̄dz
α∨ ∧ dz̄

β∨

be the smoothing of T by convolution; the T ε are smooth forms converging to
T in L1 as ε → 0. On HW (r) \ If the convergence is in the C∞ topology. The
functions

µε(z1) :=
∫

∆2
z1

T ε =
∫

∆2
z1

tε11̄(z1, z2, z3)dz2 ∧ dz̄2 ∧ dz3 ∧ dz̄3

are smooth in W .
The condition ddcT = 0 reads as

∑
α,β

∂2tαβ̄

∂zα∂z̄β
= 0.
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So,

∆µε (z1) = 4
∫

∆2
z1

∂2tε11̄
∂z1∂z̄1

dz2 ∧ dz3 ∧ dz̄2 ∧ dz̄3

= −4
∫

∆2
z1

∑
(α,β) 
=(1,1)

∂2tε
αβ̄

∂zα∂z̄β
dz2 ∧ dz̄2 ∧ dz3 ∧ dz̄3

= −4
∫

∂∆2
z1

[
3∑

α=2

±∂tεα1̄

∂z̄1
dz5−α ∧ dz̄2 ∧ dz̄3

+
3∑

α=1

3∑
β=2

±
∂tε

αβ̄

∂zα
dz2 ∧ dz3 ∧ dz̄5−β

 .

Since f is holomorphic on a neighborhood of ∆× ∂∆2, the current T is smooth
on ∆× ∂∆2 and thus ∆µε converges smoothly to the function ψ given by

(5) ψ(z1) = −4
∫

∂∆2
z1

[
3∑

α=2

±∂tα1̄

∂z̄1
dz5−α ∧ dz̄2 ∧ dz̄3

+
3∑

α=1

3∑
β=2

±∂tαβ̄

∂zα
dz2 ∧ dz3 ∧ dz̄5−β

 .

But (5) defines a smooth function on all of ∆. While µε → µ in L1 on W , so
∆µε → ∆µ on W . This shows that ∆µ = ψ is smooth and smoothly extends
onto the disk ∆. Thus µ is also smooth on W .

Lemma 7. Suppose that f is non-degenerate and that there exists a sequence
{sn} ∈ W converging to s0 ∈ ∆ such that µ(sn) is bounded. Then:

1) f0 := f |A2
s0

meromorphically extends onto ∆2
s0

;
2) the volumes of the graphs Γfsn

are uniformly bounded in n;
3) f meromorphically extends onto U0×∆2 for some neighborhood U0 of s0.

Proof. 1) We let fn = f |∆2
sn

and we write Fn = fn(∆2
sn

). We further write
Σn = fn(∂∆2

sn
), Σ0 = f0(∂∆2

s0
). Since the volumes µ(sn) of the Fn are uni-

formly bounded, by Bishop’s theorem (see for example [HS]) we can assume, after
passing to a subsequence, that Fn converges to a pure 2-dimensional analytic
subset F of X \ Σ0. Note that F̄ = F ∪ Σ0.

Case 1. F̄ is a subvariety of X.
In this case

f0|A2
s0

: A2
s0
→ F 0

is a holomorphic map into an irreducible component F 0 of F̄ . If F̂ 0 denotes a
desingularization of F 0, then f0 lifts to a meromorphic map f̂0 from A2

s0
to F̂ 0.

By the 2-dimensional version of Theorem 1 proved in [Iv3, Cor. 4(b)], f̂0 extends
meromorphically onto ∆2

s0
minus a finite set of points. If this set is nonempty,
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then f̂0(∂∆2
s0

) would not be homologous to zero in F̂ 0, and hence Σ0 = f0(∂∆2
s0

)
would not be homologous to zero in F 0. But Σ0 = lim Σn = lim ∂Fn = ∂ lim Fn

in the sense of currents. Since Supp limFn ⊂ F̄ , Σ0 is homologous to zero in F̄
and therefore in F 0, a contradiction. So f0 extends onto all of ∆2

s0
.

Case 2. F̄ is not a subvariety of X.
Let F 0 be the irreducible component of F containing f0(A2

s0
) \ Σ0. Define

the analytic space E = F0 ∪ A2
s0

/∼, where the equivalence relation is defined
as follows: The points a ∈ F 0 and b ∈ A2

s0
are equivalent iff a = f0(b), and

necessarily b′ ∈ A2
s0

is equivalent to b iff f0(b) = f0(b′). By property (ii) above,
this is a proper equivalence relation and hence E is a complex space. Let π :
E → F̄ 0 ⊂ X be the projection defined by π(a) = a for a ∈ F 0 and π(b) = f0(b)
for b ∈ A2

s0
. Let Ê

η→E denote the normalization. By property (iii), the map
f0 : A2

s0
→ E is generically one-to-one and thus is a normalization of its image.

By the uniqueness of the normalization, f0 lifts to a map f̂0 : A2
s0
→ Ê, i.e.,

η ◦ f̂0 = f0. The map f̂0 is a biholomorphism onto its image.
The boundary ∂Ê, being biholomorphic to ∂∆2, is strictly pseudoconvex after

shrinking slightly, so by Grauert’s theorem, Ê can be blown down to a normal
Stein space. This easily yields an extension of f0 onto ∆2

s0
.

2) We denote the extension of f0 onto ∆2
s0

also by f0. Let F ′ be the maximal
compact pure 2-dimensional variety contained in F̄ . (In Case 1 above, F ′ = F̄ ,
whereas in Case 2, F ′ = F \ F 0.) We consider the pure two-dimensional analytic
set

Γ = Γf0 ∪ (If0 × F ′) .

in (∆×∆2)×X, where If0 is the (finite) set of points of indeterminacy of f0.
Step 1. We claim that for all ε > 0 the graph Γfn belongs to the ε-neighborhood
of Γ, for n � 0.

Neighborhoods are taken with respect to the Euclidean metric on C
3 and

Gauduchon metric on X. (In fact, any choice of metric works as well as this
one.) This claim follows immediately from Lemma 8 below.

We say that a sequence of meromorphic maps fn : U → X converges to a
holomorphic map f0 on a domain U if for all compact subsets K ⊂ U , Ifn∩K = ∅
for n � 0 and fn → f0 uniformly on K.

Lemma 8. Let fn : ∆̄2 → X be a sequence of meromorphic maps, where X
is a compact complex manifold. Suppose that fn is holomorphic on A, where
A = A2(r, 1). If there exists a meromorphic map f0 : ∆2 → X such that
fn|A → f0|A, then fn → f0 on ∆2 \ If0 .

Lemma 8 is a special case of Proposition 1.1.1 in [Iv4]. (Proposition 1.1.1 in
[Iv4] is stated in terms of “strong convergence” of meromorphic maps. However,
if {fn} strongly converges to a holomorphic map, then the sequence converges
in the above sense. This is the content of the “Rouché principle” of [Iv4, Theo-
rem 1].)
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To complete the proof of (2), we consider a point p ∈ Γ and take any open
W  p adapted to Γ, i.e. biholomorphic to ∆2 × ∆4 = U × B in such a way
that (Ū × ∂B) ∩ Γ = ∅. Then for n � 1, we have Γfn ∩ (Ū × ∂B) = ∅ and thus
p |Γfn

: Γfn∩(U×B) → U is a dn-sheeted analytic covering, where p : U×B → U
is a natural projection.
Step 2. The number {dn} of sheets is uniformly bounded.

Consider the following two cases. Case 1. p ∈ (If0 × F ′) \ Γf0 . In this
case as W  p we can take the following neighborhood. Let p = (a, b), where
a ∈ If0 ⊂ C

3 and b ∈ F ′ ⊂ X. Take a neighborhood of b in X of the form
∆2 × ∆ such that F ′ ∩ (∆̄2 × ∂∆) = ∅. Then take some small ∆3  a in C

3

and put U = ∆2 and B = ∆ ×∆3. If the number dn of sheets of the analytic
cover πU : Γfn ∩ (U × B) → U is not bounded, it will contradict the fact that
fn(∆2

sn
) ∩ (∆2 ×∆) = Fn ∩ (∆2 ×∆) has uniformly bounded volume (counted

with multiplicities).
One should remark now that boundedness of the number of sheets does not

depend on the particular choice of the adapted neighborhood of p.
Case 2. p ∈ Γf0 . Let W = U × B  p be some adapted neighborhood. Find a
point q ∈ U such that all its pre-images {q1, ..., qN} = π−1

U (q) ∩ Γ are smooth
points of Γ and πU is a biholomorphism between neighborhoods Vj  qj on
Γ and V on U . Denote by bj the projection of qj into B. Take mutually
disjoint polydisks Bj ⊂ B with centers bj . Consider Wj := Vj × Bj as adapted
neighborhoods of Γ in qj . They are adapted also for Γfn , n >> 0. Denote by
dj

n the corresponding number of sheets. If dn is not bounded then at least one
sequence dj

n is also unbounded. Fix j with dn
j unbounded.

If qj ∈ (If0 × F ′) \ Γf0 , then everything reduces to Case 1. So let qj ∈ Γf0 .
Perturbing q and thus qj if necessary, we can suppose that qj is a point where our
map f is holomorphic. More precisely qj = (a, f(a)) for some a ∈ ∆×∆2 ⊂ C

3.
Now the contradiction is immediate, because the graphs Γfn uniformly approach
Γf0 while fn converges to f in a neighborhood of a.

3) We are exactly under the assumptions of Proposition 1.3 of [Iv3], i.e., we can
apply the “Continuity Principle.” (The condition of boundedness of the cycle
geometry is insured by Proposition 1.4 from [Iv3].) This gives us an extension
of f onto Us0 ×∆2.

Let us proceed further with the proof of the theorem. Let W be the maximal
open subset of the disc ∆ such that f meromorphically extends onto HW (r).

Lemma 9. ∆ \W is a closed complete polar set in ∆.

The proof is the same as that of Lemma 2.4 from [Iv3] and will be omitted.

It suffices to show that there exists f̂ : ∆3(1 − δ) \ {aj} → X satisfying the
conclusion of Proposition 3 for arbitrary δ > 0. We now repeat the above argu-
ments using two slightly deformed coordinate systems (z′1, z2, z3) and (z′′1 , z2, z3),
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where
z′1 = z1 + εz2 + O(|z|2) , z′′1 = z1 + εz3 + O(|z|2) .

Here the O(|z|2) terms are chosen so that conditions (i)–(iii) at the beginning of
this section are satisfied for each of the two coordinate systems, after shrinking
r if necessary. (As was shown in §1, these terms can be taken to be polynomials
consisting of terms of degrees 2 through 5.) We choose ε and the O(|z|2) terms
to be small enough so that ∆3(1 − δ) ⊂ ∆′3 ⊂ ∆3, ∆3(1 − δ) ⊂ ∆′′3 ⊂ ∆3,
where ∆′3 and ∆′′3 are the polydisks of radius 1− δ

2 in the new coordinates.
Applying the above argument to the new coordinate systems, we obtain max-

imal open W ′, W ′′ in ∆̃ := ∆(1 − δ
2 ) such that f extends meromorphically to

the Hartogs domains H ′
W ′(r), H ′′

W ′′(r). We let S1 = ∆̃ \W, S2 = ∆̃ \W ′, S3 =
∆̃ \W ′′. Now consider the coordinates

w1 = z1 , w2 = z′1 , w3 = z′′1

and let U denote the image of ∆3(1−δ) under the coordinate map (w1, w2, w3) .
(We may assume that z′1, z

′′
1 are chosen so that the wj indeed provide coordinates

on ∆3.)
In terms of the w-coordinates, f then extends to a meromorphic map f̂ on

U \(S1×S2×S3). Now let s0 be an arbitrary point in S := S1×S2×S3. We must
show that s0 is an isolated point of S and that f̂(∂Bs0(r)) is not homologous to
zero in X, for any ball Bs0(r) centered at s0 such that Bs0(r) ∩ S = {s0}.

Since polar sets in C are of Hausdorff dimension zero, we can choose a polydisk
∆3

0 about s0 such that the set K := S ∩∆3
0 is compact. An identical proof to

that of Lemma 3.3 from [Iv2] now shows that the current T = f∗Ω has locally
summable coefficients on all of ∆3

0. Hence T extends to a unique current T̃ on
∆3

0 with L1
loc coefficients. The following lemma then tells us that ddcT̃ is of

order 0:

Lemma 10. [Iv2, Proposition 2.3] Let K be a complete pluripolar, compact set
in a strictly pseudoconvex domain D ⊂ C

n and T a positive, bidimension (1, 1)
current in D \K. Suppose that:

1) ddcT ≤ 0 in D \K,
2) T has locally finite mass in a neighborhood of K,
3) dT and dcT have measure coefficients on D \K.

Then the current ddcT̃ has measure coefficients in D.

(Condition (3) on dT and dcT was omitted in [Iv2], but is used in the proof. In
our case T = π1∗π∗

2Ω, so this condition follows from the fact that dT = π1∗π∗
2dΩ

is the push-forward of a smooth form by a proper map, and similarly for dcT .)
Since ddcT = 0, the support of the current ddcT̃ must be contained in K. We

also conclude from the Lemma 2.6 in [Iv3] that ddcT̃ ≤ 0. Thus we can write
ddcT̃ = νω3

e , where ωe is the Euclidean Kähler form on C
3. Then for any ball

Bs0(r) ⊂⊂ ∆3
0 about s0 with ∂Bs0(r) ∩K = ∅, we have that either
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ν(K ∩Bs0(r)) = 0,(6)

or

0 > ν(K ∩Bs0(r)) =
∫

Bs0 (r)

ddcT̃ = lim
ε→0

∫
Bs0 (r)

ddcT̃ε

= lim
ε→0

∫
∂Bs0 (r)

dcT̃ε =
∫

∂Bs0 (r)

dcTε =
∫

f(∂Bs0 (r))

dcΩ .

(7)

Case 1. ν(K ∩Bs0(r)) = 0.

In this case the negativity of T̃ implies that ddcT̃ = 0. Therefore we can find
a polydisk neighborhood ∆3 ⊂ Bs0(r) of s0 and a (2, 1)-form Γ in ∆3 such that:

1) f is holomorphic in a neighborhood of ∆ × ∂∆2 (and therefore T̃ is smooth
there);
2) T̃ = i(∂Γ̄− ∂̄Γ) in a neighborhood of ∆̄3;
3) Γ is smooth in a neighborhood of ∆× ∂∆2.

The zero-dimensionality of K implies that there exists a nonempty open W ⊂
∆ such that f is defined and meromorphic on W ×∆2 and that s1

0 ∈ ∂W ∩∆,
where s1

0 is the first coordinate of s0. As before we let

µ(z1) =
∫

∆2
z1

T̃ = i

∫
∂∆2

z1

(Γ̄− Γ) .

By the smoothness of Γ, the function µ is bounded. Therefore by Lemma 7, f
extends meromorphically to a neighborhood of s0.

Case 2. ν(S ∩Bs0(r)) < 0.

By (7), the 5-cycle f(∂Bs0(r)) is not homologous to zero in X. Furthermore,∫
f(∂Bs0 (r))

dcΩ depends only on the integer homology class of f(∂Bs0(r)), since
ddcΩ = 0. Hence, ∫

f(∂Bs0 (r))

dcΩ ≤ −δ < 0 ,

where δ is independent of s0 and r (and depends only on X and Ω). This shows
that K is finite, and completes the proof.

We remark that our proof gives more. Namely, if D ⊂⊂ M is a bounded
domain with smooth boundary Σ such that D∩A �= ∅ and Σ∩A = ∅, then f(Σ)
is not homologous to zero in X.
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4. Generalizations and open questions

In [Iv3], the classes P−
k and Gk of complex spaces were introduced. Recall

that P−
k is the class of normal complex spaces which carry a strictly positive

(k, k)-form Ωk,k with ddcΩk,k ≤ 0, and Gk is the subclass of P−
k which consists

of complex spaces carrying a strictly positive (k, k)-form Ωk,k with ddcΩk,k = 0.
Note that Gk contains all compact complex manifolds of dimension k + 1.

It is easy to observe that our above proof gives the following more general
statement of Proposition 3:

Proposition 11. Let X be a compact complex manifold in the class P−
2 . Then

every meromorphic map f : H2
1 (r) → X extends meromorphically onto ∆3 \ A,

where A is a closed, complete pluripolar subset of Hausdorff dimension zero. If
moreover X ∈ G2 then A is discrete and for every ball B with center a ∈ A such
that ∂B ∩A = ∅, f(∂B) is not homologous to zero in X.

To consider the extension of mappings from higher dimensional domains, we
introduce the Hartogs figures

Hk
d (r) :=

[
∆d(1− r)×∆k

] ∪ [
∆d ×Ak(r)

] ⊂ C
d+k .

We conjecture that the analogous result should hold for meromorphic mappings
from Hk

d (r) to compact manifolds (and spaces) in the classes P−
k and Gk. In

particular, Theorem 1 should be true for meromorphic mappings between equidi-
mensional manifolds in all dimensions. The main difficulty lies in the fact that
it is impossible in general to make the reductions (a)–(c) of §1. (Note that re-
ductions (d)–(e) can be achieved in all dimensions.) However, these reductions
are unnecessary in the case when our map is locally biholomorphic, as we state
below.

Proposition 12. Let X be a compact complex space of dimension k + 1. Then
every holomorphic map f : Hk

1 (r) → X with zero-dimensional fibers extends
meromorphically onto ∆k+1 \ A, where A is discrete, and for every ball B with
center a ∈ A such that ∂B ∩A = ∅, f(∂B) is not homologous to zero in X.

The proof is by induction on the dimension n = k+1. For the inductive step,
the function µ is defined in terms of the push-forward of a ddc-closed, positive
(k, k)-form Ω on a desingularization of X.
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