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REGULARITY OF WEAK SOLUTIONS TO CRITICAL
EXPONENT VARIATIONAL EQUATIONS

Karen K. Uhlenbeck1 and Jeff A. Viaclovsky2

Abstract. We present a general method for proving regularity of weak solutions
to variational equations with critical exponent nonlinearities. We will focus pri-
marily on the C∞ regularity of L2

2 solutions to a nonlinear fourth order variational
equation in 4 dimensions. This equation was considered by Chang, Gursky, and
Yang in [CGY99], where regularity was obtained only for minimizers using tech-
niques from Morrey [Mor48] and Schoen-Uhlenbeck [SU82]. The methods in this
paper apply to a more general class of critical exponent variational equations in
n dimensions with leading term a power of the Laplacian.

1. Introduction

We let (M, g) be a compact Riemannian manifold of dimension n = 4. We
consider the functional F : L2

2(M) → R from [CGY99] defined by

F [w] =
∫

M

[γ(∆w)2 + (∆w + β|∇w|2)2 + D(∇w,∇w) + E(w)]dvol,(1.1)

where β, γ ∈ R, γ �= −1, E : R → R, and D is a symmetric 2-tensor (note
that our F is more general than the functional considered in [CGY99] in that
we allow the coefficient of (∆w)2 to be negative). Furthermore, we assume that
for some constants c1, c2, and c3

|E(x)| ≤ c1e
c2|x|, |D(v, v)| ≤ c3|v|2, and |E′(x)| ≤ c1e

c2|x|.(1.2)

We compute the first variation of the functional F :
d

dt
F [w + tφ]|t=0 =

∫
M

[2γ∆w∆φ + 2(∆w + β|∇w|2)(∆φ + 2β∇w · ∇φ)]dvol

+
∫

M

[D(∇w,∇φ) + E′(w)φ]dvol.

Integrating by parts, we find that the Euler-Lagrange equations take the follow-
ing form:

2(1 + γ)∆2w + 2β∆|∇w|2 − 4βdiv[(∆w + β|∇w|2)∇w]

= div[D(∇w, ·)] − E′(w).
(1.3)

The main result in this paper is the following:
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Theorem 1.1. If w ∈ L2
2(M) is a critical point of the functional F in (1.1),

and the conditions (1.2) are satisfied, then w ∈ C∞(M).

We now give an outline of the proof of Theorem 1.1. We take advantage of the
divergence form of the equation by using negative Sobolev spaces. The equation
then maps L2

2 → L2
−2. A bootstrap argument shows that if we have a solution

in Lp
2 for any p > 2, then it is smooth (Lemma 2.1).

For the next part of the proof, we just look at the equation under a microscope,
and use the scale invariant norm ‖∆w‖L2 + ‖∇w‖L4 . The point here is that by
using a powerful enough microscope, we may assume that this norm is as small
as we want, and we may just work in the unit ball, B1 ⊂ R4. We then use a
cutoff function, freeze coefficients, and view the equation as a linear equation.
Since we are assuming the above norm is very small, we may then view the linear
operator as a small perturbation of the biharmonic operator. Using a result on
the solvability of the Dirichlet problem in Lp

2 (Lemma 3.1), we conclude our
solution is in Lp

2 for some p > 2. This part of the argument will be done in
Section 3.

To end the introduction, we remark that this method applies to the regularity
question for a more general class of variational equations with leading term a
power of the Laplacian. We present some simple examples in Section 4.

2. Bootstrap

In this section we will prove the following:

Lemma 2.1. If w ∈ Lp
2(M) is a weak solution of (1.3) for some p > 2, then

w ∈ C∞(M).

Proof. We begin with some results on multiplication of functions in Sobolev
spaces.

Proposition 2.1. If 1 ≤ p < 4, then multiplication is a continuous multilinear
map of

Lp
1 ⊕ Lp

1 → Lq
1, q = 4p

8−p

Lp ⊕ Lp
1 → Lq, q = 4p

8−p

Lp
1 ⊕ Lp

1 ⊕ Lp
1 → Lq, q = 4p

3(4−p) .

If 4 < p < ∞, then

Lp
1 ⊕ Lp

1 → Lp
1

Lp ⊕ Lp
1 → Lp

Lp
1 ⊕ Lp

1 ⊕ Lp
1 → Lp

1.

Proof. The proof may be found in [Pal68].

By the Moser-Trudinger inequality ([Mos71], [Tru67]), if w ∈ L2
2, then ew ∈ Lp

for any p > 1. Therefore by the assumptions (1.2), and Proposition 2.1, we find
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that if 2 ≤ p < 4, equation (1.3) looks like (with a large abuse of notation)

∆2w + L
4p

8−p

−1 + L
4p

8−p

−1 + L
4p

3(4−p)
−1 ∈ Lp.

If 2 ≤ p < 4, then
4p

3(4 − p)
≥ 4p

8 − p
.

Therefore we conclude that

∆2w ∈ L
4p

8−p

−1 .

From elliptic regularity and the Sobolev embedding theorem, we obtain

w ∈ L
4p

8−p

3 ⊂ L
2p

4−p

2 .

We see easily that we may iterate and get that w ∈ Lp′
2 for some p′ > 4.

Using the second part of Proposition 2.1, we find that equation (1.3) now
looks like

∆2w + Lp′
−1 + Lp′

−1 + Lp′ ∈ Lp′
.

Therefore ∆2w ∈ Lp′
−1, and by elliptic regularity we have w ∈ Lp′

3 . Since p′ > 4,
by the Sobolev imbedding theorem we conclude that w ∈ C2,α, for some 0 <
α < 1, and it follows easily that w ∈ C∞.

3. Localization

From the previous section, we must now show that if w ∈ L2
2(M) is a weak

solution of (1.3), then w ∈ Lp
2(M) for some p > 2. First we will prove a local

regularity result assuming that certain norms are small (Proposition 3.1), and
then we will show this implies the full regularity result (Proposition 3.2). In
what follows, we let w ∈ L2

2(M) be a weak solution of (1.3).

Proposition 3.1. Let x0 ∈ M , and let B1 be the unit ball in a Riemannian
normal coordinate system {x} around x0. Then there exists an ε > 0 such that

‖∆w‖L2(B1) + ‖∇w‖L4(B1) < ε,(3.1)

and

max
i,j

‖gij − δij‖L∞(B1) < ε,(3.2)

imply that w ∈ Lq
2(B1/2) for some 2 < q < 4.

Proof. Recall that in Riemannian normal coordinates, gij = δij + O(|x|2) as
x → x0. We note the following formula for the biharmonic operator:

∆2
gw =

1√
g
∂i(gij√g∂j∆gw) =

1√
g
∂i

(
gij√g∂j

( 1√
g
∂k(gkl√g∂lw)

))
.
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Expanding this out in the {x} coordinates, we find the flat biharmonic operator
(which we will denote by ∆2

0) plus some error terms, the worst of which contains
fourth order derivatives of w, which we write in divergence form:

∆2
gw = ∆2

0w +
∑

i,j,k,l

∂i∂j

(
aij,kl∂k∂lw

)
+ lower order terms,

where aij,kl(x) = gij(x)gkl(x) − gij(0)gkl(0) = gij(x)gkl(x) − δijδkl.
We choose a cutoff function φ ∈ C∞

0 (B1), with φ ≡ 1 in B1/2. We multiply
equation (1.3) by φ, let h = φw, and we obtain

(3.3) 2(1 + γ)(∆2
0h + Lh) + 2β∆(∇w · ∇h) − 4βdiv[(∆w + β|∇w|2)∇h]

= f ∈ Lq
−2(B1) ,

for some 2 < q < 4, where L denotes the operator

Lh =
∑

i,j,k,l

∂i∂j

(
aij,kl∂k∂lh

)
.

We now freeze coefficients, view this as a linear equation in h, and estimate
the terms in Lp

−2. For any 2 < p0 < 4, and p in the closed interval 2 ≤ p ≤ p0,

‖∆(∇w · ∇h)‖Lp
−2

≤ C‖∇w · ∇h‖Lp ≤ C‖∇w‖L4‖∇h‖
L

4p
4−p

≤ Cε‖h‖
L

4p
4−p
1

≤ Cε‖h‖Lp
2
,

(3.4)

where ε denotes the maximum of the norms in (3.1) and (3.2), and the constants
do not depend on p. Next we have (for the same p),

‖div(∆w∇h)‖Lp
−2

≤ C‖∆w∇h‖Lp
−1

≤ C‖∆w∇h‖
L

4p
p+4

≤ C‖∆w‖L2‖∇h‖
L

4p
4−p

≤ Cε‖h‖
L

4p
4−p
1

≤ Cε‖h‖Lp
2
.

(3.5)

Similarly, we have

‖div(|∇w|2∇h)‖Lp
−2

≤ Cε2‖h‖Lp
2
.(3.6)

Finally, we estimate the operator L. Since aij,kl = O(ε), we have

‖Lh‖Lp
−2

= ‖
∑

i,j,k,l

∂i∂j

(
aij,kl∂k∂lh

) ‖Lp
−2

≤ C
∑

i,j,k,l

‖aij,kl∂k∂lh‖Lp

≤ Cε
∑
k,l

‖∂k∂lh‖Lp ≤ Cε‖h‖Lp
2
.

(3.7)

Since we are working in the unit ball, all of the Sobolev constants are fixed, so
for ε sufficiently small, the equation (3.3) is a small perturbation of the equation

∆2
0h = f ∈ Lq

−2(B1).

Lemma 3.1. The map

∆2
0 : Lp

2,0(B1) → Lp
−2(B1)

is an isomorphism for 1 < p < ∞.
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Proof. This is just the Dirichlet problem in Lp (see [Agm59]). The only subtlety
is that we are using negative Sobolev spaces, but we note that the estimates in
[Agm59] remain valid in this situation.

From the estimates (3.4), (3.5), (3.6), and (3.7) above, we conclude that for
ε sufficiently small, the linear operator in (3.3) is also an isomorphism between
Lp
−2,0(B1) and Lp

−2(B1) for 2 ≤ p ≤ p0 < 4. Choosing p0 > q, we may therefore
solve equation (3.3) in Lq

2,0(B1). From uniqueness in L2
2,0(B1), we conclude that

h ∈ Lq
2,0(B1), and therefore w ∈ Lq

2(B1/2).

Proposition 3.2. If w ∈ L2
2(M) is a weak solution of (1.3), then w ∈ Lq

2(M)
for some q > 2.

Proof. Let x0 ∈ M , and choose a Riemannian normal coordinate system {x}
around x0, so that gij = δij + O(|x|2). For 0 < r < 1, we will define the
dilated coordinates by {x̃ = rx}, and let T denote the change of coordinates
T : x̃ → x̃/r. We consider the function w̃(x̃) = T ∗w(x̃) = w(x̃/r) : B1 → R,
and define the metric g̃ = r2T ∗g. We multiply equation (1.3) by r4, and we
rewrite as

(3.8) 2(1 + γ)∆̃2w̃ + 2β∆̃|∇̃w̃|2 − 4βd̃iv[(∆̃w̃ + β|∇̃w̃|2)∇̃w̃]

= r2d̃iv[D(∇̃w̃, ·)] − r4E′(w̃),

where everything is taken with respect to the metric g̃. We see that w̃ satifies
a similar equation in B1 with respect to the g̃ metric. The only difference are
the terms on the right hand side. But since r < 1 these terms are smaller than
in the original equation, and Proposition 3.1 will of course remain valid for this
dilated equation.

We note that the norm in (3.1) is scale invariant. That is, if we scale the
metric by a constant, the norm does not change. Therefore for r sufficiently
small, we will have ‖∆̃w̃‖L2(B1) + ‖∇̃w̃‖L4(B1) < ε.

Next we make the important observation that the {x̃} coordinates are a
Riemannian normal coordinate system for the metric g̃. Therefore, we have
g̃ij(x̃) = δij + O(|x̃|2), so by choosing r sufficiently small, the quantity in (3.2)
will also be smaller than ε.

From Proposition 3.1, we conclude that w̃ ∈ Lq
2(B1/2), which implies that the

original function w ∈ Lq
2(Br) for some r < 1/2. We conclude that w ∈ Lq

2,loc(M),
and therefore since M is compact, w ∈ Lq

2(M).

Remark. The estimates depend on the profile of w ∈ L2
2(M), and therefore are

not uniform in the norm.

4. Other equations

The idea in this regularity argument works for other critical exponent prob-
lems (those in which the initial bootstrap argument fails) with leading term a
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power of the Laplacian. For example, the Yamabe equation in dimensions n > 2:

Lu = Ru
n+2
n−2 ,(4.1)

where L is the conformal Laplacian, and R is the scalar curvature. The corre-
sponding problem here is to prove C∞ regularity for L2

1 solutions (see [Tru68],
where regularity is proved using a different argument). To adapt the above
proof to this case, one exploits the dilational symmetry u �→ r

2−n
2 u(x/r), and

the corresponding scale invariant norm ‖u‖
L

2n
n−2

.
Another example is Q-curvature equation in dimensions n > 4:

Pu = Qu
n+4
n−4 ,(4.2)

where P is the generalized Paneitz operator, and Q is the Q-curvature (see
[CY97]). The corresponding problem is to prove C∞ regularity for L2

2 solu-
tions (in fact, the equation we considered previously in this paper is the four
dimensional analogue of this equation with some additional nonlinearities). For
this equation, one exploits the dilational symmetry u �→ r

4−n
2 u(x/r), and the

corresponding scale invariant norm ‖u‖
L

2n
n−4

.
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