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ON THE INTERSECTION OF TWO PLANE CURVES

Xi Chen

1. Introduction and statement of results

The following question was raised and partially answered by Geng Xu in [X].

Question 1.1. Let D be a general degree d curve in P
2. What is the minimal

number i(d, m) of points in the set-theoretical intersection C ∩D for any degree
m irreducible curve C (suppose that C and D meet properly)?

This problem is related to a conjecture of Kobayashi and Zaidenberg which
states that for a sufficiently general curve D ⊂ P

2 of degree d ≥ 5, as general
in the sense that D lies in |OP2(d)| ∼= P

d(d+3)/2 with countably many closed
proper subvarieties removed, the affine variety P

2\D is hyperbolic. One nec-
essary condition for P

2\D being hyperbolic is that there is no rational curve
C ⊂ P

2 meeting D set-theoretically at fewer than three points; otherwise, there
is going to be a nonconstant holomorphic map C → C\(C ∩ D) ⊂ P

2\D. This
property of P

2\D was called “algebraic hyperbolic” in [DSW].

Definition 1.1. A quasi-projective variety is called algebraic hyperbolic if it
does not contain a curve whose normalization is an elliptic curve or a rational
curve with two points removed, i.e., P

1\{p, q} ∼= C
∗ ∼= Spec C[x, x−1].

Obviously, hyperbolicity implies algebraic hyperbolicity for smooth quasi-
projective varieties.

Using an elegant deformation-theoretical argument, Xu proved the following
[X, Theorem 1].

Theorem 1.1 (Xu). For d ≥ 3, minm>0 i(d, m) = d − 2.

He thus concluded that every curve C ⊂ P
2 meets D at no less than three

distinct points and hence P
2\D is algebraic hyperbolic for a sufficiently general

curve D of degree d ≥ 5. This bound is sharp for m = 1 and it is achieved by a
bitangent or flex line to D.

The purpose of this paper is two-fold. First, we will try to sharpen his bound
with both d and m fixed. Second, we will try to extend his result to other
surfaces.

By dimension count, one may expect that i(d, m) = dm − rd,m where rd,m is
the dimension of the linear series cut out on D by all curves of degree m, namely,
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rd,m = m(m + 3)/2 for m < d and rd,m = dm − (d − 1)(d − 2)/2 for m ≥ d.
However, this is simply false for m ≥ d ≥ 3 by the following construction.

Let L be a bitangent (or flex) line to D. Since D is general, L meets D at
d−2 distinct points. Let L(X, Y, Z) and D(X, Y, Z) be the homogeneous defining
equations of L and D, respectively. Then for any degree m − d homogeneous
polynomial G(X, Y, Z), Lm(X, Y, Z)+D(X, Y, Z)G(X, Y, Z) = 0 defines a degree
m curve C which meets D at d − 2 points, which are the intersections between
L and D. If we choose G(X, Y, Z) general enough, C is irreducible and actually
smooth. Hence, by Xu’s result, i(d, m) = d − 2 for m ≥ d ≥ 3.

Nevertheless, we think that i(d, m) has the expected value for d > m, i.e.,

Conjecture 1.1. For d > m and d ≥ 3, i(d, m) = dm − rd,m.

Although we cannot prove the above conjecture, we have the following esti-
mate for i(d, m) when m < d.

Theorem 1.2. For d > m,

i(d, m) ≥ min
(

dm − m(m + 3)
2

, 2dm − 2m2 − 2
)

.

An easy corollary of the above theorem is the following

Corollary 1.1. For 2d ≥ 3m − 2 and d ≥ 3, i(d, m) = dm − m(m + 3)/2, i.e.,
Conjecture 1.1 holds for 2d ≥ 3m − 2. In particular, it holds for m ≤ 4.

In order to formulate Kobayashi type conjectures on surfaces other than P
2,

we need to study Question 1.1 in the following general setting.

Question 1.2. Let S be a smooth surface and let L and M be two line bundles
on S. Let D be a general member of |L|. What is the minimal number i(L, M) of
points in the set-theoretical intersection C∩D for any irreducible curve C ∈ |M |
(suppose that C and D meet properly)?

We will work on rational ruled surfaces, although our method can be extended
to other surfaces. By convention, let Fn be the rational ruled surface given by
P(OP1 ⊕ OP1(n)) over P

1 and let C and F be the zero section and the fiber of
Fn → P

1, i.e., C2 = −n, C · F = 1 and F 2 = 0. We have the following lower
bound for i(L, M) with L ample.

Theorem 1.3. Let L = O(aC + bF ) be an ample line bundle on Fn with a ≥ 2
and b ≥ 2. Then minM i(L, M) = min(a − 1, b − an, b − n − 1), where M runs
over all line bundles with irreducible general global sections.

It follows immediately from Theorem 1.3 that every curve on Fn meets D at
no less than three distinct points for a sufficiently general D ∈ |aC + bF | with
a ≥ 4 and b ≥ max(4 + n, 3 + an). Therefore

Corollary 1.2. For a sufficiently general curve D ∈ |aC+bF | on Fn with a ≥ 4
and b ≥ max(4 + n, 3 + an), the complement Fn\D is algebraic hyperbolic.
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Notice that the bound in Theorem 1.3 can be achieved by a curve in |C| or
|F |, which is necessarily a rational curve. So the lower bounds for a and b in the
above corollary cannot be improved.

This enables us to formulate Kobayashi conjecture on Fn.

Conjecture 1.2 (Kobayashi Conjecture on Rational Ruled Surfaces). For a
sufficiently general curve D ∈ |aC + bF | on Fn with a ≥ 4 and b ≥ max(4 +
n, 3 + an), the complement Fn\D is hyperbolic.

The organization of this paper is as follows. Theorem 1.2 and 1.3 will be
proved in the next two sections, respectively. At the end of the third section, we
will also discuss some related problems.

Throughout this paper we work exclusively over the field of complex numbers
C.

2. Proof of Theorem 1.2

Let Wδ ⊂ |O(m)| × |O(d)| be the incidence correspondence defined by

Wδ = {(C, D) : C ∈ |O(m)| is irreducible, D ∈ |O(d)| is smooth,

and C and D meet set-theoretically at δ points}.
Our proof of Theorem 1.2 is carried out by estimating the dimension of Wδ and

show that dimWδ < dim |O(d)| if δ < dm−m(m+3)/2 and δ < 2dm− 2m2 − 2
and hence it cannot dominate |O(d)| in this case.

Let π : Wδ → |O(m)| be the projection of Wδ to |O(m)| and let C be a general
point of π(Wδ) (by a general point, we mean a general point of an irreducible
component of π(Wδ)).

Let πC be the fiber of π : Wδ → |O(m)| over C and let (C, D) be a general
point on π(C). There exists a series of blowups of P

2 such that the proper
transforms C̃ and D̃ of C and D meet at smooth points on both curves (since
we assume that D is smooth, we only have to resolve the singularities of C where
D passes through). Let P̃2 be the resulting blowup of P

2 and Ei (1 ≤ i ≤ α)
be the exceptional divisors. Suppose that C̃ ∈ |O(mH − ∑α

i=1 riEi) and D̃ ∈
|O(dH − ∑α

i=1 Ei)|, where ri > 1 and H is the pull-back of the hyperplane
divisor of P

2.
Suppose that C̃ and D̃ meet at points p1, p2, ..., pβ with multiplicities

m1, m2, ..., mβ , respectively, where β ≤ δ ≤ α + β. Then by a deformation-
theoretical argument, the tangent space TπC ,(C,D) of πC at (C, D) is contained
in

H0(OD̃(dH −
α∑

i=1

Ei) ⊗OD̃(−
β∑

j=1

(mj − 1)pj))

= H0(OD̃((d − m)H +
α∑

i=1

(ri − 1)Ei) ⊗OD̃(
β∑

j=1

pj)).

Hence by Riemann-Roch
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dimπC ≤ h0(OD̃((d − m)H +
α∑

i=1

(ri − 1)Ei +
β∑

j=1

pj))

=
d(d + 3)

2
+

α∑
i=1

(ri − 1) + β − dm

+ h0(OD̃((m − 3)H −
α∑

i=1

(ri − 1)Ei) ⊗OD̃(−
β∑

j=1

pj)).

It is not hard to see that

h0(OD̃((m − 3)H −
α∑

i=1

(ri − 1)Ei) ⊗OD̃(−
β∑

j=1

pj))

≤ h0(OC̃((m − 3)H −
α∑

i=1

(ri − 1)Ei) ⊗OC̃(−
β∑

j=1

pj))

+
α∑

i=1

(ri − 1)(ri − 2)
2

.

(2.1)

This can be shown by the following argument.
We further blow up P̃2 at points p1, p2, ..., pβ with corresponding exceptional

divisors F1, F2, ..., Fβ . We still denote the resulting surface by P̃2 and the proper
transforms of C and D by C̃ and D̃. We have the following exact sequence on
P̃2

0 → H0((m − d − 3)H −
α∑

i=1

(ri − 2)Ei)

→ H0((m − 3)H −
α∑

i=1

(ri − 1)Ei −
β∑

j=1

Fj)

→ H0(OD̃((m − 3)H −
α∑

i=1

(ri − 1)Ei −
β∑

j=1

Fj))

→ H1((m − d − 3)H −
α∑

i=1

(ri − 2)Ei).

Obviously, h0((m − d − 3)H − ∑α
i=1(ri − 2)Ei) = 0 and

h2((m − d − 3)H −
α∑

i=1

(ri − 2)Ei)

= h0((d − m)H +
α∑

i=1

(ri − 1)Ei +
β∑

j=1

Fj)

=
(d − m)(d − m + 3)

2
+ 1.
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Hence by Riemann-Roch,

h1((m − d − 3)H −
α∑

i=1

(ri − 2)Ei) =
α∑

i=1

(ri − 1)(ri − 2)
2

.

Therefore

h0(OD̃((m − 3)H −
α∑

i=1

(ri − 1)Ei −
β∑

j=1

Fj))

≤ h0((m − 3)H −
α∑

i=1

(ri − 1)Ei −
β∑

j=1

Fj) +
α∑

i=1

(ri − 1)(ri − 2)
2

.

(2.2)

Similarly, we have

h0(OC̃((m − 3)H −
α∑

i=1

(ri − 1)Ei −
β∑

j=1

Fj))

= h0((m − 3)H −
α∑

i=1

(ri − 1)Ei −
β∑

j=1

Fj).

(2.3)

Combining (2.2) and (2.3), we obtain (2.1). Therefore

dimπC ≤ d(d + 3)
2

+
α∑

i=1

ri(ri − 1)
2

+ β − dm

+ h0(OC̃((m − 3)H −
α∑

i=1

(ri − 1)Ei) ⊗OC̃(−
β∑

j=1

pj))

=
d(d + 3)

2
+

α∑
i=1

ri(ri − 1)
2

+ β − dm + h0(ωC̃ ⊗OC̃(−
β∑

j=1

pj))

where ωC̃ is the dualizing sheaf of C̃.
By Clifford’s theorem (see for example [ACGH, pp. 107-8]), we have either

h0(ωC̃ ⊗OC̃(−
β∑

j=1

pj)) = 0

or

h0(OC̃(
β∑

j=1

pj)) ≤ β/2 + 1.

Hence correspondingly, we have either

dimπC ≤ d(d + 3)
2

+
α∑

i=1

ri(ri − 1)
2

+ β − dm
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or

dimπC ≤ d(d + 3)
2

+
β

2
− dm +

(m − 1)(m − 2)
2

.

Since C is a general member of π(Wδ) and C has singularities with multiplic-
ities ri (1 ≤ i ≤ α), by Zariski’s theorem on the deformation of planary curve
singularities [Z], we have

dimπ(Wδ) ≤ m(m + 3)
2

−
α∑

i=1

ri(ri − 1)
2

.

And hence we have either

dimWδ ≤ d(d + 3)
2

+ β − dm +
m(m + 3)

2
or

dimWδ ≤ d(d + 3)
2

+
β

2
− dm + m2 + 1 −

α∑
i=1

ri(ri − 1)
2

.

Therefore, if Wδ dominates |O(d)|, we necessarily have

δ ≥ β ≥ min
(

dm − m(m + 1)
2

, 2(dm − m2 − 1)
)

.

This finishes the proof of Theorem 1.2.

3. Intersections of Two Curves on Rational Ruled Surfaces

Our approach to Theorem 1.3 is different from that of Xu’s. A key ingredi-
ent of Xu’s proof of Theorem 1.1 is a map from the deformation space of the
pair (D, E), where D ∈ |OP2(d)| and E ∈ |OP2(m)| meet at no less than s dis-
tinct points, to the cohomology group of a sheaf over D. More specifically, let
(Z0, Z1, Z2) be generic homogeneous coordinates of P

2 and let F0 ∈ H0(OP2(d))
and G0 ∈ H0(OP2(m)) be the defining equations of D and E. A first order
deformation of (D, E) is given by F1 ∈ H0(OP2(d)) and G1 ∈ H0(OP2(m)) such
that the curves {F0 + tF1 = 0} and {G0 + tG1 = 0} meet at no less than s points
over the ring C[t]/(t2). It is observed by Xu that [X, Lemma 1]

∂F0

∂Zi
G1 − ∂G0

∂Zi
F1 ∈ H0(D,OD(d + m − 1) ⊗OD(−

s∑
j=1

(µj − 1)pj))(3.1)

for i = 0, 1, 2, where D and E meet at p1, p2, ..., ps with multiplicities µ1, µ2, ..., µs,
respectively.

The relation (3.1) forms the basis of Xu’s proof of Theorem 1.1. If we were to
prove Theorem 1.3 following Xu’s line of argument, we would have to come up
with a relation similar to (3.1) on Fn, which we are unable to do. So we find that
Xu’s analysis, though ingenious on its own, is hard, if not impossible, to carry
out on surfaces other than P

2. Therefore, we will adopt a different approach to
Theorem 1.3, which is based upon degeneration and induction.
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Let ∆ be a disk parameterized by t and let Y ⊂ Fn ×∆ be a pencil of curves
in |aC + bF | whose central fiber Y0 = G ∪ Γ is reducible with two components
G ∈ |(a− 1)C + (b−n− 1)F | and Γ ∼= P

1 ∈ |C + (n + 1)F |. Let X ⊂ Fn ×∆ be
a family of curves on Fn whose general fiber Xt (t �= 0) meets Yt at s distinct
points (a base change may be needed to ensure the existence of X). If X0 meets
Y0 properly, we may deduce s ≥ min(a − 1, b − an, b − n − 1) by the induction
hypothesis that

#(X0 ∩ G) ≥ min(a − 2, b − an − 1, b − n − 2)
= min(a − 1, b − an, b − n − 1) − 1

and by the fact that #(X0 ∩ Γ) ≥ 1, where we use the notation #(A ∩ B) to
denote the number of points in the set-theoretical intersection A ∩ B between
the two curves A and B. Of course, some care has to be taken to make sure that
X0 meets Γ at at least one point outside of G∩Γ (see below). Unfortunately, X0

may very well contain G or Γ as a component. So we have to regard |OY0(X0)|
as the limit linear series limt→0 |OYt(Xt)| and, correspondingly, Y0 ∩ X0 as the
limit of the section Yt ∩ Xt in |OYt(Xt)|. For an introduction to the theory of
limit linear series, please see, for example, [E-H] or [H, Chap. 5].

For the purpose of induction, we will prove Theorem 1.3 in the following
slightly more general form.

Proposition 3.1. Let L = O(aC + bF ) be an ample line bundle on Fn with
a ≥ 2 and b ≥ 2. Then for a sufficiently general curve D ∈ |L|,

1. #(D ∩E) ≥ min(a− 1, b− an, b− n− 1) for any curve E ⊂ Fn that meets
D properly;

2. in addition, there exists a set ΣD consisting of countably many points on
D such that if #(D ∩ E) = min(a − 1, b − an, b − n − 1) for some E,
(D ∩ E) ⊂ Σ.

We prove Proposition 3.1 by induction on min(a − 1, b − an, b − n − 1).
If min(a−1, b−an, b−n−1) = 1, we only need to verify the second part of the

proposition. Notice that D has genus g(D) = 1+ 1
2 (a−2)(b−an)+ 1

2a(b−n−2) ≥
1. If D meets E at a single p for some E, OD(µp) = OD(E), where µ = D · E.
If we fix the divisor class of E, there are only finitely many points p with this
property since g(D) ≥ 1. Therefore, there are only countably many points p
such that D ∩ E = {p} for some E.

Suppose that min(a− 1, b− an, b−n− 1) ≥ 2. Notice that O((a− 1)C + (b−
n − 1)F ) is ample under this assumption.

Let X, Y, G and Γ be defined as before. Suppose that G and Γ meet at points
p1, p2, ..., pl, where l = a+b−n−2. Let M = O(Xt) be the line bundle associated
to Xt.

Let σt ∈ |OYt(Xt)| be the section cut out by Xt on Yt and let σ0 = limt→0 σt.
Let σΓ = σ0|Γ and σG = σ0|G be the restrictions of σ0 to Γ and G, respectively.
Then σΓ is a section in

|OΓ(µ(p1 + p2 + ... + pl)) ⊗ M | = |OΓ(µG) ⊗ M |
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and σG is a section in

|OG(−µ(p1 + p2 + ... + pl)) ⊗ M | = |OG(−µΓ) ⊗ M |
where µ is an integer and σΓ and σG are cut out by sections in |O(µG) ⊗ M |
and |O(−µΓ) ⊗ M |, respectively.

Suppose that O(−µΓ) ⊗ M is nontrivial. Then by induction hypothesis σG

vanishes at no less than min(a − 2, b − an − 1, b − n − 2) distinct points. If σΓ

vanishes at at least one point other than p1, p2, ..., pl, we are done; if not, we
have either O(µG)⊗M is trivial and σΓ is nowhere vanishing or σΓ only vanishes
at p1, p2, ..., pl.

If O(µG)⊗M is trivial and σΓ is nowhere vanishing, then for any two points
among p1, p2, ..., pl, say p1 and p2, the ratio σG(p1)/σG(p2) is uniquely deter-
mined by the choice of the pencil Y . Actually we have the following very explicit
relation

σG(p1)
σG(p2)

=
(

f(p1)
f(p2)

)−µ

(3.2)

where f ∈ |L| is the section which cuts out a general member Yt of the pencil Y .
If σG vanishes at more than min(a−2, b−an−1, b−n−2) distinct points, there is
nothing to prove; otherwise, σG vanishes at exactly min(a−2, b−an−1, b−n−2)
distinct points. Then by induction hypothesis, there are only countably many
possible choices of σG. However, by (3.2), the ratio σG(p1)/σG(p2) can be made
into an arbitrary complex value by a choice of f (and thus a choice of the pencil
Y ). Contradiction.

If σΓ only vanishes at p1, p2, ..., pl, since we have already taken care of the case
that O(µG)⊗M is trivial and σΓ is nowhere vanishing, we may assume that σΓ

vanishes at at least one point among p1, p2, ..., pl, say p1. Then σG must vanish
at p1 as well. Again, if σG vanishes at more than min(a−2, b−an−1, b−n−2)
distinct points, there is nothing to prove; otherwise, σG vanishes at exactly
min(a−2, b−an−1, b−n−2) distinct points. By induction hypothesis, p1 ∈ ΣG.
But if we choose Γ generically, p1 �∈ ΣG. Contradiction.

Now suppose that O(−µΓ) ⊗ M is trivial. If σG = 0, then σΓ vanishes at
p1, p2, ..., pl and l = a + b − n − 2 > min(a − 1, b − an, b − n − 1); we are
done. Otherwise, σG is no where vanishing. The ratio σΓ(pi)/σΓ(pj) for any two
points pi and pj among p1, p2, ..., pl, just as in (3.2), is uniquely determined by
the choice of Y and is given by

σΓ(pi)
σΓ(pj)

=
(

f(pi)
f(pj)

)µ

.(3.3)

The rational map |L| → P
l−1 by sending f ∈ |L| to

(fµ(p1), fµ(p2), ..., fµ(pl))(3.4)

is dominant due to the facts that H0(Fn, L) surjects onto H0(Γ, L) and L ⊗
OΓ(−∑

i �=j pi) is base point free on Γ for each 1 ≤ j ≤ l. On the other hand,
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the space

{σΓ|σΓ vanishes at less than l − 1 distinct points}
has dimension l− 2 and hence cannot dominate P

l−1. So σΓ vanishes at at least
l − 1 > min(a − 1, b − an, b − n − 1) distinct points for a general choice of f by
(3.3).

This finishes the proof of the first part of the proposition.
Suppose that σ0 vanishes at exactly min(a−1, b−an, b−n−1) distinct points.

This can happen only when O(−µΓ) ⊗ M is nontrivial.
Suppose that σG vanishes at exactly min(a− 2, b− an− 1, b− n− 2) distinct

points. Our previous argument shows that σG does not vanish at p1, p2, ..., pl

for a general choice of G ∪ Γ. Then σΓ must vanish at a single point p �∈
{p1, p2, ..., pl}. Since #(G ∩ Γ) ≥ 2, the natural map from Y0\{p1, p2, ..., pl} to
Pic(Y0) is injective. So p is determined up to finitely many possibilities by M and
the vanishing locus of σG. By induction, the vanishing locus of σG is contained
in some countable set ΣG depending only on G. So the vanishing locus of σ0 is
also contained in some countable set ΣG∪Γ depending only on G ∪ Γ.

Suppose that σG vanishes at exactly min(a−1, b−an, b−n−1) distinct points
and suppose that there is a one-parameter family of σ0(u) with this property,
where σ0(u) is parameterized by u ∈ U for some irreducible curve U .

Suppose that O(µG) ⊗ M is trivial. There exists u0 ∈ U such that σG(u0)
vanishes at p1. Since O(µG)⊗M is trivial, σΓ(u0) = 0 and hence σG(u0) vanishes
at p1, p2, ..., pl. But l > min(a − 1, b − an, b − n − 1). Contradiction.

Suppose that O(µG) ⊗ M is nontrivial. Then σΓ(u) vanishes at at least one
point among p1, p2, ..., pl, say p1. Hence σG(u) vanishes at p1 for all u ∈ U .
As u varies, another vanishing point of σG(u) will approach p1. So there exists
u0 ∈ U such that σG(u0) vanishes at min(a − 2, b − an − 1, b − n − 2) distinct
points and among them vanishes at a general point p1. Again this is impossible
by induction. Contradiction.

This finishes the proof of Proposition 3.1.
The degeneration method we used can be applied to surfaces other than ra-

tional ruled surfaces. For example, we can give an alternative proof of Xu’s
Theorem 1.1 by degenerating a degree d curve to a union of a degree d−1 curve
and a line and arguing by induction.

A proof of Xu’s Theorem 1.1 via degeneration. As in the case of Proposition 3.1,
we need to add a clause to the theorem for the purpose of induction, i.e., we will
prove the following statement by induction on d.

For a sufficiently general curve D of degree d ≥ 3 in P
2, #(D ∩ E) ≥ d − 2

for any curve E ⊂ P
2 that meets D properly. In addition, there exists a set

ΣD of countably many points on D such that if #(D ∩ E) = d − 2 for some E,
(D ∩ E) ⊂ ΣD.

Let Y ⊂ P
2×∆ be a pencil of degree d curves whose central fiber Y0 = G∪Γ is

the union of a curve G of degree d−1 and a line Γ and let G∩Γ = {p1, p2, ..., pl}
where l = d − 1.



640 XI CHEN

Let X, M, σt, σ0, σG, σΓ and µ be defined as before. Almost nothing in the
argument of Proposition 3.1 needs changing except in the case that O(−µΓ)⊗M
is trivial and σG is nowhere vanishing. In this case, following our previous
argument, we can show that σΓ vanishes at no less than l − 1 points. The
difference is that now we have l− 1 = d− 2 and we have to verify that there are
only finitely many σΓ that vanishes at exactly l−1 distinct points. This is more
or less obvious because the map from |L| to P

l−1 given by (3.4) is dominant and
the space

{σΓ|σΓ vanishes at exactly l − 1 distinct points}
has dimension l − 1.

Our degeneration method also works for Del Pezzo surfaces.

Theorem 3.1. Let P̃2 be the blowup of P
2 at 2 ≤ r ≤ 6 general points and let

L1, L2, ..., Lk, ... be all the smooth rational curves on P̃2 with self-intersection
−1. Let L be an ample line bundle on P̃2. Then for a sufficiently general curve
D ∈ |L|,

1. #(D ∩ E) ≥ mink(D · Lk) for any curve E ⊂ P̃2 that meets D properly;
2. in addition, there exists a set ΣD of countably many points on D such that

if #(D ∩ E) = mink(D · Lk) for some E, (D ∩ E) ⊂ ΣD.

Therefore, for a sufficiently general curve D ∈ |L| with mink(D · Lk) ≥ 3, the
complement P̃2\D is algebraic hyperbolic.

Proof. Let K
P̃2 be the canonical divisor of P̃2. We argue by induction on mink(D·

Lk).
For mink(D · Lk) = 1, we need to verify that g(D) ≥ 1, which is more or less

obvious.
Suppose that mink(D · Lk) ≥ 2. Let Y ⊂ P

2 × ∆ be a pencil of curves in |L|
whose central fiber Y0 = G ∪ Γ is a union of G ∈ ∣∣L ⊗O(K

P̃2)
∣∣ and Γ ∈ ∣∣−K

P̃2

∣∣
and let G ∩ Γ = {p1, p2, ..., pl}.

Let X, M, σt, σ0, σG, σΓ and µ be defined as before. Again, the same argument
for Proposition 3.1 goes through. We need only to check the following facts, all
of which are routine exercises.

1. l > mink(D · Lk).
2. H0(P̃2, L) surjects onto H0(Γ, L) and

L ⊗OΓ(−
∑
i �=j

pi) = OΓ(−K
P̃2) ⊗OΓ(pj)

is base point free on Γ for each 1 ≤ j ≤ l. Hence the map from |L| to P
l−1

given by (3.4) is dominant.
3. In the case that O(−µΓ) ⊗ M is trivial and σG is nowhere vanishing, we

can prove that σΓ vanishes at no less than l − 1 distinct points as before.
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But actually, we can do better here since the space

{σΓ|σΓ vanishes at less than l distinct points}
has dimension l − 2 due to the fact that Γ is elliptic instead of rational.
Therefore, σΓ vanishes at no less than l distinct points.

When we go up in dimension, however, some essential difficulties present
themselves. For example, in P

3, fix a sufficient general surface S of degree d
and it is expected that any curve meets S at no less than d − 4 distinct points
[X, Question 2]. Let Y be a pencil of degree d surfaces whose central fiber is a
union of a degree d − 1 surface and a plane and let X be family of curves in P

3

meeting Y fiberwise. To carry out the argument as in dimension two, we need
to take the limit Xt ∩ Yt as an element in A0(Yt), the 0-dimension Chow ring of
Yt. Of course, we do not know how to do this at present.
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