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A COUNTEREXAMPLE IN UNIQUE CONTINUATION

CARLOS E. KENIG AND NIKOLAI NADIRASHVILI

1. Introduction

In 1939, T. Carleman [Car39] showed that if Au—Vu = 0inR? V € L (R?),
and u vanishes of infinite order at zg € R?, then v = 0. This was extended to
n > 3 by C. Miiller [Miil54]. In the late 70’s and early 80’s, there was considerable
interest, in view of applications to the absence of embedded eigenvalues, in
extending the above result to V € LI | p < oo (see the surveys [Ken87] and

[Ken89] and [Wol95]). In this direction, we want to recall the result in [JK85],

where it is shown that, if n > 2 and V € Léc, an analogous conclusion can be
obtained, and if n = 2, V € L], _, p > 1, the same is true. Moreover, in [Ste85],
it is shown that it n > 2, the same conclusion can be reached if V € L2:>°, the
‘weak-type’ Lorentz space, provided that the LZ-* norm is small enough.
From several points of view, these results are optimal. Easy examples can be
obtained (see [JK85]) for which, for n > 2, V € L{ , for all p < %, u vanishes
of infinite order at xg, but w is not identically zero. More subtle examples are
due to T. Wolff [Wol92b], who shows that the smallness condition on the Lz-°-
norm, n > 2 cannot be removed, and that when n = 2, there are V € L', and u
vanishing of infinite order at xq, for which u is not identically zero. Nevertheless,
for the applications mentioned above, it would suffice to know that, if Au—Vu =
0, and u has compact support, then v = 0. Up to now, as was mentioned in
[Ken87], [Ken89] and [Wol92a], it was not known if there are examples of V € L1,
with non-zero u of compact support, verifying this equation. In this note we close
this gap in our knowledge, producing such an example, in all dimensions n > 2.
The L'-norm of the potential V' can be taken as small as one likes.
Remark. After this paper was written, T. Wolff informed us of related work

by Niculae Mandache [Man], for equations of the form Au = V- Vu.

2. Main theorem

Theorem 1. There are measurable functions u, V defined on R?, both supported
i B, where By is the open unit disc, which are smooth in By, such that u, V,
Vu € LY(R?), and such that

Au—Vu=0inD.
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In order to prove the theorem, we will need an inductive construction. Let

ngl_%f 7’1:12:1_51%17
o TED RTlTwR
’I”kzl—m,
so that
r%<r,ﬁ<r§<r;§<r%<r2+l,fork:1,27....
Let
By = {z: |z <ri,
By = {z: |af <ri},
By = {z: |2f <ri},
By = {z: |z[<ni},
A = {x )<z <ri),
Dy, = {z:7r<|z]<ri)

Finally, let ¢y € C3°(B1), 0 < ¢ < 1, with ¢, = 1 in B}, suppgr C B{. Note
that suppV i C Dy, suppAgr C Di. We make a few remarks about these sets:

dist(Ag,0B1) ~ +, dist(Ag, Di) ~
dist(0Ay,0B}) ~ L,  dist(Dy, 0B;) ~
dist(Dy, Ag+1) ~ ¢, dist(Dg, Dgy1) ~ % .

1

%
1
ko

e S L e

3. The construction

We define u; = 1 and now, for kK = 1,2,..., we define u inductively. Thus,
assume that uy has been defined, and we proceed to construct wg1.
Let v = drug, fr = A(orur), so that vg solves

A’Uk = fk in B1
Uk|831 =0.

Let now a,,, n =1,2,... be a sequence of distributions of the form

in
Qp = E aidr?a
=1

where d;7 is the delta mass at z7" € Dy, and chosen so that
o, — fr, weakly in Dy, as n — oo.

For fixed n, set

in

€ __ €
o = g aiér? ,
i=1
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where 05, is a smoothing of d,» , by a non-negative smooth function, supported
in an € neighborhood of z}'. We will always choose € small so that

suppa,, C Dy.
Let now v, solve
on B;\D
At — fr on Bi\Dy,
ay, on Dy,
fu;| 0B, = 0
Note that as n — oo, and then € — 0, vf, — vi. Now, choose first ny so large,

and then ¢p so small that

1 2
e — x| < g on Bj U Ak

and so that

. 1
[A(Prr1v) L1 (Dyyr) < k3"

The first condition is a direct consequence of th weak convergence of a,,. For
the second one, note that on Dg41, fr =0, and vy =0, Vg = 0.

A(Gry1vy)) = Sr1Avy) + 2V 1 Vo + (Adpr1)vr
=2V 1V + Aggi1vy)

and so the second condition also follows from the weak convergence.
We may also assume, without loss of generality, that

lasiollzr oy < Lkl o) »
and since |v;2 | — oo on suppas?, as €g — 0, we may assume that
lvye | > 1 on suppayy .

We will now define ug1 = vy0.
We will next deduce a few properties of uy.

4. Properties of uy
(P1) ug+1 € C*(By). Moreover, suppAugy; C U;?:le..
Proof. We will prove the two statements inductively. For k = 1, recall that
in B;\D
AUQ = fl 1n‘ 1_\ !
at in Dy.

But, fi = A(u1¢1) = A(¢y), and since suppA(¢y) C Dy, fi is 0 in B;\D;.
Moreover, suppag2 C Dy, and so, clearly, Auy is supported in Dy, and is smooth.
But then ws is also smooth in By. Assume that both statements hold up to k.

Bi1\D
Aty = {f;zoon i\ k
a;2 on Dy.
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In Bl\B_,‘i, ¢ =0, and so f, =0. In B}, ¢, = 1, and so fr = Aug. Hence, both
statements hold up to k£ + 1. O

1
(P2) |Uk+1| < 8_k on Ak+]_.

Proof. On Agy1, ¢ =0 and so,

[ugs1| = Jugr — drug| < 5
O
(P3) / |A(Grr1uks1)| < C, for all k.
B
Proof. We know that
1

[A(Drs1Urr1ll L1 (Dyyr) < okT3"

Moreover, in Bl\B,‘i_H, Or+1 =0, s0 A(Prr1ugr1) = 0. By construction, inside
BgH, ¢r+1 =1 and so A(Pgy1uk+1) = Augs1). But in Bg+1\31§7 or =0, and
50 A(ugy1) = A(¢rur) = 0 there. In Dy, Augq1 = ;52 , and so,

2 1
/Dk |Augir| < 2/Dk |A(prur)| < S0—DT3 = ok
Gathering the information, we obtain
1 1
|Adri1ursilnrs) < |Adrurllnr(p,) + 5573 T R
and (P3) follows. O

(P4) / |ppr1upr1| < C for all k.
B,

This is immediate from (P3).

Proof of the theorem. We first claim that {uy} converges uniformly on compact
subsets of By, to a function u, which is smooth in By and for which suppAu C
U2 Dy, and such that |u| > % on suppAu.

Proof of claim. Fix r < 1, and choose ko so that B, C 19207 and hence,
B, C Bi for all £ > ko. For n,m > ko, n > m, we have that ¢; = 1 on B,,
j=m,...,n—1, and so

=1

Uy — U | < Z gk

k=m
and thus we have the uniform convergence. Note also that (P1) implies that all
the uy’s are harmonic outside of U2, Dj, and hence, so is u. Next, note that
Auy, = Auy, in B,, for k > ko. This is because, for k > ko, Dy, C B1\B,, and
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ér_1 = 1 on B,. From this it follows that Au = Aug, in B,, and hence, by
(P1), Au is smooth in B, and hence so is u.

We finally need to check that |u| > % on suppAu. It is enough to do it on
suppAunDy, for each k. Fix such a k, and note that, as before, we have for j > k,
Auj = Augqq on Dy: since Dy, C B]??, and so Auj; = A(¢j_1uj_1) = Auj_q,
where the last equality holds as long as D), C B;Ll, or k < 5 —1. The last
valid case is when j — 1 =k + 1, as claimed. On Di, Augy1 = a5, and so, on
Dy, N suppAu = Dy, N suppAug1, we have that |vi0| > 1, ie., |ugs| > 1. If
j>k+1, Dy C B}, Dy C B}, and s0 |u; —u;1| < g5. Thus, if j > k + 1,

|uj — upy1] < Z;ik-&-Q % < 3, and the last claim follows. Next, we claim that

/ |Au| < C,
By

/ < C.
B,

These are immediate consequences of (P3) and (P4).

Finally, we define u = 0 outside B;. We let V' = Au/u in suppAu N By, and
0 elsewhere. Note that, since |u| > % on suppAu N By, V is well defined, and
Au = Vu pointwise in By. Note also that since Au € LY(By), |V] < 2|Aul, we
have that V € LY(B;), Vu € L'(By). Finally, we will check that Au — Vu =0
in D’'(R?). In order to check this, we first note that |u| < ;5 on Agy1. Indeed,
by (P2), |uks1| < gr on Apyr, and if j > k+ 1, Agyq C B, and hence
|uj — qﬁj_luj_l\ < %, and also Ax+1 C B?_l, and so ¢;_1 = 1 there.

Note also that w is harmonic in A1, and hence, by interior estimates we
have |Vu| < & in OBj ;. Let ¢ € C3°(R?). We need to check that

2k
/ [uAY — Vup] = 0.
R2

The above integral equals

/ [uAYp — Vurp] = lim [uAYp — Vuipl,
B,

li
k
e Bli—o—l

since u € LY(By), Vu € LY (By), ¢ € C(R?). Now,

| wav—ve = [ fuae - aug

1
k+1 k+1

[ e,
N o8}, Yon " on’|

| tusw—vay)

k+1

and so

and the desired result follows.
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Remark. Since we can make vy as large as we please on suppa;., we can
take the L' norm of V as small as we like.
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