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A COUNTEREXAMPLE IN UNIQUE CONTINUATION

Carlos E. Kenig and Nikolai Nadirashvili

1. Introduction

In 1939, T. Carleman [Car39] showed that if ∆u−V u = 0 in R
2, V ∈ L∞

loc(R
2),

and u vanishes of infinite order at x0 ∈ R
2, then u = 0. This was extended to

n ≥ 3 by C. Müller [Mül54]. In the late 70’s and early 80’s, there was considerable
interest, in view of applications to the absence of embedded eigenvalues, in
extending the above result to V ∈ Lp

loc, p < ∞ (see the surveys [Ken87] and
[Ken89] and [Wol95]). In this direction, we want to recall the result in [JK85],
where it is shown that, if n > 2 and V ∈ L

n
2
loc, an analogous conclusion can be

obtained, and if n = 2, V ∈ Lp
loc, p > 1, the same is true. Moreover, in [Ste85],

it is shown that it n > 2, the same conclusion can be reached if V ∈ L
n
2 ,∞, the

‘weak-type’ Lorentz space, provided that the L
n
2 ,∞ norm is small enough.

From several points of view, these results are optimal. Easy examples can be
obtained (see [JK85]) for which, for n > 2, V ∈ Lp

loc, for all p < n
2 , u vanishes

of infinite order at x0, but u is not identically zero. More subtle examples are
due to T. Wolff [Wol92b], who shows that the smallness condition on the L

n
2 ,∞-

norm, n > 2 cannot be removed, and that when n = 2, there are V ∈ L1, and u
vanishing of infinite order at x0, for which u is not identically zero. Nevertheless,
for the applications mentioned above, it would suffice to know that, if ∆u−V u =
0, and u has compact support, then u ≡ 0. Up to now, as was mentioned in
[Ken87], [Ken89] and [Wol92a], it was not known if there are examples of V ∈ L1,
with non-zero u of compact support, verifying this equation. In this note we close
this gap in our knowledge, producing such an example, in all dimensions n ≥ 2.
The L1-norm of the potential V can be taken as small as one likes.
Remark. After this paper was written, T. Wolff informed us of related work
by Niculae Mandache [Man], for equations of the form ∆u = 	V · ∇u.

2. Main theorem

Theorem 1. There are measurable functions u, V defined on R
2, both supported

in B1, where B1 is the open unit disc, which are smooth in B1, such that u, V ,
V u ∈ L1(R2), and such that

∆u − V u = 0 in D′.
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In order to prove the theorem, we will need an inductive construction. Let

r0
k = 1 − 1

5k , r1
k = 1 − 1

5k+1 ,
r2
k = 1 − 1

5k+2 , r3
k = 1 − 1

5k+3 ,
r4
k = 1 − 1

5k+4 ,
so that

r0
k < r1

k < r2
k < r3

k < r4
k < r0

k+1 , for k = 1, 2, . . . .

Let

B4
k = {x : |x| < r4

k},
B3

k = {x : |x| < r3
k},

B2
k = {x : |x| < r2

k},
B1

k = {x : |x| < r1
k},

Ak = {x : r0
k < |x| < r2

k},
Dk = {x : r3

k < |x| < r4
k}.

Finally, let φk ∈ C∞
o (B1), 0 ≤ φk ≤ 1, with φk = 1 in B3

k, suppφk ⊂ B4
k. Note

that supp∇φk ⊂ Dk, supp∆φk ⊂ Dk. We make a few remarks about these sets:

dist(Ak, ∂B1) � 1
k , dist(Ak, Dk) � 1

k ,

dist(∂Ak, ∂B1
k) � 1

k , dist(Dk, ∂B1) � 1
k ,

dist(Dk, Ak+1) � 1
k , dist(Dk, Dk+1) � 1

k .

3. The construction

We define u1 ≡ 1 and now, for k = 1, 2, . . . , we define uk inductively. Thus,
assume that uk has been defined, and we proceed to construct uk+1.

Let vk = φkuk, fk = ∆(φkuk), so that vk solves{
∆vk = fk in B1

vk|∂B1 ≡ 0.

Let now αn, n = 1, 2, . . . be a sequence of distributions of the form

αn =
in∑

i=1

aiδxn
i
,

where δxn
i

is the delta mass at xn
i ∈ Dk, and chosen so that

αn → fk weakly in Dk as n → ∞.

For fixed n, set

αε
n =

in∑
i=1

aiδ
ε
xn

i
,



A COUNTEREXAMPLE IN UNIQUE CONTINUATION 627

where δε
xn

i
is a smoothing of δxn

i
, by a non-negative smooth function, supported

in an ε neighborhood of xn
i . We will always choose ε small so that

suppαε
n ⊂ Dk .

Let now vε
n solve 


∆vε

n =

{
fk on B1\Dk

αε
n on Dk

vε
n|∂B1

≡ 0

Note that as n → ∞, and then ε → 0, vε
n → vk. Now, choose first n0 so large,

and then ε0 so small that

|vε0
n0

− vk| ≤ 1
8k

on B2
k ∪ Ak+1

and so that

‖∆(φk+1v
ε0
n0

)‖L1(Dk+1) ≤
1

2k+3
.

The first condition is a direct consequence of th weak convergence of αn. For
the second one, note that on Dk+1, fk ≡ 0, and vk ≡ 0, ∇vk ≡ 0.

∆(φk+1v
ε0
n0

) = φk+1∆vε0
n0

+ 2∇φk+1∇vε0
n0

+ (∆φk+1)vε0
n0

= 2∇φk+1∇vε0
n0

+ ∆φk+1v
ε0
n0

,

and so the second condition also follows from the weak convergence.
We may also assume, without loss of generality, that

‖αε0
n0
‖L1(Dk) ≤ ‖fk‖L1(Dk) ,

and since |vε0
n0
| → ∞ on suppαε0

n , as ε0 → 0, we may assume that

|vε0
n0
| ≥ 1 on suppαε0

n0
.

We will now define uk+1 = vε0
n0

.
We will next deduce a few properties of uk.

4. Properties of uk

uk+1 ∈ C∞(B1). Moreover, supp∆uk+1 ⊂ ∪k
j=1Dk.(P1)

Proof. We will prove the two statements inductively. For k = 1, recall that

∆u2 =

{
f1 in B1\D1

αε0
n0

in D1.

But, f1 = ∆(u1φ1) = ∆(φ1), and since supp∆(φ1) ⊂ D1, f1 is 0 in B1\D1.
Moreover, suppαε0

n0
⊂ D1, and so, clearly, ∆u2 is supported in D1, and is smooth.

But then u2 is also smooth in B1. Assume that both statements hold up to k.

∆uk+1 =

{
fk on B1\Dk

αε0
n0

on Dk.
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In B1\B4
k, φk ≡ 0, and so fk ≡ 0. In B3

k, φk ≡ 1, and so fk = ∆uk. Hence, both
statements hold up to k + 1.

|uk+1| ≤ 1
8k

on Ak+1.(P2)

Proof. On Ak+1, φk ≡ 0 and so,

|uk+1| = |u+1 − φkuk| ≤ 1
8k

.

∫
B1

|∆(φk+1uk+1)| ≤ C, for all k.(P3)

Proof. We know that

‖∆(φk+1uk+1‖L1(Dk+1) ≤
1

2k+3
.

Moreover, in B1\B4
k+1, φk+1 ≡ 0, so ∆(φk+1uk+1) = 0. By construction, inside

B3
k+1, φk+1 ≡ 1 and so ∆(φk+1uk+1) = ∆(uk+1). But in B3

k+1\B4
k, φk ≡ 0, and

so ∆(uk+1) = ∆(φkuk) = 0 there. In Dk, ∆uk+1 = αε0
n0

, and so,∫
Dk

|∆uk+1| ≤ 2
∫

Dk

|∆(φkuk)| ≤ 2
2(k−1)+3

≤ 1
2k

.

Gathering the information, we obtain

‖∆φk+1uk+1‖L1(B1) ≤ ‖∆φkuk‖L1(B1) +
1

2k+3
+

1
2k

,

and (P3) follows.
∫

B1

|φk+1uk+1| ≤ C for all k.(P4)

This is immediate from (P3).

Proof of the theorem. We first claim that {uk} converges uniformly on compact
subsets of B1, to a function u, which is smooth in B1 and for which supp∆u ⊂
∪∞

k=1Dk , and such that |u| > 1
2 on supp∆u.

Proof of claim. Fix r < 1, and choose k0 so that Br ⊂ B2
k0

, and hence,
Br ⊂ B2

k for all k ≥ k0. For n, m ≥ k0, n > m, we have that φj ≡ 1 on Br,
j = m, . . . , n − 1, and so

|um − un| ≤
∞∑

k=m

1
8k

,

and thus we have the uniform convergence. Note also that (P1) implies that all
the uk’s are harmonic outside of ∪∞

j=1Dj , and hence, so is u. Next, note that
∆uk = ∆uk0 in Br, for k ≥ k0. This is because, for k > k0, Dk ⊂ B1\Br, and
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φk−1 ≡ 1 on Br. From this it follows that ∆u = ∆uk0 in Br, and hence, by
(P1), ∆u is smooth in Br, and hence so is u.

We finally need to check that |u| > 1
2 on supp∆u. It is enough to do it on

supp∆u∩Dk, for each k. Fix such a k, and note that, as before, we have for j > k,
∆uj = ∆uk+1 on Dk: since Dk ⊂ B3

j , and so ∆uj = ∆(φj−1uj−1) = ∆uj−1,
where the last equality holds as long as Dk ⊂ B3

j−1, or k < j − 1. The last
valid case is when j − 1 = k + 1, as claimed. On Dk, ∆uk+1 = αε0

n0
, and so, on

Dk ∩ supp∆u = Dk ∩ supp∆uk+1, we have that |vε0
n0
| > 1, i.e., |uk+1| > 1. If

j > k + 1, Dk ⊂ B2
j , Dk ⊂ B3

j , and so |uj − uj−1| < 1
8j . Thus, if j > k + 1,

|uj − uk+1| ≤
∑∞

j=k+2
1
8j ≤ 1

2 , and the last claim follows. Next, we claim that∫
B1

|∆u| ≤ C,

∫
B1

|u| ≤ C.

These are immediate consequences of (P3) and (P4).
Finally, we define u = 0 outside B1. We let V = ∆u/u in supp∆u ∩ B1, and

0 elsewhere. Note that, since |u| > 1
2 on supp∆u ∩ B1, V is well defined, and

∆u = V u pointwise in B1. Note also that since ∆u ∈ L1(B1), |V | ≤ 2|∆u|, we
have that V ∈ L1(B1), V u ∈ L1(B1). Finally, we will check that ∆u − V u = 0
in D′(R2). In order to check this, we first note that |u| < 1

4k on Ak+1. Indeed,
by (P2), |uk+1| ≤ 1

8k on Ak+1, and if j > k + 1, Ak+1 ⊂ B2
j , and hence

|uj − φj−1uj−1| < 1
8j , and also Ak+1 ⊂ B3

j−1, and so φj−1 ≡ 1 there.
Note also that u is harmonic in Ak+1, and hence, by interior estimates we

have |∇u| ≤ C
2k in ∂B1

k+1. Let ψ ∈ C∞
o (R2). We need to check that∫

R2
[u∆ψ − V uψ] = 0.

The above integral equals∫
B1

[u∆ψ − V uψ] = lim
k→∞

∫
B1

k+1

[u∆ψ − V uψ],

since u ∈ L1(B1), V u ∈ L1(B1), ψ ∈ C∞
o (R2). Now,∫

B1
k+1

[u∆ψ − V uψ] =
∫

B1
k+1

[u∆ψ − ∆uψ]

=
∫

∂B1
k+1

[
u

∂ψ

∂n
− ∂u

∂n
ψ

]
,

and so ∣∣∣∣∣
∫

B1
k+1

[u∆ψ − V uψ]

∣∣∣∣∣ ≤ C

4k
+

C

2k
,

and the desired result follows.
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Remark. Since we can make vε0
n0

as large as we please on suppαε0
n0

, we can
take the L1 norm of V as small as we like.
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