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A PROOF OF THE KAC-WAKIMOTO AFFINE

DENOMINATOR FORMULA FOR THE STRANGE SERIES

Don Zagier

In [1], Kac and Wakimoto related various combinatorial formulas to the theory
of root systems and representations of affine superalgebras. In particular, by
specializing a conjectural affine denominator formula to the affine superalgebras
associated to certain simple Lie superalgebras whose even parts are the simple
Lie algebras of type Am, they obtain a beautiful conjectural formula (Conjecture
7.2 of [1]) which contains as special cases many classical identities from the
theory of modular forms and elliptic functions, as well as many new identities.
The purpose of this paper is to prove this conjecture. A statement in elementary
terms (with no reference to affine algebras or root systems) is given as Theorem 3
in §3.

The general case of the conjecture depends on m + 1 parameters q (which
can be taken to be either a formal power series variable or a complex number of
absolute value less than 1) and x1, . . . , xm (which are Laurent variables or non-
zero complex numbers). Two specializations which are of particular interest,
and which are singled out and stated as separate conjectures in [1], are the
ones obtained by letting all variables xj tend to 1 or by taking m = 2. These
two cases will be stated and proved separately in §1 and §2, respectively, since
they have simpler and more appealing statements than the general case and
since the ideas used to prove them give the essence of the general proof. The
first of these two results, Theorem 1 below, gives a formula for the number of
representations of an arbitrary non-negative integer as a sum of k triangular
numbers when k has the form 4s2 (corresponding to m = 2s − 1) or 4s2 + 4s
(corresponding to m = 2s) for some positive integer s, the cases s = 1 being
classical identities of Legendre for the number of representations of an integer
as a sum of 4 or 8 triangular numbers. This theorem has also been proved by
Milne [2]. The second, Theorem 2 below, gives an infinite product expansion for
the sum

∑
j,k>0, k odd qjk−1(xy)1−j(1 − xj)(1 − yj)(1 − xjyj) ([1], p. 451).

The general identity, involving q, x1, . . . , xm, belongs naturally to the theory
of Jacobi forms, i.e., if we write q = e2πiτ and xj = e2πizj with τ ∈ H (upper
half-plane) and zj ∈ C, then the functions appearing on its left- and right-
hand sides have modular transformation properties with respect to τ and elliptic
transformation properties with respect to each zj . The modular properties with
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respect to τ will be used in the proof of the special case z1 = . . . = zm = 0
in Theorem 1 (by contrast, Milne’s proof avoids using modularity but instead
makes heavy use of combinatorial arguments and identities from the theory of
elliptic functions), and also in the proof of the general case, while the elliptic
properties in the zj will be used in §2 and §3 in a disguised form (viz., in terms
of the transformation properties under xj → q2nj xj with nj ∈ Z, but without
specifically introducing the logarithms zj). Apart from basic facts from the
theory of modular forms, the proofs are elementary.

Our notation is fairly standard. We will always use τ for a variable in H and q
to denote e2πiτ . We denote as usual by Γ0(2) and Γ(2) the subgroups of SL(2, Z)
consisting of matrices

(
a b

c d

)
with c even or with b and c even, respectively.

1. Sums of triangular numbers

For each positive integer s we define two polynomials P±
s (X1, . . . , Xs) in s

variables by

P+
s (X1, . . . , Xs) =

s∏
i=1

Xi ·
∏

1≤i<j≤s

(X2
i − X2

j )2,

P−
s (X1, . . . , Xs) =

s∏
i=1

X3
i ·

∏
1≤i<j≤s

(X2
i − X2

j )2.

Then for each positive integer m we define

R+
s (m) =

∑
r1a1+···+rsas=m

ri, ai>0, ri, ai odd

P+
s (a1, . . . , as),

R−
s (m) =

∑
r1a1+···+rsas=m
ri, ai>0, ri odd

P−
s (a1, . . . , as).

The following identity for sums of triangular numbers was stated as a conjecture
in [1], p. 452.

Theorem 1. Denote by ∆k,n the number of representations of a positive integer
n as a sum of k triangular numbers. Then for all s ≥ 1, n ≥ 0 we have

(1) ∆4s2, n =
R+

s

(
2n + s2

)
c+
s

, ∆4s2+4s, n =
R−

s

(
n + 1

2s(s + 1)
)

c−s
,

where the constants c±s are given by

(2) c+
s = 4s(s−1) s!

2s−1∏
j=1

j! , c−s = 2−s s!
2s∏

j=1

j! .
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Remark. The statement given by Kac and Wakimoto was slightly different in
that in the definitions of R±

s (m) it was assumed that a1 > · · · > as > 0 and the
coefficients c±s were smaller by a factor s!, but the two statements are obviously
equivalent since the P±

s (a1, . . . , as) are symmetric in the ai and vanish if any
two of them are equal.

Proof. For ε = ±1 let Mε
∗ (Γ(2)) denote the subspace of modular forms on Γ(2)

satisfying f(τ + 1) = εf(τ) (i.e., which have Fourier expansions involving only
even or only odd powers of q1/2). For each even integer k ≥ 2 we have an
Eisenstein series g+

k ∈ M−
k (Γ(2)) defined by

g+
k (τ) =

∑
r, a>0

r, a odd

ak−1 qra/2 =
∑
n≥1

n odd

σk−1(n) qn/2 =
1
2
(
Gk

(τ

2
)
− Gk

(τ + 1
2

))
,

where q = e2πiτ and Gk(τ) = − 1
2ζ(1− k)+

∞∑
n=1

σk−1(n) qn denotes the standard

Eisenstein series of weight k and level 1. We define a map

Φ+
s : X1 · · ·Xs C[X2

1 , . . . , X2
s ] −→ M

(−1)s

∗ (Γ(2))

by
Xk1−1

1 · · ·Xks−1
s �−→ g+

k1
· · · g+

ks
(ki even, ki ≥ 2) .

Clearly Φ+
s is of degree s (i.e., a monomial of degree k − s goes to a modular

form of weight k). In particular, since the polynomial P+
s has degree 2s2−s, the

modular form F+
s := Φ+

s (P+
s ) has weight 2s2. But F+

s (τ) =
∑

m≥0 R+
s (m)qm/2

and clearly R+
s (m) = 0 for m < s2 (the smallest integer representable as

∑
riai

with ri and ai odd and all ai distinct is 1 + 3 + · · · + (2s − 1) = s2), so F+
s

is an element of M
(−1)s

2s2 (Γ(2)) which vanishes to order at least s2/2 at infinity.
This implies that F+

s is a multiple of θ(τ)4s2
, where θ(τ) =

∑∞
n=0 q(2n+1)2/8 =

q1/8
(
1+ q + q3 + q6 + · · ·

)
is the generating function for the triangular numbers.

(To see this, note that F+
s /θ4s2

is invariant under Γ(2) and under τ → τ + 1
and hence under Γ0(2). But Γ0(2) has only two cusps. Since θ vanishes to order
1/8 at infinity and is non-zero at the other cusp and in the upper half-plane,
F+

s /θ4s2
has no poles at finite points or cusps and hence must be constant.) This

proves the first identity in (1) with some constant c+
s . The value of this constant

is seen by taking n = 0 to be given by c+
s = R+

s (s2) = s!P+
s (1, 3, . . . , 2s − 1),

which agrees with the first formula given in (2).
The second identity in (1) is similar. For each even integer k ≥ 4 we have an

Eisenstein series g−k ∈ M+
k (Γ(2)) = Mk(Γ0(2)) defined by

g−k (τ) =
∑

r, a>0
r odd

ak−1 qra = Gk(τ) − Gk(2τ) .
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(Notice that g−2 (τ), unlike g+
2 (τ) = θ(τ)4, is not modular.) We define a map of

degree s
Φ−

s : X3
1 · · ·X3

s C[X2
1 , . . . , X2

s ] −→ M∗(Γ0(2))

by
Xk1−1

1 · · ·Xks−1
s �−→ g−k1

· · · g−ks
(ki even, ki ≥ 4) ,

and set F−
s = Φ−

s (P−
s ). Then F−

s (τ) =
∑

m≥0 R−
s (m)qm has weight 2s2 + 2s

and vanishes to order s(s + 1)/2 (because the smallest integer representable as∑
riai with ri odd and all ai distinct is 1 + 2 + · · ·+ s = s(s + 1)/2), and hence

is a multiple of θ(τ)4s2+4s by the same argument as before, with the factor of
proportionality now being given by c−s = R−

s (s(s+1)/2) = s!P−
s (1, 2, . . . , s). �

2. The identity for m = 2

The identity below, the first unproved case of Conjecture 7.2 in [1], was stated
there in detail on page 451 as a formal power series identity in three variables
q, x and y. We have changed the formulation slightly by introducing a third
variable z = (xy)−1 in order to render the symmetry coming from the Weyl
group of A2 more apparent.

Theorem 2. Let q be a power series variable and define two series Θi(x) =
Θi(q;x) ∈ Z[x, x−1][[q]] (i = 0, 1) by

(3)

Θ0(x) =
∑
n∈Z

(−x)n qn2
=

∏
n>0

(
1 − q2n

)(
1 − q2n−1x

)(
1 − q2n−1x−1

)
,

Θ1(x) =
∑
n∈Z

(−x)n qn2−n =
∏
n>0

(
1 − q2n

)(
1 − q2n−2x

)(
1 − q2nx−1

)
.

Then for x, y, z with xyz = 1 we have

(4) −q
Θ′

1(1)Θ1(x)Θ1(y)Θ1(z)
Θ0(1)Θ0(x)Θ0(y)Θ0(z)

=
∞∑

n=1

(
1 − xn

)(
1 − yn

)(
1 − zn

) qn

1 − q2n
.

Proof. We will work with complex rather than formal variables. Denote the
left- and right-hand sides of (4) by L(x, y, z) and R(x, y, z), respectively. (The
variable q is considered as fixed and has been omitted from the notation, as
was already done in equation (3).) The series R(x, y, z) converges for |q| <
|x|, |y|, |z| < |q|−1 and, by expanding the product (1− xn)(1− yn)(1− zn) as a
sum of six monomials (two cancel), can be rewritten in the form

R(x, y, z) = Φ(x−1) + Φ(y−1) + Φ(z−1) − Φ(x) − Φ(y) − Φ(z) ,

where

Φ(x) =
∞∑

n=1

xn qn

1 − q2n

(
|x| < |q|−1

)
.
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Clearly Φ(x) − Φ(q2x) =
∞∑

n=1
xnqn =

xq

1 − xq
. This gives the meromorphic con-

tinuation of Φ(x) to all x ∈ C∗, with simple poles at x = q−n (n = 1, 3, 5, . . . ).
It follows that the function Φ∗(x) := Φ(x−1) − Φ(x) is also meromorphic in C∗

with simple poles at x = qn (n ∈ Z odd) and satisfies Φ∗(x)−Φ∗(q2x) = 1. From
this it follows in turn that R(x, y, z) = Φ∗(x) + Φ∗(y) + Φ∗(z) is invariant under
(x, y, z) �→ (q2ax, q2by, q2cz) for any a, b, c ∈ Z with a + b + c = 0. On the other
hand, from the easy (and well-known) properties Θ0(q2x) = −q−1x−1Θ0(x),

Θ1(q2x) = −x−1Θ1(x) it follows that
Θ1

Θ0

(
q2x

)
= q

Θ1

Θ0

(
x
)

and hence that

L(x, y, z) has the same invariance property, so the quotient R(x, y, z)/L(x, y, z)
is a well-defined meromorphic function on the torus

(
C/q2Z

)3

product=1
. Moreover,

this function has no poles, since the poles of R(x, y, z) at x, y, z ∈ q{odd} are
killed by the zeros of Θ0(x)Θ0(y)Θ0(z) and the zeros of Θ1(x)Θ1(y)Θ1(z) are
killed by the obvious vanishing of R(x, y, z) at (x = y = z = 1 and hence also)
x, y, z ∈ q{even}. It follows that the quotient R(x, y, z)/L(x, y, z) is a constant,
and by letting x, y, z → 1 we find the value of this constant to be equal to 1. �

Remarks.
1. We could have defined Θ0 and Θ1 using only the products in (3), since
the expressions as sums were not used. For the same reason, we could have
omitted the factor (1− q2n) in both products, which cancels in (4) anyway (and
in fact this was done in the statement of (4) given in [1]). We preferred to keep
this factor since the definitions of the Θ’s as sums are simpler than the product
formulas. Their equality, of course, is the Jacobi triple product formula.

2. From Φ(x)−Φ(q2x) =
qx

1 − qx
(|x| < |q|−1) we get Φ(x) =

∑
n>0, n odd

qnx

1 − qnx

(all x ∈ C∗ � q{odd}) and hence Φ∗(x) = Φ(1/x) − Φ(x) = xΘ′
0(x)/Θ0(x).

The identity (4) can therefore be written

−q
Θ′

1(1)Θ1(x)Θ1(y)Θ1(z)
Θ0(1)Θ0(x)Θ0(y)Θ0(z)

= x
Θ′

0(x)
Θ0(x)

+ y
Θ′

0(y)
Θ0(y)

+ z
Θ′

0(z)
Θ0(z)

and in this form can probably be identified (after multiplying through by the
denominator of the left-hand side) as the derivative of a specialization of one of
Riemann’s theta-relations, though I have not checked this.
3. In the last step of the proof, we could have evaluated the constant by letting
just z tend to q instead of letting all three variables x, y, z tend to 1, since it
is easily checked that both L(x, qx−1z−1, q−1z) and R(x, qx−1z−1, q−1z) have a
simple pole at z = 1 with residue 1 (independent of x).
4. Dividing both sides of (4) by (1−x)(1− y)(1− z) and letting x, y and z tend
to 1 gives

∞∑
n=1

n3 qn

1 − q2n
= q

Θ′
1(1)4

Θ0(1)4
= θ(τ)8
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(because q1/4Θ′
1(1)/Θ0(1) = q1/4

∏
n≥1(1 − qn)2(−1)n

= θ(τ)2), so we recover
Legendre’s formula that the number of representations of m − 1 as a sum of 8
triangular numbers is the sum over all odd divisors r of m of (m/r)3 (i.e., the
case s = 1 of the second formula in (1)).

3. The general case

The following theorem is an equivalent reformulation of Conjecture 7.2 of [1],
but written in more elementary terms. The variables xj are e−αj , where the αj

are the simple roots of Am.

Theorem 3. Let m be a positive integer and let q and x1, . . . , xm+1 be complex

numbers satisfying |q| < |xi/xj | < |q|−1 for all i 
= j. Set s =
[m + 1

2
]
. Then

∑
k1≥...≥ks≥0

qk1+···+ksx
−m

2
1 x

−m−2
2

2 · · ·x
m
2

m+1∏s
i=1

(
1 − q2ki+m−2i+2

) ∑
σ∈Sm+1

ε(σ)xk1+
m
2

σ(1) x
k2+

m−2
2

σ(2) · · ·x−k1−m
2

σ(m+1)

= ∆(q)2s
∏

1≤i<j≤m+1

Θ1(xj/xi)
Θ0(xj/xi)

,(5)

where Θ0(x) and Θ1(x) are defined as in (3), ∆(q) = q−1/8θ(τ) = 1 + q + q3 +
q6 + · · · is the generating function for triangular numbers, Sm+1 denotes the
symmetric group on m + 1 letters, ε(σ) for σ ∈ Sm+1 denotes the sign of the
permutation σ, and the exponents of the xσ(i) in the inner sum are ki+m/2−i+1
with the “extra” variables ks+1, . . . , km+1 defined by km+2−i = −ki.

Proof. We will proceed as in the proof of Theorem 2 by showing that the ratio
of the two sides of (5) is a constant independent of the xi and then evaluating
the constant by considering the limit as all xi tend to 1. We first introduce
new variables λi = 2ki + m − 2i + 2. Then multiplying both sides of (5) by

qN/2x
m
2
1 x

m−2
2

2 · · ·x−m
2

m+1, where N =
1
2
(
m + (m − 2) + · · · + (m − 2s + 2)

)
=

2s

8
+

1
4

(
m + 1

2

)
, we can rewrite this formula as

∑
λ1>λ2>...>λs>0

λ1≡···≡λs≡m (mod 2)

q(λ1+···+λs)/2

(1 − qλ1) · · · (1 − qλs)
Altm+1

( s∏
i=1

(
xi

xm+2−i

)λi/2)

= θ(τ)2s
∏

1≤i<j≤m+1

F
(
xj/xi

)
, F (x) := q1/4x−1/2 Θ1(x)

Θ0(x)
,

(6)

where Altm+1 denotes the alternating sum over all permutations of x1, . . . , xm+1.
We next observe (compare the remark following the statement of Theorem 1 in



PROOF OF KAC-WAKIMOTO FORMULA FOR THE STRANGE SERIES 603

§1) that the expression on the left-hand side of (5) is unchanged if we replace
the condition “λ1 > λ2 > . . . > λs > 0” by “λ1, . . . , λs > 0” and divide the
sum by s! , because the alternating sum is symmetric in the λi (interchanging λi

and λj corresponds to simultaneously interchanging xi with xj and xm+2−i with
xm+2−j , which is an even permutation) and vanishes if any two λi’s are equal. In
fact, we can replace this condition by “λ1, . . . , λs 
= 0” and divide by 2ss! with-
out changing anything, because the summand is also invariant under changing
the sign of any λi (this operation changes the sign of both qλi/2/(1− qλi) and of
the alternating sum, since interchanging xi and xm+2−i is an odd permutation).
The left-hand side of (6) can therefore be rewritten in the form

1
2s s!

∑
λ1,... ,λs 
=0

λ1≡···≡λs≡m (mod 2)

q(λ1+···+λs)/2

(1 − qλ1) · · · (1 − qλs)
Altm+1

( s∏
i=1

(
xi

xm+2−i

)λi/2)
.

But in this new summation the various λi run independently of one another over
all even or odd non-zero integers, so the result to be proved can be rewritten as

θ(τ)2s
∏

1≤i<j≤m+1

F
(
xi/xj

)
(7)

=
{

Alt∗2s+1

(
Φ∗

0(x2s+1/x1) · · ·Φ∗
0(xs+2/xs)

)
if m = 2s,

Alt∗2s

(
Φ∗

1(x2s/x1) · · ·Φ∗
1(xs+1/xs)

)
if m = 2s − 1,

where Alt∗m+1 denotes the alternating sum over the quotient of Sm+1 by the
subgroup (isomorphic to Ss � (Z/2Z)s) of permutations preserving the set of
unordered pairs {{xi, xm+2−i}}1≤i≤s , and

Φ∗
i (x) = Φi

(
x−1

)
− Φi

(
x
)
, Φi(x) =

∑
λ>0, λ≡i mod 2

xλ/2 qλ/2

1 − qλ
(i = 0, 1) .

We consider the case when m = 2s is even. (The case of odd m is very similar and
will be left to the reader.) The functions Φ0(x) and Φ∗

0(x) are just the functions
Φ(x) and Φ∗(x) which were already used in the proof of Theorem 2. We saw
there that Φ∗

0(x) has a meromorphic continuation to all C∗, with simple poles at
odd powers of q, and satisfies the functional equation Φ∗

0(x) − Φ∗
0(q

2x) = 1. It
follows that the right-hand side of (7) is meromorphic in (C∗)m+1, is invariant
under all translations xi �→ q2nixi (adding 1 to one of the factors Φ∗

0(xi/xj)
does not change the value of the alternating sum in (7) because interchanging
the indices i and j is an odd permutation), has simple poles whenever two xi

differ by an odd power of q, has no other poles, and vanishes whenever two xi

differ by an even power of q (by the antisymmetry in the xi and the periodicity
with respect to xi �→ q2nixi). Since the function F (x) is invariant under x �→ q2x
and has simple poles at odd powers of q, simple zeros at even powers of q, and no
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other zeros or poles (because of the product expansions in (3)), these properties
imply that the quotient of the right-hand side of (7) by the left-hand side is a
holomorphic function on the compact complex manifold

(
C∗/q2Z

)m+1 and hence
is a constant (for fixed q).

This proves equation (5) (for even m) up to a constant depending only on
q. The evaluation of this constant can be performed in two ways, just as we
already saw in the special case m = 2 considered in §2. On the one hand, if we
divide both sides of (5) by

∏
i<j(xi − xj) and take the limit as all xi tend to

1, then using the formula F ′(1) = θ(τ)2 (cf. Remark 4 in §2) we find that the
resulting identity is precisely Theorem 1, which we have already proved. The
calculation involved is not difficult and will be omitted here since it is precisely
the one which was already given by Kac and Wakimoto to deduce the (then still
conjectural) statement of Theorem 1 from that of Theorem 3. Alternatively,
we can proceed as in Remark 3 of §2 by letting the quotient of two of the
variables, say x2s+1 and x1, tend to q while the others remain generic. To be
more specific, set x2s+1/x1 = qe−t and let t → 0 in (7). Then, since the residue
at t = 0 of Φ∗

0(qe
−t) is equal to 1, we find that the residue of the right-hand side is

Alt∗2s−1(Φ
∗
0(x2s/x2) · · ·Φ∗

0(xs+2/xs)) (the only terms in Alt∗2s+1(· · · ) which have
a pole are those where the variables x1 and x2s+1 are paired with one another,
and this reduces the Alt∗2s+1 to an Alt∗2s−1), and similarly that the residue on
the left-hand side is θ(τ)2s−2

∏
2≤i<j≤m F

(
xi/xj

)
(the residue of F (x2s+1/x1)

is θ(τ)−2 and each product F (xj/x1)F (x2m+1/xj), 1 < j < m + 1, equals 1).
The equality of the residues is therefore precisely the statement of Theorem 3
with m replaced by m − 2, so we can conclude by induction on m. This second
argument is independent of Theorem 1 and therefore provides a second proof of
that result, independent of the theory of modular forms. �
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