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NON-UNITARY SET-THEORETICAL SOLUTIONS TO THE
QUANTUM YANG-BAXTER EQUATION

Alexander Soloviev

Abstract. We develop a theory of non-unitary set-theoretical solutions to the
Quantum Yang-Baxter equation. Our results generalize those obtained by Etingof,
Schedler and the author in [ESS]. We remark that some of our constructions are
similar to constructions obtained by Lu, Yan, and Zhu in [LYZ].

1. Introduction

In this paper we study set-theoretical solutions to the Quantum Yang-Baxter
equation, i.e. permutations R : X ×X → X ×X with X being a non-empty set
such that

R12R13R23 = R23R13R12 in Aut(X × X × X).
In the above R12, R13, R23 ∈ Aut(X × X × X) stand for R acting in 1,2;
1,3; and 2,3 components of X × X × X correspondingly. The idea to consider
set-theoretical solutions first appeared in [Dr]. Later on, Etingof, Schedler and
the author [ESS] studied set-theoretical solutions to the Quantum Yang-Baxter
equation which satisfied additional properties of unitarity and nondegeneracy
(crossing symmetry). In particular, [ESS] contained the classification of nonde-
generate unitary set-theoretical solutions to QYBE in group theoretical terms as
well as numerous classes of examples of such solutions. Subsequently, Lu, Yan
and Zhu in [LYZ] showed that many of the constructions from [ESS] hold in a
more general case of nondegenerate but not necessarily unitary set-theoretical
solutions to QYBE.

Following [ESS] and [LYZ], we develop a theory of nondegenerate set-
theoretical solutions to QYBE. Particularly, we show that the unitarity condition
that was used in [ESS] for group theoretical characterization of unitary nonde-
generate set-theoretical solutions to QYBE can be dropped. We give a group
theoretical characterization of general set-theoretical nondegenerate solutions to
QYBE in Theorem 2.7. We also introduce injective solutions, study their prop-
erties, and show that there is a combinatorial criterion (Theorem 2.9) describing
the class of injective nondegenerate solutions to QYBE. Injectivity property,
which is a generalization of involutivity, is important for studying affine solu-
tions. In particular the classification of unitary affine solutions given in [ESS]
can be generalized to include injective solutions.
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It was shown in [ESS] that the structure group of a nondegenerate unitary
set-theoretical solution to QYBE on a set with N elements always has an abelian
subgroup of finite index and of rank N. We compute (Theorem 2.10) the rank of
a finite index abelian subgroup of the structure group for an arbitrary nondegen-
erate finite solution and show that this rank never exceeds N, with the equality
taking place only in the unitary case.

In the second part of the paper we discuss the applications of the developed
theory to examples. In particular, we classify affine solutions on an abelian
group. It is proved that injective affine solutions are obtained from the repre-
sentations of the algebra generated by invertible elements p, q, and z are subject
to pq = qp and z2 − z(p + q) + pq = 0.

2. Structure groups

2.1. Construction of the structure groups. Let X be a nonempty set and
S : X ×X → X ×X a bijective map. We call a pair (X, S) a braided set if the
following braiding condition holds in X × X × X:

S1S2S1 = S2S1S2 ,(2.1)

where S1 = S × id, S2 = id × S.
Remark. Consider the map R : X × X → X × X given by R = σS, where
σ(x, y) = (y, x) for x, y ∈ X. Then (X, S) is a braided set if and only if R
satisfies the Quantum Yang-Baxter equation.

It is useful to associate with a braided set (X, S) two groups GX and AX .

Definition 1. Define the group GX as the group generated by the elements of
X subject to the relations xy = y1x1 if S(x, y) = (y1, x1), where x, y ∈ X. We
call GX the structure group of the braided set (X, S).

Definition 2. Define the group AX as the group generated by elements of X
subject to relations x1 • y = y2 • x1, where x, y ∈ X and x1, y2 ∈ X are defined
out of relations S(x, y) = (y1, x1), S(y1, x1) = (x2, y2). We call AX the derived
structure group of the braided set (X, S).

We introduce the maps g : X × X → X and f : X × X → X as components
of S, i.e. for x, y ∈ X,

S(x, y) = (gx(y), fy(x)).

Definition 3. (i) We call a set (X, S) nondegenerate if gx(y) is a bijective func-
tion of y for fixed x and fy(x) is a bijective function of x for fixed y. (ii) We
call a set (X, S) involutive if S2 = idX2 . A braided set which is involutive will
be called symmetric.

In particular, for a symmetric set (X, S) we see that the group AX is the
free abelian group generated by elements of X. Note that the properties of
involutivity and nondegeneracy are equivalent to corresponding properties of
unitarity and crossing symmetry for the map R = σS [ESS].
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Recall that the braid group Bn for n ≥ 2 is generated by elements bi, 1 ≤
i ≤ n − 1, with defining relations

bibj = bjbi, |i − j| > 1, bibi+1bi = bi+1bibi+1 ,

and recall that the symmetric group Sn is the quotient of Bn by the relations
b2
i = 1. The following obvious proposition explains our terminology. Let Sii+1

n :
Xn → Xn be defined as Sii+1

n = idXi−1 × S × idXn−i−1 .

Theorem 2.1 ([ESS]). (i) The assignment bi → Sii+1
n extends to an action of

Bn on Xn (n ≥ 3) if and only if (X, S) is a braided set.
(ii) The assignment bi → Sii+1

n extends to an action of Sn on Xn (n ≥ 3) if
and only if (X, S) is a symmetric set.

Definition 4. The action of Theorem 2.1 is called the twisted action of Bn (or
Sn) given by S.

The following result shows how a nondegenerate braided set (X, S) gives rise
to two actions of the structure group GX on the set X.

Theorem 2.2. ([ESS]) Suppose that (X, S) is nondegenerate. Then (X, S) is a
braided set if and only if the following conditions are simultaneously satisfied:

(i) the assignment x → fx is a right action of GX on X;
(ii) the assignment x → gx is a left action of GX on X;
(iii) the linking relation

fgfy(x)(z)(gx(y)) = gfgy(z)(x)(fz(y))

holds.

Proof. Conditions (i)-(iii) are exactly the three components of the braid relation
(2.1).

In light of the above proposition it makes sense to introduce the notations
x ◦ y = gx(y) and y ∗x = f−1

y (x) for x, y ∈ X. Then if (X, S) is a nondegenerate
braided set, we can extend ∗ and ◦ to left actions of GX on X. We will denote
the actions of an element g ∈ GX on an element x ∈ X by g ◦ x and g ∗ x
correspondingly.

From now on we always assume (X, S) to be a nondegenerate braided set.
Sometimes we refer to nondegenerate braided sets as to ”solutions”, meaning
that S is a solution to braid equation (2.1).

Define φ : X × X → X by

φ(y, x) = x−1 ∗ ((y ∗ x) ◦ y),(2.2)

and S′ : X × X → X × X as S′(x, y) = (φ(y, x), x).

Theorem 2.3. (i) φ(y, z) is GX-invariant w.r.t. *-action, i.e. for g ∈ GX ,
g ∗ φ(y, z) = φ(g ∗ y, g ∗ z).

(ii) (X, S′) is a nondegenerate braided set. We call this set the derived braided
set or the derived solution.

(iii) The structure group of the derived solution is the derived structure group.
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(iv) For each integer n ≥ 2 there exists a bijection Jn : Xn → Xn such that
JnSii+1

n J−1
n = (S′)ii+1

n , where Sii+1
n is the same as in Theorem 2.1. In this way,

twisted actions of Bn given by S and S′ are conjugate.

We remark that the statement (iv) of Theorem 2.3 was proved in [ESS] (cf.
Prop. 1.7) for unitary solutions and in [LYZ] (cf. Th. 3) for injective solutions
that are defined in Section 2.3.

Proof. It is easy to see that (iv) implies (ii). Statement (iii) follows from defi-
nitions of structure group, derived structure group and φ. Let us show that (i)
implies (iv). Define Jn inductively as J1 = idX , Jn = Qn(Jn−1 × idX), where
Qn : Xn → Xn is defined as Qn(x1, ..., xn) = (x−1

n ∗ x1, ..., x
−1
n ∗ xn−1, xn). We

prove formula JnSii+1
n J−1

n = (S′)ii+1
n by induction on n. For n = 2 (induction

base) the relation follows directly from definition of φ. Suppose the relation
holds for n = k, let us prove it holds for n = k+1. Since Jk+1 = Qk+1(Jk× idX)
and Qk+1 commutes with (S′)ii+1

k+1 for i < k (by (i)) the relation is true for i < k.
So, it remains to prove it for i = k when it becomes identical to the relation of
the induction base.

Now we have to show that (i) is true. It is enough to check that for every
t, y, z ∈ X, t−1 ∗ φ(y, z) = φ(t−1 ∗ y, t−1 ∗ z) or, equivalently by (2.2):

(2.3) t−1 ∗ (z−1 ∗ ((y ∗ z) ◦ y)) =

(t−1 ∗ z)−1 ∗ (((t−1 ∗ y) ∗ (t−1 ∗ z)) ◦ (t−1 ∗ y)).

The linking relation of Theorem 2.2 states that for x, y, t ∈ X

((y−1 ∗ x) ◦ t)−1 ∗ (x ◦ y) = ((y ◦ t)−1 ∗ x) ◦ (t−1 ∗ y)(2.4)

holds. If we substitute x = y ∗ z in relation (2.4) we can rewrite its right hand
side as follows:

((y ◦ t)−1 ∗ (y ∗ z)) ◦ (t−1 ∗ y) = ((y ◦ t)−1 ∗ (yt ∗ (t−1 ∗ z))) ◦ (t−1 ∗ y)

where the product yt is the product of elements y, t in group GX , thus yt =
(y ◦ t)(t−1 ∗ y) and

((y ◦ t)−1 ∗ (yt ∗ (t−1 ∗ z))) ◦ (t−1 ∗ y) = ((t−1 ∗ y) ∗ (t−1 ∗ z)) ◦ (t−1 ∗ y).

In this way, relation (2.4) is equivalent to relation (2.5) below:

(z ◦ t)−1 ∗ ((y ∗ z) ◦ y) = ((t−1 ∗ y) ∗ (t−1 ∗ z)) ◦ (t−1 ∗ y).(2.5)

Substituting, (2.5) into the right side of (2.3) we get

(t−1 ∗z)−1 ∗ (((t−1 ∗y)∗ (t−1 ∗z))◦ (t−1 ∗y)) = ((t−1 ∗z)−1(z ◦ t)−1)∗ ((y ∗z)◦y).

Using the relation t−1z−1 = (t−1 ∗ z)−1(z ◦ t)−1 in group GX we verify that
invariance relation (2.3) is true. The theorem is proved.

Note that by construction we have two natural maps ψG : X → GX and
ψA : X → AX that are not necessarily embeddings (see Examples below). The-
orem 2.4 shows that the latter map is GX -invariant with respect to a suitable
GX -module structure on AX . Define the group Permut(X) as the group of all
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permutations of the set X. Then both ∗ and ◦ define homomorphisms from GX

to Permut(X). Denote by AutX(AX) the group of automorphisms of AX that
map the generating set ψA(X) onto itself.

Theorem 2.4. For a nondegenerate braided set (X, S) the group homomor-
phism ∗ : GX → Permut(X) can be uniquely lifted to the homomorphism
∗̂ : GX → AutX(AX) such that for any g ∈ GX , x ∈ X ψA(g ∗ x) = g∗̂ψA(x).

Proof. It is clear that the map ∗ : GX → Permut(X) can be uniquely extended
to the homomorphism from the group GX to the group of automorphisms of
the free group generated by X. So, it is enough to show that such an extension
respects the generating relations in group AX . This immediately follows from
statements (i), (iii) of Theorem 2.3.

Example [Dr]. Let X be a union of conjugacy classes in a group G, i.e. gXg−1 =
X for any g ∈ G. Define S : X×X → X×X as S(x, y) = (xyx−1, x) for x, y ∈ X.
It is easy to see that (X, S) is a braided nondegenerate set. It was called the
conjugate solution in [LYZ]. Clearly, this solution coincides with its own derived
solution - therefore GX = AX . The action of GX on AX is easily seen to be
trivial, i.e. g∗̂h = h for any g ∈ GX , h ∈ AX . The embedding i : X → G can be
extended to a homomorphism I : GX → G that maps elements of ψG(X) onto
X, thus the map ψG : X → GX is injective. So (X, S) is an injective solution
(cf. Definition 8).

2.2. Bijective 1-cocycle. Recall that we started with a nondegenerate braided
set (X, S) and constructed two groups GX , AX and the action ∗̂ of GX on AX .
In the future we dropˆ in ∗̂ and denote the action of g ∈ GX on h ∈ AX from
Theorem 2.4 simply by g∗h. Theorem 2.5 is the main step towards classification
of nondegenerate braided sets in group theoretical terms.

Definition 5. Suppose a group G acts on a group A by automorphisms meaning
that there is a homomorphism from G to Aut(A). Denote the product of elements
g1, g2 in G by g1g2 and the product of elements a1, a2 in A by a1 • a2. We call
a map π : G → A a 1-cocycle if for any g1, g2 ∈ G

π(g1g2) = (g−1
2 ∗ π(g1)) • π(g2)(2.6)

where ∗ stands for the action of G on A.

Theorem 2.5. (cf. [LYZ], Th. 2 and [ESS], Prop. 2.5) For a nondegenerate
braided set (X, S) there exists a unique bijective 1-cocycle π : GX → AX such
that πψG = ψA on X.

Remark. In [LYZ] the authors introduced on GX another group structure.
It follows from our and their results that GX with the new group structure is
isomorphic to AX via π : GX → AX .

Proof. Construction of the 1-cocycle.
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Let us construct the 1-cocycle π : GX → AX . Consider the semidirect product
GX � AX . The group GX � AX consists of pairs (g, h), g ∈ GX , h ∈ AX with
the group operation given by the formula

(g, h)(g′, h′) = (gg′, ((g′)−1 ∗ h) • h′).

Define the map s : X → GX �AX via the formula s(x) = (ψG(x), ψA(x)) for any
x ∈ X. We claim that there exists a group homomorphism s̄ : GX → GX � AX

such that s̄ψG = s. Indeed, since ψG(X) generates the whole GX to show that s̄
exists it is necessary and sufficient to check that s respects the relations in GX ,
i.e. that for x, y ∈ X s(x)s(y) is equal to s(x ◦ y)s(y−1 ∗ x) in group GX � AX .
When we formally multiply terms out, the above condition transforms into the
relation

(xy, (y−1 ∗ x) • y) = ((x ◦ y)(y−1 ∗ x), ((y−1 ∗ x)−1 ∗ (x ◦ y)) • (y−1 ∗ x)),

which coincides componentwise with the defining relations in groups GX , AX .
Let us define the projection p : GX � AX → AX by the formula p(g, h) = h.
Introduce π : GX → AX as π = ps̄. Clearly, π is a 1-cocycle. The tricky part is
to show that π is bijective.

Proof that π is bijective.
Lemma 1. (i) For x1, x2 ∈ X, g ∈ GX if ψG(x1) = ψG(x2) then ψG(g ∗ x1) =
ψG(g ∗ x2) and ψG(g ◦ x1) = ψG(g ◦ x2).

(ii) For x ∈ X ψG((x∗x)◦x) = ψG(x∗x) and ψG((x−1◦x)−1∗x) = ψG(x−1◦x).
(iii) For x ∈ X ψG(x) = ψG((x ∗ x)−1 ◦ (x ∗ x)) = ψG((x−1 ◦ x) ∗ (x−1 ◦ x)).

To prove the lemma we notice that S(x ∗ x, x) = ((x ∗ x) ◦ x, x) therefore
ψG((x∗x)◦x)ψG(x) = ψG(x∗x)ψG(x) and ψG((x∗x)◦x) = ψG(x∗x). Similarly
S(x, x−1◦x) = (x, (x−1◦x)−1∗x) implies that ψG((x−1◦x)−1∗x) = ψG(x−1◦x).
So statement (ii) of the lemma is proved. It is clear that statement (iii) follows
from (i) and (ii) thus it remains to prove (i).

Let us show that ψG(x1) = ψG(x2) implies that ψG(g ∗ x1) = ψG(g ∗ x2).
For a fixed z ∈ X it is enough to reason that ψG(x1) = ψG(x2) if and only if
ψG(z−1 ∗ x1) = ψG(z−1 ∗ x2). Since S(x1, z) = (x1 ◦ z, z−1 ∗ x1) and S(x2, z) =
(x2 ◦ z, z−1 ∗ x2) we see that

ψG(x1)ψG(z) = ψG(x1 ◦ z)ψG(z−1 ∗ x1)(2.7)

and

ψG(x2)ψG(z) = ψG(x2 ◦ z)ψG(z−1 ∗ x2).(2.8)

Suppose ψG(x1) = ψG(x2) then since ∗ is an action of GX on X we imme-
diately see that ψG(x1 ◦ z) = ψG(x2 ◦ z) therefore equations (2.7)-(2.8) imply
that ψG(z−1 ∗ x1) = ψG(z−1 ∗ x2). Conversely, assume that ψG(z−1 ∗ x1) =
ψG(z−1 ∗ x2). Our task is to prove that ψG(x1) = ψG(x2). We use the
statement (iv) of Theorem 2.3 in the following form: S = J−1

2 S′J2, where
J2(x, y) = (y−1 ∗ x, y). We notice that S′J2(x1, z) = (φ(z, z−1 ∗ x1), z−1 ∗ x1)
and S′J2(x2, z) = (φ(z, z−1 ∗ x2), z−1 ∗ x2). Since φ(z, z−1 ∗ x1) is the action
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of ψA(z−1 ∗ x1) ∈ AX on z ∈ X and ψA = πψG we see that φ(z, z−1 ∗ x1) =
φ(z, z−1 ∗ x2). In this way, first components of S(x1, z) = J−1

2 S′J2(x1, z) and
S(x2, z) = J−1

2 S′J2(x2, z) coincide, i.e. x1 ◦ z = x2 ◦ z. So the equations
(2.7)-(2.8) imply that ψG(x1) = ψG(x2). In a similar fashion one can show
that ψG(x1) = ψG(x2) if and only if ψG(z ◦ x1) = ψG(z ◦ x2). The lemma is
proved.

We aim to construct the map h : AX → GX inverse to π. At first we define h
on FX - the free group generated by X and then show that it descends to AX .
We note that GX acts on FX via f → g ∗ f for f ∈ FX , g ∈ GX - the action
induced from *-action of GX on X. For x ∈ X ⊂ FX define

h(x) = ψG(x), h(x−1) = (ψG(x−1 ◦ x))−1.

Notice that x−1◦x is the same as ψG(x)−1◦x. For an element f = x1•...•xk ∈ FX

of length k define inductively h(x1 • ...•xk) = h(h(x2 • ...•xk)∗x1)h(x2 • ...•xk),
where for each i, xi ∈ X ⊂ FX or x−1

i ∈ X ⊂ FX . In the above f = x1 • ... • xk

was the minimum decomposition of f ∈ FX and k, the length of f, is the number
of elements in such a decomposition. The only element of length 0 in FX is
identity e and we put h(e) = 1 ∈ GX . We claim that for a, b ∈ FX

h(a • b) = h(h(b) ∗ a)h(b).(2.9)

Indeed, we can verify (2.9) by induction on the length of a. Suppose we know
that (2.9) holds for for all elements a of length k and want to check that h(a •
y • b) = h(h(b) ∗ (a • y))h(b) for y ∈ X ⊂ FX or y−1 ∈ X ⊂ FX . We simplify
h(h(b) ∗ (a • y))h(b) as follows:

h(h(b) ∗ (a • y))h(b) = h((h(b) ∗ a) • (h(b) ∗ y))h(b)

= h(h(h(b) ∗ y) ∗ (h(b) ∗ a))h(h(b) ∗ y)h(b).

On the other hand, we know that

h(a • y • b) = h(h(y • b) ∗ a)h(y • b) = h(h(h(b) ∗ y)h(b) ∗ a)h(h(b) ∗ y)h(b)

= h(h(h(b) ∗ y) ∗ (h(b) ∗ a))h(h(b) ∗ y)h(b).

We see that h(a•y • b) = h(h(b)∗ (a•y))h(b). In this way, we just need to check
the induction base, namely that h(y • b) = h(h(b) ∗ y)h(b). There are two cases
to consider:

1. Length(y • b) = 1 + Length(b).
2. Length(y • b) = Length(b) − 1, i.e. b = y−1 • b′ and

Length(b) = Length(b′) + 1.

In the first case the formula h(y • b) = h(h(b) ∗ y)h(b) follows from definition
of h. In the second case without loss of generality assume that y ∈ X. Then,
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h(b) = h(y−1 • b′) = h((h(b′) ∗ y)−1)h(b′) and letting h(b′) ∗ y = z we get

h(h(b) ∗ y)h(b) = h(h((h(b′) ∗ y)−1)h(b′) ∗ y)h((h(b′) ∗ y)−1)h(b′)

= h(h(z−1) ∗ z))h(z−1)h(b′) = ψG(ψG(z−1 ◦ z)−1 ∗ z)ψG(z−1 ◦ z)−1h(b′)

= (by Lemma) ψG((z−1 ◦ z)ψG(z−1 ◦ z)−1h(b′) = h(b′) = h(y • b).

Now we are going to check that h descends to AX . Recall that AX is given
by generators - elements of X and relations (z−1 ∗ ((y ∗ z) ◦ y)) • z = z • y for
each y, z ∈ X. We see that

h((z−1 ∗ ((y ∗ z) ◦ y)) • z) = ψG((y ∗ z) ◦ y)h(z) = h(z • y).(2.10)

If we define p(y, z) = (z−1 ∗ ((y ∗ z) ◦ y)) • z ∈ FX and q(y, z) = z • y ∈ FX then
for any g ∈ GX , h(g ∗ (p(y, z)−1 • q(y, z))) = h(g ∗ (q(y, z)−1 • p(y, z))) = 1.

Indeed, we checked in the proof of Theorem 2.4 that the defining relations of
group AX are GX -invariant with respect to * action, i.e. g∗p(y, z) = p(g∗y, g∗z)
and g ∗q(y, z) = q(g ∗y, g ∗z). Formula (2.10) states that h(p(y, z)) = h(q(y, z)),
therefore

h(p(y, z)−1 • q(y, z)) = h(h(q(y, z)) ∗ p(y, z)−1)h(q(y, z))

= h(h(p(y, z)) ∗ p(y, z)−1)h(p(y, z)) = h(p(y, z)−1 • p(y, z)) = 1.

Thus h(g∗(p(y, z)−1 •q(y, z))) = h(p(g∗y, g∗z)−1 •q(g∗y, g∗z)) = 1. Similarly,
h(g ∗ (q(y, z)−1 • p(y, z))) = 1.

In order to check that h : FX → GX descends to the map h : AX → GX it is
enough to check that for any a, b ∈ FX , y, z ∈ X h(a • p(y, z)−1 • q(y, z) • b) =
h(a • q−1(y, z) • p(y, z) • b) = h(a • b) holds. By formula (2.9)

h(a • p−1(y, z) • q(y, z) • b) =

h(h(p(y, z)−1 • q(y, z) • b) ∗ a) h(p(y, z)−1 • q(y, z) • b),

so it is enough to show that h(p−1(y, z) • q(y, z) • b) = h(b). But h(p−1(y, z) •
q(y, z) • b) = h(h(b) ∗ (p−1(y, z) • q(y, z)))h(b) = h(b) holds. Similar reasoning
allows to check that h(a • q−1(y, z) • p(y, z) • b) = h(a • b). In this way we
constructed the map h : AX → GX such that

1. h(a • b) = h(h(b) ∗ a)h(b),
2. hψA = ψG.

Condition 1 above implies that both πh : AX → AX and hπ : GX → GX are
group homomorphisms while Condition 2 implies that these homomorphisms
are identities if restricted to corresponding generating sets ψA(X), ψG(X), thus
πh = idAX

, hπ = idGX
. Theorem 2.5 is proved. �

It turns out then that the groups GX and AX both have abelian subgroups
of finite index when X is finite. Namely, define Γ = {g ∈ GX |g ∗ x = x, g ◦ x =
x for all x ∈ X}. In other words, Γ is the intersection of the kernels of left and
right actions from Theorem 2.2.
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Theorem 2.6. (cf. Section 2.5 in [ESS] and Prop. 6 in [LYZ])
(i) π(Γ) is a normal GX-invariant (w.r.t. to ∗-action) subgroup lying in the

center of AX . Γ is a normal abelian subgroup in GX , and π : Γ → π(Γ) is an
isomorphism.

(ii) The 1-cocycle π : GX → AX can be factored out through Γ giving rise to
the bijective 1-cocycle π̄ : GX/Γ → AX/π(Γ).

(iii) If X is finite then both GX/Γ and AX/π(Γ) are finite groups.

Proof. (i) Let us show that π(Γ) is GX -invariant and central subgroup
in AX . From the defining relations in GX we see that ψG(x ◦ y) =
ψG(x)ψG(y)ψG(y−1 ∗ x)−1 for all x, y ∈ X. In fact, one can easily check that
the above formula can be generalized for x ∈ GX , y ∈ X.

Lemma 2. For g ∈ GX , y ∈ X,

ψG(g ◦ y) = gψG(y)π−1(ψG(y)−1 ∗ π(g))−1.

Proof of Lemma 2. Let us show that if the statement of the Lemma holds for
some g ∈ GX then it holds for g−1. We need to check that

g−1ψG(g ◦ y)π−1(ψG(g ◦ y)−1 ∗ π(g−1))−1 = y.(2.11)

Notice that π(g−1) = (g ∗ π(g))−1 therefore

ψG(g ◦ y)−1 ∗ π(g−1) = ((ψG(g ◦ y)−1g) ∗ π(g))−1.

Since the statement of the Lemma holds for g, we have

π−1((ψG(g ◦ y)−1g) ∗ π(g))−1 = π−1((π−1(ψG(y)−1 ∗ π(g))ψG(y)−1) ∗ π(g))−1

= π−1(π−1(ψG(y)−1 ∗ π(g)) ∗ (ψG(y)−1 ∗ π(g)))−1

= π−1(ψG(y)−1 ∗ π(g)).

This implies the validity of equation (2.11). Similar, a simple computation shows
that if the statement of the lemma is true for g = g1 and g = g2 then it is true for
g = g1g2. In this way since by definition of GX the lemma is true for g ∈ ψG(X)
we have proved the lemma.

In particular, for g ∈ Γ, y ∈ ψG(X) one has y = gy(π−1(y−1 ∗ π(g)))−1.
Thus,

y−1gy = π−1(y−1 ∗ π(g)).(2.12)

The condition (2.12) implies that πΓ belongs to the center of AX . Indeed,
applying π to relation y−1g = π−1(y−1 ∗π(g))y−1 we get that π(y−1) commutes
with π(g). Moreover, for g ∈ Γ, h ∈ GX 1-cocycle condition implies that

π−1(π(h) • π(g)) = hg.(2.13)

So, in particular the product of elements in π(Γ) is in π(Γ) and π restricted to
Γ becomes an isomorphism between Γ and π(Γ).

(ii) The relation (2.13) shows that π can be lifted to π̄ : GX/Γ → AX/π(Γ).
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(iii) The kernels of each of the actions ∗, ◦ are of finite indexes since the
corresponding quotients are isomorphic to subgroups in Permut(X). So, the
intersection of kernels, i.e. subgroup Γ has finite index as well. �

Definition 6. We call a 7-tuple

(G, A, X, ρGA, ρGAX , π̄, ψA)

a bijective cocycle 7-tuple if G, A are groups, ρGA : G → Aut(A) is an action of
G on A, ρGAX : G � A → Permut(X) is an action of G � A on X, π̄ : G → A
is a bijective 1-cocycle, ψA : X → A is G � A-equivariant, where G � A acts on
A by conjugation.

Note that the action of G�A gives rise to two actions ρGX : G → Permut(X)
and ρAX : A → Permut(X). Starting with a bijective cocycle 7-tuple, let ∗ :
X × X → X and φ : X × X → X be defined as y ∗ x = ρGX(ψG(y))(x) and
φ(x, y) = ρAX(ψA(y))(x), where ψG = π̄−1ψA. Define S : X ×X → X ×X and
S′ : X × X → X × X via S(x, y) = (x ◦ y, y−1 ∗ x) and S′(x, y) = (φ(y, x), x),
where x ◦ y is defined in such a way that φ(y, x) = x−1 ∗ ((y ∗ x) ◦ y) holds.

Lemma 3. (i) For an arbitrary bijective cocycle 7-tuple, (X, S) constructed
above is a braided nondegenerate set.

(ii)(X, S′) is a derived nondegenerate braided set corresponding to (X, S).

Proof. It is obvious from the definition of a bijective cocycle 7-tuple that (X, S′)
is a braided nondegenerate set. We introduced x ◦ y in such a way that (X, S′)
becomes a derived solution corresponding to (X, S) as long as we are able to show
that (X, S) is braided nondegenerate itself. Since φ is G-invariant the argument
identical to the one made in the proof of Theorem 2.3 mitigates that for each
integer n ≥ 2 there exists a bijection Jn : Xn → Xn such that JnSii+1

n J−1
n =

(S′)ii+1
n . This implies that S is bijective and satisfies the braid relation (2.1).

It remains to prove that (X, S) is nondegenerate, i.e. that x ◦ y depends
bijectively on y ∈ X for a fixed x ∈ X. For that purpose we show that we
can define g ◦ y ∈ X for y ∈ X, g ∈ G such that for any x, y ∈ X, g, h ∈ G
x ◦ y = ψG(x) ◦ y and (gh) ◦ y = g ◦ (h ◦ y), i.e. ◦ is an action of G on X.

Let a group homorphism P : G → G � A be defined by the formula P (g) =
(g, π̄(g)) for g ∈ G. Then the map ρ∗GX = ρGAXP is an action of G on X. For
g ∈ G, y ∈ X define

g ◦ y = ρ∗GX(π̄−1(ρGA(ψG(y)−1)(π̄(g))))(y).

We want to check (gh) ◦ y = g ◦ (h ◦ y). For notational convience let
ρGA(ψG(y)−1)(π̄(g)) = ψG(y)−1 ∗ π̄(g), i.e. by ∗ we will mean both actions
ρGA and ρGX . Then due to the fact that P is a homomorphism it is enough to
verify that

π̄−1(ψG(h ◦ y)−1 ∗ π̄(g)) = π̄−1(ψG(y)−1 ∗ π̄(gh))(π̄−1(ψG(y)−1 ∗ π̄(h))−1.
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Since π̄(gh) = (h−1 ∗ π̄(g))π̄(h),

π̄−1(ψG(y)−1 ∗ π̄(gh)) = π̄−1((ψG(y)−1h−1 ∗ π̄(g))(ψG(y)−1 ∗ π̄(h)))

= π̄−1(π̄−1(ψG(y)−1 ∗ π̄(h))ψG(y)−1h−1 ∗ π̄(g))π̄−1(ψG(y)−1 ∗ π̄(h)).

In this way, if we check that

π̄−1(ψG(y)−1 ∗ π̄(h))ψG(y)−1h−1 = ψG(h ◦ y)−1(2.14)

we conclude that g ◦ (h◦y) = (gh)◦y. Let us rewrite (2.14) as (cf. Lemma 2)
ψG(h ◦ y)π̄−1(ψG(y)−1 ∗ π̄(h)) = hψG(y) and apply π̄ to it. We get that (2.14)
is equivalent to

ψA(π̄−1(ψG(y)−1 ∗ π̄(h))−1 ∗ (h◦y))(ψG(y)−1 ∗ π̄(h)) = (ψG(y)−1 ∗ π̄(h))(ψA(y)).

The last equality follows from A-equivariance of ψA since π̄−1(ψG(y)−1∗π̄(h))−1∗
(h◦y) = ρAX(ψG(y)−1∗π̄(h))(y) by definition of h◦y. The lemma is proved.

One can combine two actions of G on X - ρGX and ρ∗GX into the action
ρ = ρGX × ρ∗GX : G → Permut(X) × Permut(X) of G on X2.

Definition 7. We call a bijective cocycle 7-tuple (G, A, X, ρGA, ρGAX , π̄, ψA)
faithful if ψG(X) = π̄−1ψA(X) generates G and the action ρ : G → Permut(X)×
Permut(X) is faithful.

The following theorem is a characterization of finite braided nondegenerate
sets in group theoretical terms. We notice that this result is a generalization of
Proposition 2.11 in [ESS].

Theorem 2.7. The construction of Lemma 3 establishes a 1-1 correspondence
between nondegenerate braided sets (X, S) and faithful bijective cocycle 7-tuples.

Proof. Having a nondegenerate braided set (X, S) it is straightforward to con-
struct the faithful bijective cocycle 7-tuple. Indeed, following the notations of
Theorem 2.6 we put G = GX/Γ, A = AX/π(Γ) then G acts faithfully on X2

and we have a faithful cocycle 7-tuple. Conversely, if we have a faithful 7-tuple
we can construct a nondegenerate braided set by Lemma 3. Let GX be the
structure group of so constructed nondegenerate braided set. It follows from
(2.14) that there is a group homomorphism Q : GX → G such that QψG = ψG.
Since ψG(X) generates G, Q is surjective, and since G acts faithfully on X2,
Ker(Q) = Γ, i.e. GX/Γ is isomorphic to G.

2.3. Injective solutions. In this section we talk about most tractable braided
nondegenerate sets - injective solutions.

Definition 8. We call a braided nondegenerate set (X, S) an injective solution
if the map ψG : X → GX is injective.

In [LYZ] the authors noticed that in the absence of involutivity the natu-
ral map ψG : X → GX is not obviously injective which creates difficulties in
characterization of solutions. It turned out that injectivity may indeed fail (see
examples below). This motivates Definition 8.
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Lemma 4. A nondegenerate braided set (X, S) is injective if and only if its
derived solution (X, S′) is injective.

Proof. The statement of Theorem 2.5 implies that injectivity of the map ψA :
X → AX is equivalent to injectivity of ψG : X → GX . Since AX is the structure
group of the derived solution Lemma 4 is proved.

The importance of injective solutions is in the fact that their properties and
group-theoretical characterization are very similar to that of involutive solutions
[ESS].

Theorem 2.8. (i) Let a group G act on a group A by ρGA : G → Aut(A) such
that the bijective map π : G → A is a 1-cocycle. Then any G � A-invariant
subset X ⊂ A has a natural structure of a nondegenerate braided injective set
given by

S(x, y) = (π(π−1(x)π−1(y)(π−1(ρ(π−1(y)−1)(x)))−1), ρ(π−1(y)−1)(x)),(2.15)

for x, y ∈ X.
(ii) Any nondegenerate braided injective set can be obtained by the method just

described.

Proof. To prove (i) we can use Lemma 3. Indeed, we have the following bijective
cocycle 7-tuple: G, A, X, π̄ = π, ρGA as given; ρGAX is induced from the adjoint
action of G � A on its subgroup A, ψA = idX . It is straightforward to check
(cf. (2.14)) that the map S constructed in Lemma 3 coincides with the map S
given by formula (2.15). So it remains to prove that the set (X, S) is injective.
Let GX be its structure group. Arguing as in the proof of Theorem 2.7 we see
that there is a group homomorphism Q : GX → G such that πQψG = idX . This
implies that ψG is injective.

Conversely, if (X, S) is an injective nondegenerate braided set then X =
ψA(X) is a GX -invariant (w.r.t. ∗ - action) subset in AX . Note that this subset
is automatically GX � AX -invariant. Recall that S is given by the formula
S(x, y) = (x ◦ y, y−1 ∗ x) for x, y ∈ X according to notations after Theorem 2.2.
Let us make sure that the construction of Theorem 2.8 yields the same map S we
already have. Indeed, for x, y ∈ ψA(X) = X, π−1(y)−1∗x = ψG(y)−1∗x = y−1∗x
and π(π−1(x)π−1(y)(π−1(π−1(y)−1 ∗ x))−1) = π(ψG(x)ψG(y)ψG(y−1 ∗ x)−1) =
π(ψG(x ◦ y)) = ψA(x ◦ y) = x ◦ y. The theorem is proved.

Lemma 4 implies that injectivity of a given solution is determined by the
properties of the function φ : X × X → X. In particular, for a symmetric set
(X, S), φ(y, x) = y and AX is the free abelian group generated by X. Hence,
symmetric sets are injective. We don’t know any easy way to check that a
given function φ(y, x) corresponds to an injective solution. While an injectivity
criterion is provided by Theorem 2.9, we give two simple necessary conditions
below that are in many cases sufficient to check that a given solution is not
injective.
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Lemma 5. If (X, S) is an injective braided set then
(a) φ(x, x) = x for all x ∈ X,
(b) a pair (y, x) ∈ X × X satisfies φ(y, x) = y if and only if φ(x, y) = x.

Proof. Suppose (X, S) is injective. The group AX is generated by the elements
of X subject to relations φ(y, x) • y = y • x for x, y ∈ X. Consequently
ψA(φ(x, x)) • ψA(x) = ψA(x) • ψA(x) and ψA(φ(x, x)) = ψA(x) in AX . Since
ψA : X → AX is injective φ(x, x) = x on X. Now, assume that φ(y, x) = y.
Then ψA(y)•ψA(x) = ψA(x)•ψA(y). On the other hand, ψA(φ(x, y))•ψA(y) =
ψA(y) • ψA(x), therefore ψA(φ(x, y)) = ψA(x) and φ(x, y) = x. The lemma is
proved.

Example. Let c, b ∈ Permut(X). Define S : X×X → X×X by the formula
S(x, y) = (by, cx). It is easy to see that (X, S) is a nondegenerate braided set
if bc = cb. We claim that this solution is injective if and only if cb = idX .
Indeed, suppose the solution is injective, then by Lemma 5 φ(x, x) = x, i.e.
x−1 ∗ ((x ∗ x) ◦ x) = cbx = x. Therefore cb = idX . Conversely, if cb = idX then
(X, S) is symmetric and hence injective.

We remark that with each nondegenerate braided set we associated two ac-
tions of the group GX (∗, ◦) and an action of AX (via φ(x, y), which is a ◦
action of the derived solution) on X. In particular, the latter action allows us
to construct a finite group A0

X ⊂ Permut(X), as the image of AX under that
action, and a surjective homomorphism p : AX → A0

X . Define MX - a module
over A0

X generated by vx, x ∈ X subject to relations

p(y)−1vx + vy = p(x)−1vφ(y,x) + vx.

By construction we have a natural map ψM : X → MX given by x → vx. It
turns out that injectivity of ψM is equivalent to injectivity of ψG.

Theorem 2.9. (i) There exists a unique 1-cocycle θ : AX → MX such that
θψA = ψM , where AX acts on MX via p.

(ii) θ is injective on ψA(X).

Proof. Statement (i) is clear from definitions of AX and MX . Let us show that
(ii) holds. Let Ker(p) = ΓA, i.e. A0

X = AX/ΓA. Let x1, x2 ∈ ψA(X), x1 �= x2.
We want to show that θ(x1) �= θ(x2) in MX . Fix a character ξ : ΓA → C

∗.
Define a vector space

Vξ = {f : AX → C|f(a • γ) = f(a)ξ(γ), γ ∈ ΓA}.
Vξ clearly has an AX -module structure defined as (bf)(a) = f(b−1 • a), where
f ∈ Vξ, b, a ∈ AX . Choose a lifting g : A0

X → AX (as a set only). Then Vξ

is identified with Fun(A0
X , C), the space of functions on A0

X via f → f |g(A0
X).

This space has a basis δa, a ∈ A0
X such that δa(b) = 0 if a �= b and δa(a) = 1.

Let us define ε : ψA(X) → Fun(A0
X , C) by the formula xδa = δp(x)•aε(x)(a) for

x ∈ ψA(X), a ∈ A0
X . We can always choose ξ and g such that ε(x1) �= ε(x2).

Indeed, if p(x1) = p(x2) it suffices to choose ξ such that ξ(x1 • x−1
2 ) �= 1 for any
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lifting g. If p(x1) �= p(x2) then for any character ξ �= 1 there is a lifting g such
that ε(x1) �= ε(x2). Moreover, since x • y = φ(y, x) • x for x, y ∈ ψA(X) and

xyδa = xδp(y)•aε(y)(a) = δp(x)•p(y)•aε(x)(p(y) • a)ε(y)(a),

we get that

ε(x)(p(y) • a)ε(y)(a) = ε(φ(y, x))(p(x) • a)ε(x)(a).

In this way, we have the equality (p(y)−1ε(x))ε(y) = (p(x)−1ε(φ(y, x)))ε(x)
in Fun(A0

X , C). Hence we can construct an A0
X -homomorphism from MX to

Fun(A0
X , C) given by vz → ε(ψA(z)), z ∈ X. But ε(x1) �= ε(x2) thus θ(x1) �=

θ(x2).

Corollary 1. The map ψM : X → MX is injective if and only if (X, S) is an
injective solution.

2.4. Rank of the structure group. In this section we show how to compute
the rank of the structure group GX for a finite nondegenerate braided set (X, S).

Definition 9. (i) The rank of a group G having an abelian subgroup of finite
index Γ is defined as the rank of Γ.

(ii) We define the rank of a finite nondegenerate braided set (X, S) to be the
rank of its structure group GX .

Clearly the above definition doesn’t depend on the choice of Γ, for any two
abelian subgroups of finite index Γ1, Γ2 have the same rank that is equal to the
rank of their intersection, which has finite index in each of them.

Lemma 6. The rank of a solution (X, S) is equal to the rank of the derived
solution (X, S′).

Proof. According to statement (i) of Theorem 2.6 abelian subgroups Γ and π(Γ)
of finite indexes in GX and AX are isomorphic, thus GX and AX have the same
rank. The lemma is proved.

We aim to compute the rank of AX . Note that defining relations in group
AX can be rewritten as

φ(y, x) = x • y • x−1.(2.16)

Note that since S(x, y) = (φ(y, x), x) gives rise to a nondegenerate braided set,
φ(, x) can be extended to the action of AX on X. Introduce an equivalence
relation � on X such that the orbits of the above action become equivalence
classes. Namely, consider the minimum equivalence relation � such that y �
φ(y, x) for x, y ∈ X.

Theorem 2.10. The rank of group AX is equal to the number of equivalence
classes with respect to equivalence relation � on X.
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The proof relies on the following lemma. Let H1, H2, H3 be three groups,
such that there is an exact sequence

1 → H1 → H2 → H3 → 1,

and H1 is cenral in H2.

Lemma 7 ([CR]). There exists an exact sequence (The Hochschild - Serre se-
quence) (2.17) for any abelian group B, where H2(H3, B) stands for the second
cohomology group of H3 with coefficients in B.

1 → Hom(H3, B) → Hom(H2, B) → Hom(H1, B) → H2(H3, B).(2.17)

Proof of Theorem 2.10. Let us use the sequence 2.17 in the following situation:
H2 = AX , H1 ⊂ π(Γ) ⊂ AX is the free abelian group of rank r of finite index in
π(Γ), H3 = H2/H1 - a finite group, B = C

∗. Notice that π(Γ) is central in AX

therefore H1 is central in H2. Then, since both Hom(H3, B) and H2(H3, B)
are finite groups and Hom(H1, B) = (C∗)r, the dimension of Hom(H2, B) =
Hom(AX , C∗) is equal to r, the rank of AX . On the other hand, it is clear from
formula (2.16) that Hom(AX , C∗) = (C∗)k, where k is the number of equivalence
classes in X. The theorem is proved. �
Corollary 1. The rank of any solution (X, S) is less or equal than n, the
number of elements in X, with the equality taking place if and only if (X, S) is
symmetric.

Proof. It is clear that if rank of AX is equal to n then equivalence relation �
on X is trivial, φ(y, x) = y and the map ψA : X → AX is injective. This
immediately implies that the pair (X, S) is symmetric.

Example. Consider a permutation solution S(x, y) = (bx, cy), b, c ∈
Permut(X), bc = cb. It is easy to check that φ(y, x) = bcy, hence y � (bc)my
for any integer m. The rank of the permutation solution is equal to the number
of equivalence classes with respect to this relation, which, in turn, is equal to
the number of independent cyclic permutations in canonical decomposition of bc
(counting cyclic permutations of length 1).

3. Linear and affine solutions

3.1. Linear braided sets. In this section we will look for nondegenerate braid-
ed sets of the following form: X is an abelian group, and S is an affine linear
transformation of X ×X. Such braided sets will be called affine solutions. Con-
sidering affine solutions was motivated by the results in [ESS].

We will start with considering a special case, when S is an automorphism of
X × X. In this case, an affine solution will be called a linear solution. For a
linear solution, S has the form

S(x, y) = (ax + by, cx + dy), a, b, c, d ∈ End(X).(3.1)
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It is easy to check that for S of the form (3.1) the nondegeneracy is equivalent
to invertibility of both b and c while braid relation is equivalent to the equations
[Hi]

a(1 − a) = bac, d(1 − d) = cdb,(3.2)
ab = ba(1 − d), ca = (1 − d)ac, dc = cd(1 − a),(3.3)
bd = (1 − a)db, cb − bc = ada − dad.(3.4)

Lemma 8. Braided nondegenerate linear sets (X, S) are in 1-1 correspondence
with the quadruples (a, b, d, s) ∈ End(X)4 such that:

(i) 1 − a, 1 − d, b, 1 + s are invertible,
(ii) s commutes with a,b,d and sa = sd = 0,
(iii) bdb−1 = (1− a)d, b−1ab = a(1− d). The 1-1 correspondence is given via

the formula

bc = (1 − d + ad)(1 − a) + s.(3.5)

Proof. Suppose (a, b, c, d) solves (3.2)-(3.4). Note that the first of equations (3.4)
implies that bdb−1 = (1 − a)d, therefore b(1 − d)b−1 = 1 − d + ad. Moreover,
if we multiply the first equation of (3.3) by b−1 on the right we get that a =
bab−1b(1 − d)b−1 thus relations (3.6) hold. Similarly from equations two and
three of (3.3) we obtain relations (3.7).

bab−1(1 − d + ad) = a, bdb−1 = (1 − a)d,(3.6)
cac−1 = (1 − d)a, cdc−1(1 − a + da) = d.(3.7)

Above formulas show how to conjugate the elements of subalgebra generated
by a and d by elements b, c and their products. We define s from the relation
(3.5). Notice that sa = sd = 0. Indeed, multiplying (3.5) by a on the right and
using first of relations (3.2) and second of relations (3.3) we get that

sa = bca − (1 − d + ad)(1 − a)a = b(1 − d)ac − (1 − d + ad)bac.

Since according to (3.6) b(1 − d)b−1 = 1 − d + ad we see that b(1 − d)ac − (1 −
d + ad)bac = 0. Similarly as = 0. The last of equations (3.4) imply that

cb = (1 − a + da)(1 − d) + s.(3.8)

Multiplying the relation (3.8) just obtained by d we get that sd = ds = 0. Now
we have everything to show that 1 − a, 1 + s and 1 − d are invertible. Indeed,
b, c are invertible because of nondegeneracy of (X, S). Since

bc = (1 − d + s + ad)(1 − a) = (1 − a)(1 − d + s + da),

bc = (1 − d + ad)(1 − a + s) = (1 − a + s)(1 − d + ad),
and

cb = (1 − a + s + da)(1 − d) = (1 − d)(1 − a + s + ad),
we conclude that 1−a , 1−a+s and 1−d have right and left inverses and hence
invertible. But 1 − a + s = (1 − a)(1 + s), thus 1 + s is invertible. Let us show
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that s commutes with c. We conjugate relation (3.5) by c and use relations (3.7)
to conclude that

cb = (1 − a + da)(1 − d) + csc−1.(3.9)

Comparing (3.8) to (3.9) we get that s = csc−1, i.e. s commutes with c. Now,
relation (3.5) implies that s commutes with b as well. In this way, starting
from (a, b, c, d), a solution to (3.2)-(3.4) we constructed a quadruple (a, b, d, s)
satisfying conditions of the lemma. Conversely, let us assume we start with
(a, b, d, s). Define c from the formula (3.5). Since 1 − d + ad = b(1 − d)b−1 is
invertible, c is invertible as well. It is straightforward to check that so defined
(a, b, c, d) satisfy the braid relations (3.2)-(3.4), and that S : X × X → X × X
is bijective. The lemma is proved.

3.2. Injective linear solutions. It turns out that injective linear solutions
are easy to characterize.

Theorem 3.1. A linear nondegenerate braided set of the form (3.1) is injective
iff bc = (1 − d + ad)(1 − a) or, in the language of Lemma 8, s = 0.

Proof. Assume that (X, S) is injective. Then, by Lemma 5 φ(x, x) = x on X.
In the linear case it is easy to compute φ(y, z) explicitly:

φ(y, z) = c((y ∗ z) ◦ y) + dz = c(a(y ∗ z) + by) + dz = cac−1(z − dy) + cby + dz.

According to relation (3.8), cb = (1−a+da)(1−d)+s. Plugging it into formula
for φ(y, z) and using (3.7) we conclude that

φ(y, z) = (1 − (1 − d)(1 − a))z + ((1 − d)(1 − a) + s)y.

Condition φ(x, x) = x immediately implies that s = 0.
Conversely, assume that s = bc − (1 − d + ad)(1 − a) = 0. Let us show that

ψA : X → AX is injective. The group AX is generated by elements of X subject
to relations

φ(y, z) • z = z • y, where y, z ∈ X and φ(y, z) = z−1 ∗ ((y ∗ z) ◦ y).(3.10)

Denoting K = (1 − d)(1 − a) we see that the group AX is given by relations
((1 − K)z + Ky) • z = z • y. By Lemma 8, K is invertible. Let us now define
the action of AX on X. We let the elements of generating set ψA(X) act with
K on X and then extend this action to arbitrary elements of AX . Consider a
semidirect product AX �X with respect to this action, and define an embedding
J : X → AX � X given by the formula J(x) = (ψA(x), x). We notice that
J((1 − K)z + Ky)J(z) = J(z)J(y) in AX � X. Indeed,

J((1 − K)z + Ky)J(z)

= (ψA((1 − K)z + Ky), (1 − K)z + Ky)(ψA(z), z)

= (ψA((1 − K)z + Ky) • ψA(z), K−1((1 − K)z + Ky) + z)

= (ψA(z) • ψA(y), K−1z + y) = J(z)J(y).
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So, J can be extended to a homomorphism Ĵ : AX → AX � X such that
PrĴψA = id, where Pr : AX � X → X stands for the projection to the second
component. Therefore, the map ψA : X → AX is injective. The theorem is
proved.

Corollary 1. (i) Let (X, S) be a nondegenerate braided linear set of the form

(3.1). Then the pair (X, Ŝ) with Ŝ : X × X → X × X given by Ŝ(x, y) =
(ax + by, cx + (d − s)y), where s is defined in 3.5, is an injective solution.

(ii) Suppose (X, S) is an injective linear solution and s : X → X satisfies

sa = as = 0, sb = bs, sd = ds = −s2, sc = cs. Then, (X, S̆) with S̆ : X × X →
X × X given by S̆(x, y) = (ax + by, cx + (d + s)y) is a nondegenerate braided
set that corresponds under the correspondence of Lemma 8 to the quadruple
(a, b, d, s).

Proof. (i) It is easy to check (X, Ŝ) is a braided nondegenerate set by directly
checking relations (3.2) - (3.4). Since s commutes with everything and sa =
sd = 0 the above task is pretty simple. Also, it is obvious that bc = (1 − (d −
s) + a(d − s))(1 − a), thus by Theorem 3.1 (X, Ŝ) is injective. Proof of (ii) is
similar to (i) and is left to the reader.

Examples. 1. Consider the linear solution S(x, y) = (cy, bx) with c, b being
linear automorphisms of X subject to cb = bc. We see that s=bc-1, therefore
(X, Ŝ) with Ŝ(x, y) = (cy, bx + (1− bc)y) is an injective solution. We obtain the
same solution by a different method in Example 2 at the end of this section.

2. It was shown in [ESS] that symmetric nondegenerate linear solutions of
the form 3.1 are given as the solutions to the following equations: bab−1 =

a
a+1 , c = b−1(1 − a2), d = a

a−1 with b, c being invertible. In particular a
large class of solutions of this kind considered corresponded to nilpotent a, i.e.
there was n such that an = 0. Define s = man−1, m being any integer. It
is easy to see that so defined s satisfies conditions of Corollary 1 (ii) hence
S′′(x, y) = (ax + by, cx + (d + man−1)y) is a nondegenerate braided set, which
is not symmetric and not injective unless man−1 = 0.

Theorem 3.2. Linear braided nondegenerate injective sets (X, S) on an abelian
group X are in 1-1 correspondence with triples (a, b, d) of endomorphisms of X
such that b, 1− a, 1− d are invertible and bdb−1 = (1− a)d, b−1ab = a(1− d).

Proof. Straightforward application of Lemma 8 and Theorem 3.1.

Corollary 1. Linear braided nondegenerate injective sets (X, S) on an abelian
group X are in 1-1 correspondence with triples (p, q, z) of automorphisms of X
such that pq = qp and z2 − z(p + q) + pq = 0.

The statement of Corollary 1 follows from Theorem 3.2 via change of variables
p = b−1, q = (1 − a)(1 − d)b−1, z = (1 − a)b−1.
Examples. 1. If (X, S) is unitary then (1 − a)(1 − d) = 1 and therefore
p = q. In this way, nondegenerate unitary linear braided sets are characterized as
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representations of algebra generated by invertible p, z subject to z2−2zp+p2 =
0.

2. Put z = p, then q can be anything as long as it is invertible and pq = qp.
Correspondingly, a = 0, b = p−1, 1− d = p−1q, c = q. The map S is defined in
the following way: S(x, y) = (p−1y, qx + (1 − p−1q)y). Similarly if we let z = q
we obtain the solution given by the formula: S(x, y) = (py +(1− q−1p)x, q−1x).

3. Let ε1 and ε2 be two nilpotent operators on X of order two, i.e. ε21 = ε22 = 0.
Then we let p = 1+ε1, q = 1−ε1, z = 1+ε2. It is easy to check that so defined p
and q commute and that z2−z(p+q)+pq = 0. We recover a, b, c, d from ε1 and
ε2 via the formulas b = 1− ε1, a = ε1− ε2 + ε2ε1, d = 1− (1+ ε1)(1− ε2)(1−2ε1),
c = (1 + ε1)(1 − ε2)(1 − ε1)(1 + ε2)(1 − ε1). In particular, if ε1ε2 = ε2ε1 the
corresponding linear solution has the form:

S(x, y) = ((ε1 − ε2 + ε2ε1)x + (1 − ε1)y, (1 − ε1)x + (ε1 + ε2 − ε2ε1)y)

4. Suppose X is a n-dimensional vector space and p, q are invertible operators
on it having 2n distinct eigenvalues. Let (v1...vn) be the basis of X in which
both p and q are diagonalized, i.e. pvi = pivi, qvi = qivi. Then zvi = zivi,
where for each i either zi = pi or zi = qi. Indeed, 0 = (z2 − z(p + q) + pq)vi =
(z − pi)(z − qi)vi. The vector subspace of X generated by applying z to vi (i
is fixed) is annihilated by (z − pi)(z − qi) therefore it has a basis of pi and qi

eigenvectors of z. Therefore, it has to be one dimensional, i.e. zvi = pivi or
zvi = qivi. It is also easy to see that z given by diagonal matrix in (v1...vn)
basis with pi or qi entries on the i-th place does satisfy z2 − z(p + q) + pq = 0
on X.

3.3. Affine solutions. In this section we talk about general affine solutions on
an abelian group X.

Definition 10. The solution (braided, nondegenerate) (X, S) of the form (3.11)
is called affine.

S(x, y) = (ax + by + z, cx + dy + t), a, b, c, d ∈ End(X), t, z ∈ X.(3.11)

Lemma 9. The pair (X, S) of the form (3.11) is a solution if and only if (3.2)-
(3.4) and (3.12) hold. Therefore, any affine solution gives rise to a linear solution
(X, S∗) with S∗(x, y) = (ax + by, cx + dy).

cdz + dt = 0, az + bat = 0, (c + d − ad − 1)z + (da + 1 − a − b)t = 0.(3.12)

Proof. Straightforward.

Definition 11. We call (X, S∗) from Lemma 9 the linear part of an affine
solution (X, S). Conversely, we call (X, S) an affine solution associated with
(X, S∗).

Theorem 3.3. (i) Let (X, S∗) be a linear braided nondegenerate set, S∗(x, y) =
(ax + by, cx + dy). Then, (X, S) given by (3.11) is an affine solution associated
with (X, S∗) if and only if t = −c(1−a)−1z+k and ak = dk = 0, (b−1)k = sz,
where s is defined in (3.5).
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(ii) An affine solution (X, S) is injective if and only if its linear part is
injective and k = 0 in the above characterization. In this way, injective affine
solutions associated with a given injective linear solution (X, S∗) are in 1-1
correspondence with elements z ∈ X, t being given by t = −c(1 − a)−1z.

Proof. Let us proof part (i). Note that since cdz + dt = d(c(1 − a)−1z + t) and
az+bat=a(z + (1 − a)c−1t) by equations (3.2)-(3.3) we can rewrite two of the
relations (3.12) as

d(c(1 − a)−1z + t) = 0, a(z + (1 − a)c−1t) = 0.

Therefore, if we define k from the relation

t = −c(1 − a)−1z + k,(3.13)

we see using (3.2) that ak = dk = 0. Now, (3.7) implies c(1 − a)−1c−1 =
(1−a+da)−1 thus we can transform (3.13) into (1−a+da)t = −cz+(1−a+da)k =
−cz + k. In this way, we rewrite last of the relations (3.12) as

(d − ad − 1)z − bt + k = 0(3.14)

If we substitute t from (3.13) into (3.14) and use (3.5) we get that (b − 1)k =
sz. Part (i) is proved. In order to prove part (ii) we compute the function
φ : X × X → X. Define by φ∗ the corresponding function φ of the linear part
(X, S∗). Then, it is easy to check that φ(y, x) = φ∗(y, x) + k. Now, assume
that (X, S) is injective. Then by Lemma 5 φ(x, x) = x, hence φ∗(x, x) = x and
k = 0. As we saw in the proof of Theorem 3.1 φ∗(x, x) = x implies that s = 0
and thus (X, S∗) is injective. Conversely, if (X, S∗) is injective and k = 0 then
φ(y, x) = φ∗(y, x) and hence the derived solution of (X, S) coincides with the
derived solution of (X, S∗) and hence is injective. Theorem is proved.
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