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THE CHAIN PROPERTY FOR THE ASSOCIATED PRIMES
OF A-GRADED IDEALS

Klaus Altmann

Abstract. We investigate how the chain property for the associated primes of
monomial degenerations of toric (or lattice) ideals can be generalized to arbitrary
A-graded monomial ideals. The generalization works in dimension d = 2, but it
fails for d ≥ 3. Moreover, for a certain class of binomial ideals (including the
A-graded ones) we present an explicit cellular primary decomposition.

1. Introduction

1.1. Challenged by the question of Arnold for the ideals with the easiest Hilbert
function, Sturmfels has invented in [St1] and §10 of [St2] the notion of A-graded
ideals. For a given linear map A : Zn → Zd with (kerA) ∩ Zn

≥0 = 0 an ideal
I ⊆ C[x1, . . . , xn] is called A-graded if it is Zd-homogeneous via A and, moreover,
if it has the Hilbert function

dimC

(
C[x]

/
I

)
q

=
{

1 if q ∈ A(Zn
≥0)

0 otherwise.

Examples are the so-called toric ideal JA :=
(
xa −xb

∣∣ a, b ∈ Zn
≥0, a− b ∈ kerA)

and all its Gröbner degenerations. Indeed, these ideals form an irreducible, the
“coherent” component in the parameter space of all A-graded ideals. See [PS2],
[PS1], and [St1] for different treatments of this interesting subject.
The importance of A-graded ideals seems to be two-fold. First, they give insight
into a small layer of the deformation space of monomial ideals. Second, via
taking radicals and using the Stanley-Reisner construction, the monomial A-
graded ideals provide triangulations of the convex cone A(Rn

≥0). Hence, the set
of those triangulations may be studied by algebraic tools, cf. [MT].

1.2. Sturmfels has investigated intrinsic properties of monomial ideals that are
satisfied for coherent ideals, but fail for general A-graded ones. First, there is
a combinatorial property obtained by observing the vertices of the fibers of A
restricted to Zn

≥0. The second property involves more algebraic concepts such
as the degree of the generators of the ideal, cf. [St1], [St2].
In this context, Hoşten and Thomas have addressed another point. In [HT] they
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observe that monomial degenerations of toric ideals admit a very special primary
decomposition; the associated prime ideals occur in chains:

Definition. The ideal I fulfils the chain property for its associated primes if,
for any associated, non-minimal prime P of I, there is another one P ′ ⊆ P with
ht(P ′) = ht(P ) − 1.

The subject of the present paper is to show that this property is of the same
type as the first two mentioned above, i.e., not true for non-coherent A-graded
monomial ideals, in general. In detail, we will prove the following

Theorem (3.4)/(4.1). The chain property holds for A-graded monomial ideals
of dimension d ≤ 2. However, there are counter examples for d = 3.

1.3. The main tool for proving the previous theorem is the explicit knowledge
of the primary decomposition of monomial ideals from [STV]. However, instead
of quoting the result, we start our paper in §2 with the presentation of a gen-
eralization to a certain class of binomial ideals, cf. Theorem (2.7). This result
implies the

Theorem. A-graded ideals admit a cellular primary decomposition.

The fact that primary decomposition does not leave the category of binomial
ideals at all follows already from [ESt].

2. Primary decomposition of saturated binomial ideals

2.1. Let I ⊆ C[x] := C[x1, . . . , xn] be a binomial ideal. By T (I) ⊆ Zn
≥0 we

denote the set

T (I) :=
{
a ∈ Zn

≥0

∣∣ xa /∈ I
}

of the non-monomials in I. The set T := T (I) has the property
(i) If a, b ∈ Zn

≥0 with a ≥ b (i.e., a − b ∈ Zn
≥0) and a ∈ T , then b ∈ T .

Every T fulfilling this property occurs as T (I) for some binomial (even monomial)
ideal. For the upcoming definition, we also need the following notation. If
� ⊆ [n] := {1, . . . , n} is an arbitrary subset, then we write

Z� := {a ∈ Zn | supp a ⊆ �} and Z�
≥0 := Zn

≥0 ∩ Z� .

2.2. Definition. Let T ⊆ Zn
≥0 with property (i). A set (r, �) := r + Z�

≥0 with
r ∈ Zn

≥0 and � ⊆ [n] disjoint to supp r is called a standard pair if it is maximal
(with respect to inclusion) for the property r + Z�

≥0 ⊆ T .
Denoting by B := B(T ) the set of standard pairs, we obviously have T =

∪(r,�)∈B(r + Z�
≥0). The following result is well known, however, we include a

short proof here for the reader’s convenience.

Proposition. The set B(T ) is finite.
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Proof. Otherwise, let � ⊆ [n] be a subset such that there are infinitely many ri

with (ri, �) ∈ B. Then, we may choose a subsequence of (ri) that is increasing
via the partial order provided by Z

[n]\�
≥0 ⊆ Zn

≥0: If there is one value occurring
infinitely often as the entry of the ri in one of the [n] \ � coordinates, then this
follows via induction by #([n] \ �). If not, then the claim is trivial, anyway.

Assuming that the ri are increasing, then there is at least one coordinate (e.g.
the first one) that becomes arbitrary large. Since

(
r1 + (ri

1 − r1
1)e

1
) ≤ ri, the

property (i) implies
(
r1 + (ri

1 − r1
1)e

1
)

+ Z�
≥0 ⊆ T ; hence r1 + Z

�∪{1}
≥0 ⊆ T . In

particular, the set r1 + Z�
≥0 was not minimal, i.e., (r1, �) /∈ B.

2.3. Let T ⊆ Zn
≥0 with property (i) of (2.1). Then we define for any subset

� ⊆ [n]

T (�) :=
⋃

(ri,�)∈B

(
ri + Z�

≥0

) ⊆ T

and its closure via the partial order “≥”

T (�) :=
⋃

(ri,�)∈B, r≤ri

(
r + Z�

≥0

) ⊆ T .

Remark. T (�) = {r ∈ Zn
≥0 | r+Z�

≥0 ⊆ T and � is maximal with this property}.

2.4. Definition. Let I ⊆ C[x] be a binomial ideal. Define K(I) ⊆ Zn as the
abelian subgroup generated as

K(I) :=
〈
a − b

∣∣ a, b ∈ T (I) with λaxa − λbx
b ∈ I for some λa, λb �= 0

〉
.

The binomial ideal I is called saturated if for any a, b ∈ T (I) with a − b ∈ K(I)
there are coefficients λa, λb �= 0 such that λaxa − λbx

b ∈ I.

Remark. The abelian subgroup K(I) ⊆ Zn is minimal for I to be Zn/
K(I)-

homogeneous. Moreover, using this language, the saturation property means
that the associated Hilbert function of the graded ring C[x]

/
I always yields

0 or 1.

Examples.

1) Monomial ideals: Here is K(I) = 0.
2) A-graded ideals with A : Zn → Zd: We have K(I) =

〈
(a−b) ∈ kerA | a, b ∈

T (I)
〉 ⊆ kerA.

In particular, the map Zn/
K(I) →→ Zn/

kerA ↪→ Zd shows that the Zd-
grading is in general weaker than the Zn/

K(I)-grading.
3) The ideal I := (x2 − xy) is not saturated: While K(I) = (1,−1) · Z ⊆ Z2,

we have x − y /∈ I.
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As the ideals (x2 − xy) and (x − y) admit the same invariants K and T , it
follows that the saturation property does not depend on them alone. Neverthe-
less, the saturation of an ideal I implies a special feature of the sets K(I) and
T (I):

Proposition. Let I ⊆ C[x] be a binomial ideal. If I is saturated, then T = T (I)
and the fibers Tq := {a ∈ T | a �→ q} with q ∈ Zn/

K(I) fulfil, in addition to
(2.1)(i ), the following property:

(ii) If g ∈ Zn
≥0 and q ∈ Zn/

K(I), then (g + Tq) ∩ T = ∅ or g + Tq ⊆ T .

Proof. If a, b ∈ Tq, then there is an element λaxa − λbx
b ∈ I, hence, λaxa+g −

λbx
b+g ∈ I. Since λa, λb �= 0, it follows that the latter monomials are either

both contained in I or both not.

Open problem. Do there exist A-graded ideals I containing at least one mono-
mial, but still satisfying K(I) = kerA or at least K(I)Q = kerAQ?

2.5. Lemma. Assume that T ⊆ Zn
≥0 satisfies, for some subgroup K ⊆ Zn, the

properties (i ) and (ii ) of (2.1) and (2.4), respectively.

(a) If a, b ∈ Tp and g, h ∈ Tq, then a + g ∈ T iff b + h ∈ T .
(b) If T (�)q �= ∅ , then T (�)q = Tq.
(c) If T (�)q �= ∅ , then T (�)q = Tq.

In particular, both sets T (�) ⊆ T and T (�) ⊆ T are unions of selected whole
fibers Tq.

Proof. Part (a) uses property (ii) twice to compare (a + g), (a + h), and (b + h)
successively. For (b) let a ∈ T (�)q, b ∈ Tq. We will use Remark (2.3) several
times: First, it follows that a + Z�

≥0 ⊆ T . Then, with g browsing through Z�
≥0,

property (ii) implies that also b + Z�
≥0 ⊆ T . Moreover, the same argument

applied in the opposite direction shows that � is maximal with this property,
i.e., b ∈ T (�)q.

Finally, let a ∈ T (�)q, b ∈ Tq. In particular, there is an element g ∈ Zn
≥0 such

that (a + g) ∈ T (�)q+p with p being the image of g via Zn → Zn/
K. Applying

the parts (a) and (b) successively, this means that (b + g) ∈ Tq+p = T (�)q+p,
hence b ∈ T (�)q.

A consequence of the previous lemma is that, for saturated ideals I, the
graded pieces Iq are generated, as vector spaces, by the monomials xa with
a ∈ (Zn

≥0)q \ Tq and the binomials λaxa − λbx
b with a, b ∈ Tq and λ• as in (2.4).

Moreover, if abstract K, T are given as in the lemma, then we may use these
generators with λ• := 1 to construct some saturated ideal I with T (I) = T and
K(I) =

〈
a − b

∣∣ a, b ∈ T ; a − b ∈ K
〉 ⊆ K.

2.6. Let I ⊆ C[x] be a binomial ideal such that T = T (I) and K = K(I) meet
the conditions (i) and (ii) of (2.1) and (2.4), respectively. Then, for any � ⊆ [n]
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such that some (•, �) occurs as a standard pair, we define the ideal

I(�) := I +
(
xa | a /∈ T (�)

) ⊆ C[x] .

If there was no standard pair containing �, then T (�) = T (�) = ∅, and the above
definition would yield I(�) = (1), anyway.

Remark. The ideals I(�) are still binomial with T (I(�)) = T (�).

Proof. Indeed, if a /∈ T (I(�)), i.e. xa ∈ I(�), then the remark at the end of (2.5)
shows that either a /∈ T (�), or that a is connected with some b ∈ T \T (�) via an
element of K(I). However, by Lemma (2.5), the latter would imply a /∈ T (�),
too.

2.7. Now, let us assume that the ideal I is saturated. Then, we have gathered
everything we need for the description of its cellular primary decomposition:

Theorem. Let I ⊆ C[x] be a saturated binomial ideal in the sense of (2.4).
Then

(1) I =
⋂

� I(�) is a primary decomposition, and
(2) the ideals I(�) are cellular in the sense of §6 of [ESt].

Proof. Step 1: Being primary may be checked by means of the homogeneous
elements only:
If J ⊆ R is an ideal, then J is primary if and only if the multiplication maps
(·r) : R/J → R/J are either injective or nilpotent. On the other hand, if
J is homogeneous in a graded ring, then these two properties of linear maps
ψ : R/J → R/J may be checked by using homogeneous arguments only. More-
over, the sum of injective, homogeneous maps of different degrees remains injec-
tive, the sum of nilpotent maps remains nilpotent, and the sum of an injective
and a nilpotent map is injective.

Step 2: The ideals I(�) are primary:
For q ∈ Zn/

K denote by Fq := {a ∈ Zn
≥0 | a �→ q} the whole fiber of q; in partic-

ular, Tq ⊆ Fq. If I(�) was not primary, then there would be elements s ∈ C[x]p
and t ∈ C[x]q such that st ∈ I(�), s /∈ I(�), and tN /∈ I(�) for every N ≥ 1. More-
over, if we replace s, t by different representatives of their equivalent classes in
C[x]/I(�), then the previous property does not change.
For any degree q ∈ Zn/

K we know that Iq ⊆ I
(�)
q ⊆ C[x]q and dimC C[x]q/Iq ≤ 1.

Applied to our special situation this means that Ip = I
(�)
p ⊂ C[x]p,

INq = I
(�)
Nq ⊂ C[x]Nq, and s, t may be assumed to be monomials xa and xb,

respectively. Moreover, the product st = xa+b is either contained in Ip+q, or
we have that I

(�)
p+q = C[x]p+q. Translated into the language of exponents, this

means:

a ∈ Tp = T (�)p and Nb ∈ TNq = T (�)Nq ∀N ≥ 1 ,

but a + b /∈ T or Tp+q �= T (�)p+q .
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Since T (�) consists of only finitely many Z�
≥0-slices, the fact that Nb ∈ T (�)

for all N ≥ 1 implies that b ∈ Z�
≥0. Hence, the property a ∈ T (�) yields

a + b ∈ T (�)p+q ⊆ Tp+q immediately. Moreover, by Lemma (2.5)(c), the latter
two sets have to be equal, and we obtain a contradiction.

Step 3: The intersection yields I:
For every q we have to show that there is at least one � such that I

(�)
q = Iq, i.e.

such that T (�)q = Tq. However, if Tq �= ∅, the latter equality is equivalent to
T (�)∩Tq �= ∅ by Lemma (2.5)(c). Hence, everything follows from T =

⋃
� T (�) =⋃

� T (�).

Step 4: The ideals I(�) are cellular:
Since T (�) consists of only finitely many translations of Z�

≥0, there are only

finitely many Z
[n]\�
≥0 -elements belonging to T (�). Hence, for sufficiently large N ,

the monomials
( ∏

j /∈� xj

)N must be contained in I(�).
On the other hand, we have to show that

(
I(�) : (

∏
i∈� xi)∞

)
= I(�), i.e. that for

every f ∈ C[x] with xi · f ∈ I(�) (i ∈ �) it follows that f ∈ I(�). Using both the
Zn/

K(I)-grading and the fact that dimC C[x]q/I
(�)
q ≤ 1, we may assume that

f = xa is a monomial. But then, with ei ∈ Zn denoting the i-th canonical basis
vector, we already know that ei + a ∈ T (�) if and only if a ∈ T (�).

3. Two-dimensional A-graded monomial ideals

3.1. If I ⊆ C[x] is a monomial ideal, then Theorem (2.7) yields the well
known formula for the primary decomposition of I into the easier looking I(�) =(
xa | a /∈ T (�)

)
. In particular, the associated primes are

P (�) =
√

I(�) =
(
xi

∣∣ i /∈ �
)

with � such that there is a (•, �) ∈ B(T ).

If I ⊆ C[x] is additionally A-graded with respect to some linear map A : Zn → Zd

with (kerA) ∩ Zn
≥0 = 0, cf. (1.1) for a definition, then we know that A induces

an isomorphism T
∼−→ A(Zn

≥0). In particular, every � occurring in B(T ) fulfils
#� ≤ d, and the chain property, cf. (1.2), looks as follows:
I fulfils the chain property for its associated primes if for any non-maximal � in
B(T ) there is another �′ ⊇ � in B(T ) with #�′ = #� + 1.

Remark. An � occurring in B(T ) via some (•, �) is maximal if and only if
(0, �) ∈ B(T ).

We will show that the above chain property is always fulfilled for monomial,
A-graded ideals as long as d ≤ 2, but it fails for d ≥ 3.

3.2. First, we need the following lemma describing the intersection behavior of
two different layers (r, �) = (r + Z�

≥0), (s, m) = (s + Zm
≥0) of the base B(T ).

Lemma. Let T ⊆ Zn
≥0 be an arbitrary subset satisfying the assumption (i )

of (2.1). Then, two different (r, �), (s, m) ∈ B(T ) are either disjoint, or the
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intersection is of the form

(r + Z�
≥0) ∩ (s + Zm

≥0) = (p + Z�∩m
≥0 )

with strict inclusions � ∩ m ⊂ �, m.

Proof. Assume that the intersection is not empty. Then, outside (� ∪ m), the
values of r and s coincide, and we set p as the common one. Within (� ∪m) we
define

p|(�\m) := s|(�\m) and p|(m\�) := r|(m\�).

It remains to check that neither of �, m is a subset of the other one. But if this
was the case, say � ⊆ m, then (r + Z�

≥0) ⊆ (s + Zm
≥0) implying that (r + Z�

≥0)
would not be a maximal subset of T , i.e., (r, �) /∈ B(T ).

3.3. The following lemma appears in Theorem 10.10 of [St2]. Nevertheless, to
make the paper more self-contained, we add a short proof here.

Lemma. Let I ⊆ C[x] be a monomial, A-graded ideal.
(a) The set of all A(R�

≥0) with Z�
≥0 ⊆ T forms a triangulation of the convex

cone A(Rn
≥0) ⊆ Rd. The maximal cells come from those � with (0, �) ∈

B(T ).
(b) Let (0, �) ∈ B(T ). Then, the map A induces a natural bijection

{r | (r, �) ∈ B(T )} ∼−→ A(Zn)
/
A(Z�) .

Proof. Using Lemma (3.2) for part (a), this and the injectivity in (b) are both
simple consequences from the fact that the map A is injective on the subset
T ⊆ Zn

≥0.
To show the surjectivity in (b) we remark first that A(Q�) = A(Qn). In par-
ticular, if some class w ∈ A(Zn)

/
A(Z�) is represented by a w = A(a − b) with

a, b ∈ Zn
≥0, then there is an N ≥ 1 with N · A(b) ∈ A(Z�). Hence w may be

represented by w+N ·A(b) = A(
a+(N −1)b

)
, i.e., by an element from A(Zn

≥0).
Let w be now represented from A(Zn

≥0). Since A(Zn
≥0) = A(T ), this means that

∀ a ∈ Z�
≥0 ∃ (

r(a), �(a)
) ∈ B(T ) : w + A(a) ∈ A(

r(a)
)

+ A(
Z

�(a)
≥0

)
.

It remains to show that � itself appears in the previous list of the sets �(a). But,
if not, then all elements of w + A(Z�

≥0) would be contained in at most finitely
many shifts of maximal cells different from A(Z�

≥0).

3.4. Theorem. Let I ⊆ C[x] be a monomial, A-graded ideal of dimension
d ≤ 2. Then I satisfies the chain property for its associated primes.

Proof. Since there is nothing to show for one-dimensional ideals, we consider the
case of d = 2. Let us assume that the chain condition is violated, i.e., for every
(r, �) ∈ B(T ) we have either #� = 2 or � = ∅, and, moreover, there is at least
one (r∗, ∅) ∈ B(T ) of the second type.
Since the �’s with cardinality two provide a triangulation of the two-dimensional
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cone A(Rn
≥0) ⊆ R2, we may order them in a natural way as �1, . . . , �N . Then

Lemma (3.2) implies that adjacent sets �i−1, �i share a common element, say i.
Denoting the canonical basis elements of Zn by ei, this yields the following setup

�i = {i, i + 1} and σi := A(
R�i

≥0

)
=

〈A(ei),A(ei+1)
〉

R≥0

with i = 1, . . . , N(< n).

f1

f2

f3

fN
fN+1

✘✘✾ �

❅❅�

❇
❇�

✻

A(eN+1) A(eN )

A(e3)

A(e2)

A(e1)

. . .

σN

σ2

σ1

✆
✆
✆
✆
✆
✆
✆
✆
✆
✆
✆
✆
✆
✆
✆
✆
✆✆

❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈❈

�
�

�
�

�
�

�
�

�
�

�
�

�
�

��

✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏

Figure 1

Using part (b) of Lemma (3.3), we may choose, for every i, a pair (ri, �i) ∈ B(T )
such that A(r∗) ∈ A(ri) + A(Z�i

). On the other hand, r∗ is “isolated”, i.e., it
does not belong to any of the sets ri + Z�i

≥0. Then the injectivity of A on T

implies that A(r∗) /∈ A(ri) + A(
Z�i

≥0

)
, and since A(

Z�i

≥0

)
= A(

Z�i) ∩ A(
R�i

≥0

)
,

we obtain A(r∗) /∈ A(ri) + σi. If f i denote linear forms on Z2 such that the
cones σi are given by

σi =
{
x ∈ R2

∣∣ 〈x, f i〉 ≥ 0, 〈x, f i+1〉 ≤ 0
}

,

cf. Figure 1, then this statement can be translated into〈A(r∗) −A(ri), f i
〉

< 0 or
〈A(r∗) −A(ri), f i+1

〉
> 0 for i = 1, . . . , N.

Reorganizing these inequalities, we obtain that either〈A(r∗), f1
〉

<
〈A(r1), f1

〉
, or

〈A(rN ), fN+1
〉

<
〈A(r∗), fN+1

〉
,

or there is an i ∈ {2, . . . , N} with〈A(ri−1), f i
〉

<
〈A(r∗), f i

〉
<

〈A(ri), f i
〉

as depicted in Figure 2.
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A(r∗) + σi−1

A(r∗) + σi

�

�

�

(f i)⊥

A(r∗)
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁

✚
✚

✚
✚

✚
✚

✚
✚

✚
✚

✚
✚

✚
✚

✚
✚

✚
✚

✚
✚

✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭

A(ri−1) + σi−1

A(ri) + σi

✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁✁

✚
✚

✚
✚

✚
✚

✚
✚

✚
✚

✚
✚

✚
✚

✚
✚

✚
✚

✚
✚

✚
✚

✚
✚

✚
✚

✚
✚

✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭

Figure 2

Assume, w.l.o.g., that the latter two inequalities apply to some i. Then we con-
sider the series A(r∗)+Z≥0A(ei) ⊆ A(r∗)+(f i)⊥: All its members are contained
in A(T ). Hence, up to finitely many exceptions, they have to be contained in
some A(s) + A(Z�

≥0) with (s, �) ∈ B(T ) and #� = 2.
On the other hand, if � �= �i−1, �i, then any shift of the cone A(

R�
≥0

)
intersects

the ray A(r∗)+R≥0A(ei) in a compact set, i.e., the intersection contains at most
finitely many lattice points. Thus, almost all elements of A(r∗) + Z≥0A(ei)
are contained in sets of the form A(s) + A(Z�i−1

≥0 ) or A(s) + A(Z�i

≥0) with
(s, �i−1), (s, �i) ∈ B(T ).
However, applying part (b) of Lemma (3.3) again, we see that there is no free-
dom left for the element s. It has to equal ri−1 or ri, respectively. But since
the sets A(ri−1) + σi−1 and A(ri) + σi do not meet the ray A(r∗) + R≥0A(ei)
at all, we have obtained a contradiction.

4. A counter example in dimension three

4.1. Roughly speaking, the proof of the previous theorem worked as follows:
We have shown that the shifted two-dimensional cells of the triangulation create
gaps that cannot be filled with isolated T -elements only. In dimension three this
concept fails, since some cells might be arranged in cycles. In particular, we
have



574 KLAUS ALTMANN

Theorem. There exists an example of a monomial, A-graded ideal I ⊆ C[x]
with d = 3 such that the chain property for the associated primes is violated.

Proof. Take n = 16 with the variables ei, fi, gi (i = 1, 2, 3) and kν (ν = 1, . . . , 7).
The ideal I is defined by the following 100 generators

• fi kν , gi kν , gi gj , kν kµ with i, j ∈ {1, 2, 3} and µ, ν ∈ {1, . . . , 7},
• f2

i , fi gi+1, fi−1 fi gi−1,

• fi gi ei−1, fi+1 gi ei−1, fi fi+1 ei−1, and

• fi ei−1 ei+1, gi ei−1 ei+1

with i ∈ Z
/
3Z. Denoting by {E1, E2, E3} the canonical basis {(1, 0, 0), (0, 1, 0),

(0, 0, 1)} of Z3, then I is A-graded with respect to the linear map A : Z16 → Z3

given by

ei �→ 2 Ei, fi �→ Ei, gi �→ Ei + (1, 1, 1),

and{
k1, . . . , k7

} �→ {
(3, 2, 2), (2, 3, 2), (2, 2, 3), (2, 3, 3), (3, 2, 3), (3, 3, 2), (3, 3, 3)

}
.

Remark. Since A : Z16
≥0 → Z3

≥0 is surjective, the associated toric ideal defines
the semigroup algebra C

[
Z3
≥0

]
, i.e., the associated toric variety is C3.

4.2. In addition to the plain presentation of the example in the previous
section, we would also like to show how it really works. In particular, we rather
describe the set T = T (I) of standard monomials via its basis B(T ) – and how
these sets map to Z3.
To improve the readability, we write 〈�〉 for the semigroup Z�

≥0. Then the ideal
I has the following maximal (with respect to the partial order “≥” induced by
Z16
≥0) standard pairs

(i) kν +
〈
e1, e2, e3

〉
(ν = 1, . . . , 7),

(ii) (fi + fi+1) +
〈
ei, ei+1

〉
, (fi + gi) +

〈
ei, ei+1

〉
, (fi+1 + gi) +

〈
ei, ei+1

〉
,

(iii) gi+1 +
〈
ei, ei+1

〉
, and

(iv) (f1 + f2 + f3)
with i ∈ Z

/
3Z. Dropping the maximality condition, we have to add the standard

pairs
(v)

〈
e1, e2, e3

〉
and

(vi) fi +
〈
ei, ei+1

〉
, fi+1 +

〈
ei, ei+1

〉
, gi +

〈
ei, ei+1

〉
.

The violation of the chain property for the associated primes is caused by the
existence of the standard pair

(
(f1 + f2 + f3), ∅

)
. The remaining standard pairs

involve only sets � ⊆ {1, 2, . . . , 16} with #� ≥ 2.
Finally, for the A-graded property, let us consider the A-images:

• (i) and (v) yield all triples with entries 0 or ≥ 2.



CHAIN PROPERTY FOR ASSOCIATED PRIMES OF A-GRADED IDEALS 575

• Assuming [i = 1], the series (ii), (iii), (vi) provide
(
2 Z≥0, 2 Z≥0, 0

)
shifted

by (1, 0, 0), (0, 1, 0), (1, 1, 0), or (3, 1, 1), (2, 1, 1), (1, 2, 1), (2, 2, 1). This
means that every triple having 0 or 1 as its last entry is reached, except
for

(
1, 1 + 2 Z≥0, 1

)
and

(
2 Z≥0, 2 Z≥0, 0

)
itself. However, the latter series

already occurred in the previous point (i)/(v), and, beginning with (1, 3, 1),
the first series is included in (ii)/(iii)/(vi) with [i = 2].

• The isolated (iv) yields the missing triple (1, 1, 1).
It follows that A maps T ⊆ Z16

≥0 onto Z3
≥0. Moreover, a closer look shows that

the restriction A|T is injective, indeed.
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[St2] , Gröbner Bases and Convex Polytopes, University Lecture Series 8, American

Mathematical Society, Providence, RI, 1996.
[STV] B. Sturmfels, N. Trung, and W. Vogel, Bounds on degrees of projective schemes,

Math. Ann. 302 (1995), 417–432.

Institut für Mathematik, Mathematisch-Naturwissenschaftliche Fakultät,
Humboldt-Universität zu Berlin, Rudower Chaussee 25, D-10099 Berlin, Germany.

E-mail address: altmann@mathematik.hu-berlin.de


