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TWISTED HIGGS BUNDLES AND THE FUNDAMENTAL
GROUP OF COMPACT KÄHLER MANIFOLDS

O. Garćıa–Prada and S. Ramanan

Abstract. We study polystable Higgs bundles twisted by a line bundle over a
compact Kähler manifold. These form a Tannakian category when the first and
second Chern classes of the bundle are zero. In this paper we identify the corre-
sponding Tannaka group in the case in which the line bundle is of finite order. This
group is described in terms of the pro-reductive completion of the fundamental
group of the manifold, and the character associated to the line bundle.

Introduction

Let (X, ω) be a compact Kähler manifold. A Higgs bundle over X consists
of a holomorphic vector bundle E → X together with a sheaf homomorphism
ϕ : E → E ⊗ Ω1, satisfying ϕ ∧ ϕ = 0, where Ω1 is the holomorphic cotangent
bundle of X. A notion of stability for Higgs bundles, similar to that of vector
bundles, was first introduced for a Riemann surface by Hitchin in [H1], where
he proved that this is a necessary and sufficient condition for the existence of
an irreducible solution to the so-called self-duality equations for for a Hermitian
metric on E. His results were later extended to the general case by Simpson
[Si1]. Of special interest is the moduli space of stable Higgs bundles E for which

c1(E).[ω]dim X−1 = 0 and ch2(E).[ω]dim X−2 = 0,

where c1(E) and c2(E) are the first and second Chern classes of E, and ch2(E) =
1/2 c1(E)2 − c2(E). The moduli space of such Higgs bundles can be identified
with the moduli space of irreducible flat complex connections, which in turn is
in correspondence with the moduli of complex irreducible representations of the
fundamental group of X. This is proved by using, on one hand, Hitchin’s and
Simpson’s existence theorem and, on the other, a theorem of Donaldson [D2]
and Corlette [C] on the existence of harmonic metrics on flat bundles.

In this paper we shall deal with a twisted version of Higgs bundles. Let L
be a holomorphic line bundle over X. An L-twisted Higgs bundle over X (or
just twisted if there is no confusion), is a pair consisting of a holomorphic vec-
tor bundle E and a sheaf morphism θ : E → E ⊗ L ⊗ Ω1, i.e. an element
θ ∈ H0(EndE ⊗ L ⊗ Ω1), satisfying θ ∧ θ = 0. Stability is defined exactly in
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518 O. GARCÍA–PRADA AND S. RAMANAN

the same way as for ordinary Higgs bundles. There are many interesting as-
pects of Higgs bundles that are shared by the twisted theory: twisted Higgs
bundles, like ordinary Higgs bundles, have nice moduli spaces [N, Y], and de-
fine also, under certain conditions, complete integrable systems in a generalised
sense [H2, Bo, Ma]. There is one aspect, however, that to our knowledge has
not yet been studied, namely, their relation to the fundamental group. The
main indication that a certain relationship has to exist comes from the fact that
polystable L-twisted Higgs bundles, with the vanishing condition on the first and
second Chern characters as above, like Higgs bundles, form a Tannakian category
[Si2], which, by the Tannaka duality theorem, is dual to a certain pro-reductive
group, from the representations of which the category can be recovered. In the
ordinary Higgs bundle theory the group is the pro-reductive completion of the
fundamental group of X — as one deduces from the theorems of Hitchin, Simp-
son, Donaldson, Corlette mentioned above. The problem we wish to address is
to find the corresponding group in the twisted situation. In this paper, we take
the first steps in this direction by considering the case in which the deg L = 0
and L is of finite order, i.e. Ln is isomorphic to the trivial line bundle for some
n. In this situation L corresponds to a unitary character π1(X) → U(1) of the
fundamental group of X, and we can give a description of the group in terms of
the pro-reductive completion of π1(X) — the Tannaka group for the untwisted
category — and this character.

1. Twisted Higgs bundles

1.1. Twisted Higgs bundles and Hermitian metrics. Let (X, ω) be a com-
pact Kähler manifold and let L be a holomorphic line bundle over X. An L-
twisted Higgs bundle over X is a pair (E, θ) consisting of a holomorphic vec-
tor bundle E over X and a Higgs field θ ∈ H0(EndE ⊗ L ⊗ Ω1), satisfying
θ ∧ θ = 0, where Ω1 is the holomorphic cotangent bundle of X. A twisted
Higgs bundle (E, θ) is said to be stable if and only if µ(E′) < µ(E) for every
proper coherent subsheaf E′ ⊂ E invariant under θ, i.e. θ(E′) ⊂ E′ ⊗ Ω1.
Recall that the slope of a E′ is defined as µ(E′) = deg(E′)/ rank(E′), where
deg(E′) = c1(E′).[ω]dim X−1.

The notion of stability is related to the existence of a special Hermitian metric
on E. More precisely:

Theorem 1. [Li] Let (E, θ) be an L-twisted Higgs bundle. Let us fix a Hermitian
metric on L. The existence of a Hermitian metric h on E satisfying

ΛFh + Λ[θ, θ∗] = λI,(1)

is equivalent to the polystability of (E, θ).

Here Fh is the curvature of the unique connection compatible with the Her-
mitian metric as well as the holomorphic structure on E, and Λ is the contraction
with the Kähler form. The constant λ is determined by the slope of E, and I is
the identity endomorphism of E. By θ∗ we denote the adjoint of θ with respect
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to h and the metric of L, and [θ, θ∗] = θθ∗ +θ∗θ is the usual extension of the Lie
bracket to forms with values in the algebra of endomorphisms. By polystability
we mean that (E, θ) is a direct sum of twisted Higgs bundles of the same slope
as E (zero in this case).

When L is the trivial line bundle one has the ordinary Higgs bundles theory
studied by Hitchin [H1] on Riemann surfaces and Simpson [Si1] in the higher
dimensional case. When θ = 0, (1) reduces to the Hermitian–Einstein equa-
tion and one obtains the theorem of Narasimhan and Seshadri, Donaldson, and
Uhlenbeck and Yau [AB, D1, D3, D4, NS, UY].

Equation (1) has, as in the untwisted case, a symplectic interpretation. It
corresponds to the moment map for the action of the unitary group on the
product Kähler manifold A× Ω1,0(EndE ⊗ L), where A is the space of unitary
connections on the C∞ Hermitian vector bundle (E, h). The moduli space of
stable L-twisted Higgs bundles is then obtained as a Kähler quotient inheriting
in this way a Kähler structure. A construction of the moduli of L-twisted Higgs
bundles using Geometric Invariant Theory has been given by Nitsure [N] for
Riemann surfaces and Yokogawa [Y] in higher dimensions.

1.2. Twisted Higgs bundles and Tannakian categories. Twisted Higgs
bundles can be regarded from the point of view of Tannakian categories. This
is the point of view taken by Simpson [Si2] in his study of ordinary Higgs bun-
dles, and we will follow his approach. (See also [De, DMOS, Sa, T] for more
details about Tannakian categories). A tensor category is a category C with a
functorial binary operation ⊗ : C × C → C. An associative and commutative
tensor category is a tensor category provided with additional natural isomor-
phisms expressing associativity and commutativity of the tensor product that
have to satisfy certain canonical axioms. A unit 1 is an object 1 provided with
natural isomorphisms 1 ⊗ V ∼= V satisfying canonical axioms. A functor F be-
tween associative and commutative categories with unit is a functor provided
with natural isomorphisms F(U ⊗ V ) ∼= F(U) ⊗ F(V ). A neutral Tannakian
category C is an associative and commutative tensor category with unit, which
is abelian, rigid (duals exist), End(1) = C, and which is provided with an exact,
faithful fibre functor F : C → Vect, where Vect is the tensor category of complex,
finite dimensional vector spaces.

If G is an affine group scheme over C the category Rep(G) of complex rep-
resentations of G is a neutral Tannakian category. The fibre functor FG is
given by by sending a representation of G to the underlying vector space. The
group G is recovered as the group G = Aut⊗(FG) of tensor automorphisms of
the fibre functor. The converse is given by the fundamental duality theorem of
Tannaka–Grothendieck–Saavedra ([De, DMOS, Sa]).

Theorem 1.1. Let (C,F) be a neutral Tannakian category and let G =
Aut⊗(F) be the group of tensor automorphisms of the fibre funtor. Then
(C,F) ∼= (Rep(G),FG).
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We shall briefly describe the group Aut⊗(F) to which we shall refer some-
times as the Tannaka group of the Tannakian category (C,F) (see [Si2] and
the references mentioned above for a detailed account.) Let End(F) be the al-
gebra of endomorphisms of the the fibre functor. Its elements are collections
{fV } with fV ∈ End(F(V )) such that for any morphism ψ : V → W , one
has F(ψ)fV = fWF(ψ). Let Aut⊗(F) be the set of elements {fV } of End(F)
satisfying

f1 = 1 fV ⊗W = fV ⊗ fW .

The existence of duals in C implies that any element in Aut⊗(F) consists entirely
of automorphisms, and hence there is no need to include a condition for invert-
ibility. The algebra End(F) is a projective limit of finite dimensional algebras
and it is endowed with a projective limit topology. The subset Aut⊗(F) has a
structure of projective limit of algebraic varieties.

Let G be a group such that Rep(G), with the functor FG defined as usual,
is a Tannakian category. There is a map form G to Aut⊗(FG) which sends an
element g ∈ G to the natural automorphims {fV } of FG defined by setting fV

equal to the action of g on the vector space FG(V ) underlying the representa-
tion V . As mentioned above, for complex affine group schemes this map is an
isomorphism.

We come now to the Tannakian nature of twisted Higgs bundles.

Proposition 1.2. The tensor category of polystable L-twisted Higgs bundles E
over X, satisfying c1(E).[ω]dim X−1 = 0 and ch2(E).[ω]dim X−2 = 0, with fibre
functor defined by sending an L-twisted Higgs bundle to the fibre of the bundle
at a fixed point of X, is a neutral Tannakian category.

Proof. Let (E, θ) and (F, η) be two L-twisted Higgs bundles. Its tensor product
is given by the L-twisted Higgs bundle (E⊗F, θ⊗1+1⊗η). The polystability of
the tensor product can be proved directly, but it follows also from the existence
of metrics satisfying (1). The tensor product of the two metrics satisfies (1)
as well and hence the tensor product Higgs bundle is polystable by Theorem 1.
This operation defines an associative and commutative tensor category. Suppose
f : (E, θ) → (F, η) is a morphism of L-twisted Higgs bundles, namely a sheaf
homomorphism f : E → F such that the appropriate diagram commutes. Then
the subsheaf V of F generated by the image is invariant under η, and the kernel
of f is invariant under θ, since their generic fibres are clearly invariant. Now we
have deg E/ ker f ≥ 0 since E is semistable and deg V ≤ 0 since F is semistable.
But then we have a generic isomorphism induced by f from E/ ker f → V . This
is only possible if the degrees of both these bundles are 0, and the above map is
actually an isomorphism. This shows that semistable L-twisted Higgs bundles of
degree 0, form an abelian category. The dual of a pair (E, θ) is the pair (E∗, θ∨),
where E∗ is the dual bundle to E and θ∨ is the map obtained by transposing
θ and tensoring with the canonical line bundle. Obviously, the Higgs bundle
(O, 0) is a unit and satisfies that End((O, 0)) = C.
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The fibre functor F is defined by choosing a point x ∈ X and sending (E, θ)
to the fibre of E at the point x. The faithfulness of the F follows from the
polystability of (E, θ).

In this paper we shall address the problem of describing the corresponding
Tannaka group when deg L = 0. We will give an answer to this problem when
the order of L is finite, that is when Ln is the trivial line bundle for some n.
This answer is given in terms of the Tannaka group of the category of ordinary
Higgs bundles, i.e. those for which L is the trivial line bundle.

2. Ordinary Higgs bundles

Our goal in this section is to describe the Tannaka group of the category
of polystable (untwisted) Higgs bundles E a compact Kähler manifold (X, ω)
satisfying

c1(E).[ω]dim X−1 = 0 and ch2(E).[ω]dim X−2 = 0.(2)

This is done by means of the correspondence between polystable Higgs bundles
satisfying (2) and semisimple complex representations of the fundamental group.
In the sequel we briefly recall the main ideas of this correspondence (see [Si1,
H1, D2, C] for details).

2.1. Higgs bundles, flat bundles and representations of the fundamen-
tal group. To associate a complex representation to a Higgs bundle we will pass
through the intermediate category of flat bundles. Let V be C∞ complex vector
bundle of rank r over X, and let D be a GL(r,C) connection on V . We say
that D is flat if its curvature vanishes, i.e. D2 = 0. If D is a flat connection
on V the pair (V, D) is called a flat bundle since, by using the flat connection,
one can find an open cover of X with constant transition functions for V . If
D is a connection on a vector bundle V and x is a (fixed) point of X recall
that the holonomy group of D is the group of endomorphisms of Vx obtained by
parallel transport along all closed curves starting at x. If D is flat the parallel
displacement depends only on the homotopy class of the closed curve and defines
a homomorphism

ρ : π1(X, x) −→ GL(Vx),

whose image is the holonomy of D. Conversely, given a representation ρ :
π1(X, x) → GL(r,C) one can construct a vector bundle V of rank r with a
flat connection by setting

V = X̃ ×ρ Cr,

where X̃ is the universal cover of X and X̃ ×ρ Cr is the quotient of X̃ ×Cr by
the action of π1(X, x) given by (y, v) �→ (γ(y), ρ(γ)v) for γ ∈ π1(X, x) (regarded
as the covering transformation group acting on X̃). The trivial connection on
X̃ ×Cr descends to give a flat connection on V , whose holonomy is the image
of ρ.
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The relation between flat bundles and Higgs bundles involves a certain class
of metrics over a flat bundle—the so-called harmonic metrics. Let (V, D) be
a flat bundle over X. Given a metric h on V we can decompose D uniquely
as D = ∇ + Ψ where ∇ is a unitary connection on V and Ψ is a is a 1-form
with values in the self-adjoint endomorphisms of V . The metric h is said to be
harmonic if

∇∗Ψ = 0,

where we use the metric on X to define ∇∗. A metric h on V is just a section
of a certain GL(r,C)/U(r)-bundle over X. This can be viewed as a π1(X)-
equivariant function

h̃ : X̃ → GL(r,C)/U(r),

where X̃ is the universal cover of X. It turns out that ∇∗Ψ = 0 is equivalent to
the condition that the map h̃ should be harmonic. In fact the one-form Ψ can be
identified with the differential of h̃, and ∇ with the pull-back of the Levi–Civita
connection on GL(r,C)/U(r).

To state an existence theorem for such metrics we need the following defi-
nitions. A flat bundle (V, D) is said to be irreducible if V has no non-trivial
D-invariant subbundles. It will be called semisimple if any D-invariant subbun-
dle has a D-invariant complement. Any semisimple connection is a direct sum
of irreducible ones.

Theorem 2.1. A flat bundle (V, D) over X admits a harmonic metric if and
only if it is semisimple.

This theorem is proved by Donaldson [D2] for rank 2 bundles when X is a
Riemann surface, and in full generality (including the base manifold being a
compact Riemannian manifold of arbitrary dimension) by Corlette [C].

Let (E, ϕ) be a Higgs bundle over X. We want to associate to it a flat bundle
over X. This is not always possible, but if (E, ϕ) supports a hermitian metric
h satisfying ΛFh + Λ[ϕ, ϕ∗] = 0 then we can consider the pair (V, D), taking V
to be the underlying C∞ bundle to E and D = ∂E + ∂h + ϕ + ϕ∗, where ∂h is a
differential operator such that ∂E +∂h is the unique connection compatible with
the metric and the holomorphic structure of E. A simple computation shows
the following.

Lemma 2.2. ∂Eϕ = 0, ϕ∧ϕ = 0 and Fh + [ϕ, ϕ∗] = 0 imply that D is flat, i.e.
D2 = 0.

We will show now how to associate a Higgs bundle to a flat bundle. Let (V, D)
be a flat bundle over X. We want to produce out of it a stable Higgs bundle
(E, ϕ) over X. Let h be a Hermitian metric on V . We can decompose D in its
(1, 0) and (0, 1) componentes

D = D′ + D′′
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and consider the unique operators D′′
h and D′

h so that D′ + D′′
h and D′

h + D′′

become h-unitary connections. Let

∂h =
D′ + D′

h

2
, ∂h =

D′′ + D′′
h

2
, ϕh =

D′ −D′
h

2
, ϕ∗

h =
D′′ −D′′

h

2
.

It is not difficult to see that

Lemma 2.3. D2 = 0 implies that ϕh ∧ ϕh = 0 and Fh + [ϕh, ϕ∗
h] = 0. Where

Fh is the curvature of ∂h + ∂h.

Of course ∂h defines a holomorphic structure on V , but ϕh need not be
holomorphic with respect to it, i.e. there is no reason why ∂hϕh = 0. This
happens precisely when the metric is harmonic ([D2, H1, Si2]).

Putting everything together one has the following.

Theorem 2.4. There is a tensor functor which is an equivalence of categories
between the category of polystable Higgs bundles over (X, ω) satisfying (2) and
the category of semisimple flat bundles which, in turn, is equivalent to the tensor
category of semisimple complex representations of the fundamental group of X.

2.2. The Tannaka group for ordinary Higgs bundles. One can easily
prove the following [Si2, Lemma 6.1].

Proposition 2.5. Let H be a finitely generated group. The tensor category
of semisimple representations of H, with its obvious fibre functor, is a neutral
Tannakian category whose Tannaka group is naturally isomorphic to the pro-
reductive completion of H.

We recall that the pro-reductive completion of a group H is a projective
limit G = lim←−(Γ, ρ), where the inverse limit runs over the directed system of
representations ρ : H → Γ for complex reductive groups Γ (we shall assume
that the image of ρ is Zariski dense for convenience). An arrow (Γ, ρ)→ (Γ′, ρ′)
consists of a homomorphism f : Γ → Γ′ such that fρ = ρ′. The group G
is characterised by the following universal property: For every representation
H → Γ into a complex reductive group there exists a unique extension G → Γ
such that the following diagram

H → Γ
↓ ↗
G

commutes.
From this proposition and Theorem 2.4 one concludes the following.

Theorem 2.6. Let G be the Tannaka group of the category of polystable Higgs
bundles over X satisfying (2). Then G is naturally isomorphic to the pro-
reductive completion of π1(X, x).
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One of the main ingredients for the description of the Tannaka group in the
twisted situation is a natural action of the group C∗ on the category of polystable
Higgs bundles given by

(E, ϕ) �→ (E, λϕ) for every λ ∈ C∗.

This action induces an action of C∗ on the category of semisimple representations
of the fundamental group. It should be pointed out that, while this action is
very clear and explicit from the point of view of Higgs bundles, its explicit effect
on a representation of the fundamental group is not easy to describe.

One can formalise the action of C∗ on a Tannakian category (C,F) in terms
of certain tensor functors satisfying canonical axioms. If the action preserves
the fibre functor F one has an action of C∗ on End(F) by sending the element
{fV } of End(F) to {fλ

V } with fλ
V = fλV for every λ ∈ C∗, and hence one has

an action on the Tannaka group Aut⊗(F). The action of C∗ on the category of
polystable pairs preserves clearly the fibre functor since the bundle is unchanged,
and one can then transfer this action to G—the pro-reductive completion of the
fundamental group. More precisely one has the following theorem ([Si2][Theorem
6]).

Theorem 2.7. There exists a unique action of C∗ on G, each λ ∈ C∗ acting
by a homomorphism of pro-reductive groups, such that if ρ : G → GL(n,C)
is the representation corresponding to (E, ϕ), then ρ ◦ λ is the representation
corresponding to (E, λϕ).

3. Main theorem

Before stating our main result we will prove some preliminary necessary facts
on groups with a C∗-action.

3.1. Twisted groups. Let G be a group and let C∗ act on G, i.e. we have a
homomorphism

C∗ −→ Aut(G).

For every λ ∈ C∗ and g ∈ G we shall denote by gλ the image of g by the
automorphism G→ G defined by λ.

Proposition 3.1. Let χ : G→ C∗ be a character satisfying

χ(g) = χ(gλ) for every g ∈ G, λ ∈ C∗.(3)

We can define a group Gχ by taking the underlying set to be G and the group
operation to be

g∗h = ghχ−1(g) for every g, h ∈ G.(4)
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Proof. Associativity results from the following computation for g, h, k ∈ G.

g∗(h∗k) = g(h∗k)χ−1(g)

= g(hkχ−1(h))χ−1(g)

= ghχ−1(g)kχ−1(h)χ−1(g)

= ghχ−1(g)kχ−1(gh).

(g∗h)∗k = ghχ−1(g)kχ−1(ghχ−1(g))

= ghχ−1(g)kχ−1(g)χ−1(hχ−1(g))

= ghχ−1(g)kχ−1(g)χ−1(h) by condition (3)

= ghχ−1(g)kχ−1(gh).

The identity element e ∈ G is also the identity element of Gχ. Indeed,

g∗e = geχ−1(g) = ge = g.

Let g ∈ G. Take h to be the preimage of g−1 under the automorphism χ−1(g) :
G→ G, i.e. hχ−1(g) = g−1. Then

g∗h = ghχ−1(g) = gg−1 = e

and hence h is the inverse of g. We have then proved that Gχ = (G, ∗) is a
group.

We shall now prove few properties about Gχ that will be useful later.

Proposition 3.2. Let χ : G→ C∗ be a character. Then the map αχ : Gχ → C∗

defined by αχ(g) = χ(g) is a character of Gχ. In particular K = kerχ is a
normal subgroup of Gχ.

Proof.

αχ(g∗h) = χ(ghχ−1(g))

= χ(g)χ(hχ−1(g))
= χ(g)χ(h) by (3)
= αχ(g)αχ(h) for every g, h ∈ Gχ.

Proposition 3.3. The action of C∗ on G defines an action of C∗ on Gχ. More-
over, this action leaves K invariant.
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Proof.

(g∗h)λ = (ghχ−1(g))λ

= gλhχ−1(g)λ

= gλhλχ−1(g)

= gλhλχ−1(gλ) by (3)

= gλ∗hλ.

To see that the action of C∗ on Gχ leaves K invariant, let g ∈ K, and λ ∈ C∗.
By (3), we see that

αχ(gλ) = χ(gλ) = χ(g) = e,

and hence gλ ∈ K.

3.2. Main theorem. Let L be a holomorphic line bundle over X such that
deg L = 0. Let π1(X) = π1(X, x) be the fundamental group of X with respect
to a fixed point x ∈ X. The line bundle L corresponds to a unitary character
χ′ : π1(X)→ U(1). That is, if X̃ is the universal cover of X, L is the line bundle
associated to the π1(X)-principal bundle X̃ → X via the representation χ′.

Let G be the pro-reductive completion of π1(X). As discussed in section 1.2,
G is isomorphic to the Tannaka group of the category of polystable Higgs bundles
and there is C∗ on G, induced from the action of λ ∈ C∗ on a Higgs bundle (E, ϕ)
given by (E, ϕ) �→ (E, λϕ) (Theorem 2.7). We shall apply the construction of
a twisted group structure given above to the pro-reductive completion of the
fundamental group of X.

Proposition 3.4. Let χ : G→ C∗ be the extension to G of a unitary character
χ′ : π1(X) → U(1). Then the action of C∗ on G considered above satisfies (3),
i.e.

χ(g) = χ(gλ) for every g ∈ G, λ ∈ C∗.

Proof. We shall regard G as the group of tensor automorphisms of the fibre
functor of the Tannakian category of Higgs bundles over X (see section 1.2).
Hence g ∈ G basically associates to any stable Higgs pair (E, ϕ) an automor-
phism f(E,ϕ) of the fibre Ex, in a functorial way. Let λ ∈ C∗. The element
gλ ∈ G associates to (E, ϕ) the automorphism f(E,λϕ).

Let now ρ be a semisimple representation of G. Of course ρ gives rise to a
semisimple representation of π1(X, x) and hence to a polystable Higgs bundle
(E, ϕ). One can see that

ρ(g) = f(E,ϕ).

But if ρ|π1(X) is unitary, then the associated Higgs bundle is (E, 0), and hence
ρ(g) = ρ(gλ). In particular, for our “unitary” character we have χ(g) = χ(gλ),
which concludes the proof.

We can thus consider the group Gχ by means of the construction given in the
previous section.
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We are now ready to state the main theorem of this paper.

Theorem 3.5. Let L be a holomorphic line bundle of degree zero and finite
order. Then Gχ is the Tannaka group of the category of polystable L-twisted
Higgs bundles satisfying (2). More precisely, there is a tensor functor which is
an equivalence of categories between the category of polystable L-twisted Higgs
bundles satisfying (2) and the category of semisimple complex representations of
Gχ.

It is natural to conjecture that this result is also true in the infinite order
case. We hope to come back to this in a future paper.

4. Proof of main theorem

Let χ′ : π1(X) → U(1) be the unitary character corresponding to L and
let Γ = Im χ′ be the image. Let X̃ be the universal cover of X and let Y =
X̃/ Kerχ′. Then Kerχ′ ∼= π1(Y ) and one has the covering map

p : Y −→ X

whose Galois group is Γ = Imχ′ ∼= π1(X)/π1(Y ).
The basic strategy that we shall follow in our approach is to translate our

problem into a problem on Y : If the line bundle L is of finite order, i.e. if a
finite power of L is isomorphic to the trivial line bundle, Γ is a finite cyclic group
and hence Y is compact. The pull-back of L to Y is of course trivial, and we
can thus use the untwisted theory over Y to prove our theorem.

4.1. Twisted Higgs bundles and representations of π1(Y ). Let (E, θ) be
an L-twisted Higgs bundle over X. Its pull-back to Y , (F, ϕ) = (p∗E, p∗θ),
becomes a genuine Higgs bundle. It is not difficult to characterize Higgs bundles
on Y that come from twisted Higgs bundles on X.

Proposition 4.1. There is an equivalence of tensor categories between the cat-
egory of L-twisted Higgs bundles (E, θ) on X and the category of Higgs bundles
(F, ϕ) on Y that satisfy

γ∗F = F and γ∗ϕ = γϕ for every γ ∈ Γ.(5)

Proof. We must first clarify our notation: On the one hand we regard Γ as the
Galois group of the cover Y → X, and on the other as a subgroup of U(1). So
when we write γ∗ϕ we are thinking of γ as a transformation of Y , while when
we write γϕ we regard γ as an element of U(1) that multiplies the Higgs field.

One direction is clear: If (E, θ) is an L-twisted Higgs bundle over X its pull-
back, (F, ϕ) = (p∗E, p∗θ), obviously satisfies (5). To see the converse, observe
that the first condition in (5) amounts to saying that the bundle F → Y descends
to a bundle E → X, since the Galois group is cyclic. It is obvious that this
correspondence is compatible with tensor products.

Proposition 4.2. Let (E, θ) be an L-twisted Higgs bundle on X, and let (F, ϕ)
its pull-back to Y . The pair (E, θ) is polystable if and only if (F, ϕ) is polystable.
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Proof. The vector bundle F = p∗E is a Γ-equivariant vector bundle, and one can
consider for the pair (F, ϕ) a weaker stability notion consisting of the usual sta-
bility condition, but only for Γ-equivariant subsheaves of F . One can show [G]
that this Γ-equivariant condition for polystability is equivalent to the polysta-
bility of (F, ϕ). Now, suppose that (E, θ) is not stable. The pull-back of the
destabilizing subsheaf would violate the Γ-equivariant stability of (F, ϕ). Con-
versely, if (F, ϕ) is not Γ-equivariantly stable, then let F ′ ⊂ F be a Γ-equivariant
ϕ-invariant destabilizing subbundle. Because of Γ-equivariance F ′ descends to
a θ-invariant destabilizing subbundle of E.

Another way of proving this proposition is to use Theorem 1: If (F, ϕ) is
polystable there exists a Hermitian metric on F solving equation (1). By the
uniqueness of the solution, this metric must be Γ-invariant and hence descend
to a metric on E solving (1) implying the polystability of (E, θ). The converse
is also clear.

Since, as we know, there is a tensor functor which is an equivalence of cate-
gories between the category of polystable Higgs bundles over Y and the category
of semisimple representations of the fundamental group of Y , we shall now give
an interpretation of condition (5) in terms of representations of π1(Y ). To do
this we need to understand the two actions of Γ on Higgs bundles in terms of the
representations of π1(Y ). To explain the action corresponding to pull-backing
by γ ∈ Γ, we shall digress a little.

Let G be a group and let K ⊂ G be a normal subgroup. Let Γ = G/K. We
have a short exact sequence

1 −→ K −→ G −→ Γ −→ 1.

The group G acts on the set of representations of K, via inner automorphisms,
i.e. if ρ is a representaion of K, g ∈ G sends ρ to ρ ◦ Intg |K , where

Intg |K(h) = ghg−1 for every h ∈ K.

Proposition 4.3. Let γ ∈ Γ and let gγ ∈ G be a lift of γ. The map

[ρ] �→ γ · [ρ] = [ρ ◦ Intgγ |K ] for every [ρ] ∈ Rep(K) and γ ∈ Γ(6)

defines an action of Γ on the set Rep(K) of equivalence classes of representations
of K.

Proof. It is clear since two lifts of γ differ by an element of K.

The following is immediate.

Proposition 4.4. Let ρ be a representation of K and let γ ∈ Γ. Then γ · [ρ] =
[ρ] for every γ ∈ Γ is equivalent to [ρ] = [ρ ◦ Intg] for every g ∈ G.

In our situation we have the extension

1 −→ π1(Y ) −→ π1(X) −→ Γ −→ 1.
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By the Proposition 4.3 there is an action of Γ on representations of π1(Y ), given
for every [ρ] ∈ Rep(π1(Y )) and γ ∈ Γ by [ρ] �→ γ · [ρ] = [ρ ◦ Intgγ ], where gγ ∈ is
any lift of γ to π1(X). The following is clear.

Proposition 4.5. The action of Γ on Rep(π1(Y )) given above corresponds to
the action of Γ on the set of equivalence classes of Higgs bundles and flat bundles
over Y defined by γ·(F, ϕ) = (γ∗F, γ∗ϕ) and γ·(V, D) = (γ∗V, γ∗D), respectively.

As we saw in section 1.2, the action of C∗ on the moduli of stable Higgs
bundles on Y given for λ ∈ C∗, by [(F, ϕ)]λ = [(F, λϕ)] defines an action on
Rep(π1(Y )). If [ρ] corresponds to [(F, ϕ)] we denote by [ρ]λ the representation
corresponding to [(F, λϕ)]. The following proposition follows immediately.

Proposition 4.6. Let (F, ϕ) be a polystable Higgs bundle over Y , and let [ρ]
be the corresponding semisimple representation of π1(Y ). The condition (5) is
equivalent to

γ · [ρ] = [ρ]γ for every γ ∈ Γ.(7)

We would like now to relate the representations of π1(Y ) satisfying (7) to
representations of Gχ. To do this we will relate them first to the representations
of K = Kerχ.

4.2. From representations of π1(Y ) to representations of K.

Proposition 4.7. If χ′ : π1(X) → U(1) be a unitary character of finite order
of π1(X). Let χ be its extension to G, the Tannaka closure of π1(X), and let
K = Kerχ. Then any complex representation of π1(Y ) extends to a complex
representation of K.

Proof. Let n be the order of χ′. Since χ′n is trivial, we get from the uniqueness
of extensions that χn is also trivial. Hence we have the diagram

1 −→ K −→ G −→ Γ −→ 1
↑ ↑ ||

1 −→ π1(Y ) −→ π1(X) −→ Γ −→ 1.

Let (V, ρ) be an irreducible representation of π1(Y ). This induces a semisimple
representation (W, ind(ρ)) of π1(X), where

W = {f : π1(X)→ V | f(hy) = ρ(y−1)f(h), for every y ∈ π1(Y ), h ∈ π1(X)}.
The morphism ind(ρ) ∈ Aut(W ) is defined by

(hf)(x) = ind(ρ)h(f)(x) = f(h−1x) for every h, x ∈ π1(X) and f ∈W.

This representation extends of course to a representation of G since G is the
Tannaka closure of π1(X). Let F(G) be the set of polynomial functions on G
with values in V , and let e : W → V be the evaluation map f �→ f(1). Consider
the map Φ : W → F(G), defined by

Φ(w)(g) = e(g−1w).
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Let us also consider the restriction map Res : F(G) → F(π1(X)), where
F(π1(X)) is the set of functions on π1(X). The image of Res is contained in
W and the composite W

Φ−→ F(G) Res−→ W is the identity since Φ(w)(h) =
e(h−1w) = (h−1w)(1) = w(h), that is Φ(w)|π1(X) = w.

The affine group G is defined as Spec of the algebra of representation functions
(namely coefficients of semisimple representations) of π1(X). So the restriction
map of the algebra of functions on G to the Zariski closure of π1(X) is onto
(because it is affine) and one-to-one, and hence they are the same. In other
words π1(X) is dense in G. Now, the image of W in F(G) satisfies

f(gy) = ρ(y−1)f(h), for every y ∈ π1(Y ), g ∈ G.

This is because ψ(g) = f(gy)−ρ(y−1)f(g) is 0 on π1(X) and the image of π1(X)
is Zariski dense on G. Let

W ′ = {f ∈ F(G) | f(gy) = ρ(y−1)f(g), for every y ∈ π1(Y ), g ∈ G}.
The restriction map W ′ → F(π1(X)) is injective and the image is W , there-
fore W ′ = W and hence G acts on it and the dimension of W must be
|G/π1(Y )|dimV which has to coincide with |G/K|dimV . Hence π1(Y ) = K.

We shall now show that K acts on Ker e and hence on V . Let f, f ′ ∈ W .
From (f − f ′)(1) = 0 we have (f − f ′)(y) = 0 for every y ∈ π1(Y ) and since
π1(Y ) = K we have (f − f ′)(k) = ρ(k)(f − f ′)(1) = 0, which complets the
proof.

Corollary 4.8. K is the Tannaka closure of π1(Y ).

We thus conclude that if [ρ] is a representation of π1(Y ) satisfying (7) it
extends to a representation of K satisfying the same condition, where the first
action of Γ on this representation is defined via the extension

1 −→ K −→ G −→ Γ −→ 1,

and (6). On the other hand, since K is the Tannaka closure of π1(Y ), by Theorem
2.7, there is an action of C∗ on K such that

[ρ]λ = [ρ ◦ λ] for every λ ∈ C∗.

Recall that we are identifying λ ∈ C∗ with the homomorphism K → K that it
defines.

Combining all this with the results of the previous subsection, we have the
following.

Proposition 4.9. There is a functor which is an equivalence of categories be-
tween the category of polystable L-twisted Higgs bundles over X and the category
of semisimple representations [ρ] of K satisfying

γ · [ρ] = [ρ]γ for every γ ∈ Γ.(8)
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From section 3.1, we know that K is also a subgroup of Gχ. We shall show now
that the representations of K corresponding to twisted Higgs bundles extend to
representations of Gχ. To see this we shall briefly analyse separately the general
problem of extending a representation of a normal subgroup to the whole group.

4.3. Extending representations of a normal subgroup.

Proposition 4.10. Let G be a group and K ⊂ G be a normal subgroup. Let
(V, ρ) be a representation of K which extends to a representation of G, then for
every g ∈ G, the representations ρ and ρ ◦ Intg are equivalent.

Proof. Suppose that (V, ρ) extends to a representation (V, ρ̃) of G. Then for
every g ∈ G and h ∈ K we have

(ρ ◦ Intg)(h) = ρ(ghg−1) = ρ̃(ghg−1) = ρ̃(g)ρ̃(h)ρ̃(g−1) = ρ̃(g)ρ(h)ρ̃(g−1).

Thus ρ and ρ ◦ Intg are equivalent.

We are interested in the case in which Γ = G/K is a finite cyclic group. In
this situation, the converse of the previous Proposition is actually true. More
precisely:

Proposition 4.11. Let K be a normal subgroup of G and let Γ = G/K be a
finite cyclic group. Let (V, ρ) be a semisimple representation of K such that
γ · [ρ] = [ρ] for every γ ∈ Γ. Then (V, ρ) extends to a semisimple representation
of G.

Proof. Assume first that ρ is irreducible. Let n be the order of Γ and let a be
a generator of Γ. Let g ∈ G be a lift of a. By assumption there exists a matrix
T ∈ GL(V ) such that

ρ(gkg−1) = Tρ(k)T−1 for every k ∈ K.(9)

This implies that Tnρ(k)T−n = ρ(gnkg−n). But gn ∈ K and so we have
Tnρ(k)T−n = ρ(gn)ρ(k)ρ(g−n). In other words, ρ(g−n)Tn commutes with ρ(k)
for all k ∈ K. Since ρ is irreducible, ρ(g−n)Tn = λI for some constant λ ∈ C,
by Schur’s Lemma, and replacing T by µT with µn = λ, we see that Tn = ρ(gn).
We will now extend ρ to a representation ρ̃ of G by setting ρ̃(g) = T . Since G is
defined as the quotient of the free product of K and Γ with the relation gn = k,
for some k ∈ K, we see that ρ̃ is indeed a representation of G extending ρ.

Suppose now that ρ =
⊕m

i=1 ρi, where the ρ′is are irreducible, inequivalent
representations such that

ρi = ρ1 ◦ Intgi−1 |K for 1 ≤ i ≤ m,(10)

with m dividing n. Every representation satisfying the hypothesis of the theorem
is a direct sum of representations of this kind, and it will hence be enough to
consider this case.

The automorphism T in (9) has a block decomposition of the form
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T =




0 ... 0 Am

A1 0 ... 0
... ... ... ...
0 ... Am−1 0


 ,

where Ai with 1 ≤ i ≤ m is an invertible linear transformation. In terms of this
decomposition (9) is equivalent to

Amρm(k)A−1
m = ρ1(gkg−1)

A1ρ1(k)A−1
1 = ρ2(gkg−1)

... ... ...
Am−1ρm−1(k)A−1

m−1 = ρm(gkg−1).

(11)

This implies that

ρ1(k) = AmAm−1...A1ρ1(gmkg−m)A−1
1 ...A−1

m−1A
−1
m ,

and similarly for the other ρ′is. More precisely, let

Bi =
i−1∏
j=1

Ai−j

m−i∏
l=0

Am−l.

We have
ρi(k) = Biρi(gmkg−m)B−1

i for 1 ≤ i ≤ m.

Iterating this, we obtain

ρi(k) = Bp
i ρi(gnkg−n)B−p

i for 1 ≤ i ≤ m,(12)

where p = n/m. Since gn ∈ K,

ρi(k) = Bp
i ρi(gn)ρi(k)ρi(g−n)B−p

i for 1 ≤ i ≤ m,

from which, by Schur’s Lemma, we obtain

ρi(gn) = λiB
p
i for 1 ≤ i ≤ m(13)

for constants λi ∈ C. Now, taking k = gn in (11), we get

Tr ρi(gn) = Tr ρj(gn) for 1 ≤ i, j ≤ m.(14)

But Tr(Bp
i ) = Tr(Bp

j ), for 1 ≤ i, j ≤ m, since AiB
p
i A−1

i = Bp
i+1, and hence (13)

and (14) imply that λi = λj = λ for 1 ≤ i, j ≤ m. As above, we can replace T
by µT with µn = λ, so that Tn = ρ(gn), and extend ρ to a representation ρ̃ of
G by setting ρ̃(g) = T .

The proof is now complete since, as mentioned above, every representation
satisfying the hypothesis of our theorem is a direct sum of representations of the
kind defined by (10), and T can be decomposed in diagonal blocks to which we
can apply the above argument.
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4.4. From representations of K to representations of Gχ. Coming back
to our main theme, recall that K = kerχ is a normal subgroup of Gχ, and we
want to see that the representations of K coming from twisted Higgs bundles
extend to representations of Gχ. More precisely:

Proposition 4.12. There is a tensor functor which is an equivalence of cat-
egories between the category of semisimple representations of K satisfying (8)
and the category of semisimple representations of Gχ.

Proof. Let us consider the extension

1 −→ K −→ Gχ −→ Γχ −→ 1,

where Γχ = Gχ/K. By Proposition 4.3 Γχ acts on Rep(K). Let us denote this
action by γ ·χ [ρ], for every [ρ] ∈ Rep(K) and γ ∈ Γχ. We will show now that
(8) is equivalent to

γ ·χ [ρ] = [ρ] for every γ ∈ Γχ,(15)

and hence if (8) is satisfied, since Γχ is cyclic, we can apply Proposition 4.11 to
conclude that a semisimple representation of K extends to a semisimple repre-
sentation of Gχ. To see this, let Intχ

g the inner automorphism of Gχ defined by
g ∈ Gχ. We have to take some care about what we mean by the inner automor-
phism defined by g since the underlying sets of G and Gχ coincide, but the group
structures are different. The restriction of Intχ

g to K is the homomorphism

Intχ
g (h) = g∗h∗g−1

χ , for g ∈ Gχ and h ∈ K,

where g−1
χ denotes the inverse of g with respect to the operation ∗ defined by

(4).
By Proposition 4.4, (15) is equivalent to

[ρ] = [ρ ◦ Intχ
g ] for every g ∈ Gχ.(16)

Now, for every g ∈ Gχ and h ∈ K

Intχ
g (h) = g∗h∗g−1

χ = g(h(g−1
χ )χ−1(h))χ−1(g) = ghχ−1(g)g−1

since χ−1(h) = 1 and (g−1
χ )χ−1(g) = g−1. We can thus conclude that Intχ

g =
Intg ◦χ−1(g) and hence (16) can be rewritten as [ρ] = [ρ◦ Intg ◦χ−1(g)] or equiv-
alently

[ρ ◦ χ(g)] = [ρ ◦ Intg].

Hence

γ ·χ [ρ] = [ρ ◦ Intχ
gγ

] = [ρ ◦ Intgγ ◦γ−1],

and (15) is thus equivalent to (8).
We have thus completed the proof of Theorem 3.5.
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Remark. Another way to prove our main theorem could be, perhaps, the follow-
ing. The twisted Higgs bundle (E, θ) defines a Higgs bundle (V, Θ) over X by
taking V =

⊕n−1
i=0 E ⊗ Li, where n is the order of Γ, and

Θ =




0 ... 0 θ
θ 0 ... 0
... ... ... ...
0 ... θ 0




If (E, θ) is stable it should not be difficult to prove that (V, Θ) is polystable,
defining then a representation of G. This is the representation induced by the
representation of K corresponding to the twisted Higgs bundle (E, θ). One would
need then to characterize these representations of G and show that they are in
bijection with the representations of Gχ.
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[G] O. Garćıa–Prada, Invariant connections and vortices, Commun. Math. Phys. 156
(1993), 527–546.

[H1] N. J. Hitchin, The self-duality equations on a Riemann surface, Proc. London Math.
Soc. 55 (1987), 59–126.

[H2] N. J. Hitchin, Stable bundles and integrable systems, Duke Math. J. 54 (1987),
91–114.



TWISTED HIGGS BUNDLES 535

[Li] T. R. Lin, Hermitian–Yang–Mills–Higgs metrics and stability for holomorphic vector
bundles with Higgs fields over a compact Kähler manifold, Ph.D. Thesis, UC–San
Diego (1989).

[Ma] E. Markman, Spectral curves and integrable systems, Compositio Math. 93 (1994),
255–290.

[NS] M. S. Narasimhan and C.S. Seshadri, Stable and unitary bundles on a compact Rie-
mann surface, Ann. Math. 82 (1965), 540–564, Proc. Nat. Acad. Sci. U.S.A. 52
(1964), 207–211.

[N] N. Nitsure, Moduli space of semistable pairs on a curve, Proc. London Math. Soc.
62 (1991), 275–300.

[Sa] N. Saavedra Rivano, Catégories Tannakiennes, Lecture Notes in Mathematics 265,
Springer-Verlag, 1972.

[Si1] C.T. Simpson, Constructing variations of Hodge structure using Yang–Mills theory
and applications to uniformization, J. Amer. Math. Soc. 1 (1988), 867–918.

[Si2] C. T. Simpson, Higgs bundles and local systems, Inst. Hautes Études Sci. Publ.
Math. 75 (1992), 5–95.
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Departamento de Matemáticas, Universidad Autónoma de Madrid, 28049 Madrid,
Spain.

E-mail address: oscar.garcia-prada@uam.es

School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha
Road, Mumbai – 400 005, India.

E-mail address: ramanan@math.tifr.res.in


