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CONFORMAL MAPS, MONODROMY TRANSFORMATIONS,
AND NON-REVERSIBLE HAMILTONIAN SYSTEMS

Xianghong Gong

1. Introduction

In this note we shall consider real analytic Hamiltonians of the form

H(x, y) =
n∑

j=1

αj(x2
j + y2

j ) + O(3),(1)

where (x, y) are the symplectic coordinates of R2n, associated to the symplectic
2-form

∑
dxj ∧ dyj . The Hamiltonian vector field of H is

XH =
∑

−Hyj

∂

∂xj
+ Hxj

∂

∂yj
.(2)

According to Arnol’d and Sevryuk, a Hamiltonian vector field XH is said to be
weakly reversible if ϕ∗XH = −XH for some germ ϕ of real analytic transforma-
tion with ϕ(0) = 0, while XH is reversible if additionally ϕ is an involution, i.e.,
ϕ2 = Id. One also says that α1, . . . , αn are non-resonant, if

k · α ≡ k1α1 + · · · + knαn �= 0(3)

for all integers kj with k = (k1, . . . , kn) �= 0.
The main purpose of this note is to show the existence of non-reversible real

analytic Hamiltonian systems of non-resonant eigenvalues. We shall prove

Theorem 1. For n ≥ 2 there exist non weakly reversible Hamiltonian vector
fields XH of the form (1) for which α1 ·α2 < 0, and α1, . . . , αn are non-resonant.

We should mention that any real analytic Hamiltonian on R2 can be put into
the Birkhoff normal form, if it starts with a non-degenerate quadratic form; in
particular, its corresponding Hamiltonian system is reversible. Also, all Hamil-
tonian systems (2) are reversible by some formal involution when their eigenval-
ues satisfy the above non-resonance condition. Arnol’d and Sevryuk [1] gave a
Hamiltonian function on R2 with vanishing quadratic form, of which the corre-
sponding Hamiltonian vector field is not reversible by any linear involution. See
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recent surveys of Roberts and Quispel [7] and Lamb and Roberts [4] on reversible
dynamical systems.

Theorem 1 is analogous to the existence of non-reversible area-preserving
maps [3], where the hyperbolic orbits of the complexified maps provide an ob-
struction to the reversibility of the real maps. We shall see that the obstructions
to the reversibility of real Hamiltonian systems lie in the complexification of R2n

also. To seek non-reversible Hamiltonian systems, we shall restrict ourselves to
those systems, of which the complexifications admit subsystems defined on some
invariant complex submanifolds passing the origin. It turns out that the re-
versibility of the real Hamiltonian systems implies, in a certain sense, that of
the monodromy transformations of those subsystems. The proof of the theorem
uses a result of Pérez Marco and Yoccoz [6], which says that any conformal map
can be prescribed as a monodromy transformation of holomorphic vector fields
in C2. We shall also need the non-reversibility of conformal maps [3].

2. Reversibility of subsystems

It is convenient to introduce complex coordinates zj = xj + iyj on R2n that
are compatible to the symplectic structure

∑
dxj ∧ dyj . Thus a real analytic

Hamiltonian on R2n becomes a holomorphic Hamiltonian on (C2n, i
2

∑
dzj ∧

dwj). More precisely, rearrange H(x, y) as a power series in z, z, and denote it
by Hc(z, z). Introduce the notation

f(Z) = f(Z)

for a multivariable function f . Then Hc satisfies the reality condition

H
c
(z, w) = Hc(w, z).

Now, the Hamiltonian vector field (2) becomes

XHc = 2i
∑

Hc
wj

(z, w)
∂

∂zj
− Hc

zj
(z, w)

∂

∂wj
, (z, w) ∈ C2n.

Notice that XHc is the unique holomorphic vector field on C2n satisfying
�{XHc} = XH on R2n : w = z. Note that a real analytic transformation ϕ of
R2n has a unique complexification ϕc, a holomorphic transformation of C2n,
such that ϕc|R2n = ϕ. Also, ϕ∗XH = ϕ∗�{XHc} = �{ϕc

∗XHc}. This implies
that if XH is reversible by a real analytic transformation ϕ, then XHc is reversible
by ϕc. From now on, we substitute H, XH , ϕ for Hc, XHc , ϕc, respectively.

We shall consider holomorphic Hamiltonians of the form

H(z, w) =
∑

αjzjwj(1 + Aj(z) + Aj(w)), Aj(0) = 0,(4)

where αj are non-resonant. Note that w = 0 is invariant under the flow of XH ,
and that XH , when restricted to w = 0, becomes the holomorphic vector field

va =
∑

aj(z)
∂

∂zj
, aj = 2iαjzj(1 + Aj(z)),(5)

while va is the restriction of XH to z = 0.
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Lemma 2. Let XH be the Hamiltonian vector field (4) with α1, . . . , αn be-
ing non-resonant, and let va be the corresponding holomorphic vector field
(5). Let ϕ be a holomorphic transformation satisfying ϕ∗XH = −XH .
Then ϕ sends (z1, . . . , zm)-subspace into (w1, . . . , wm)-subspace and preserves
(z1, . . . , zm, w1, . . . , wm)-subspace, while φ∗va = −va with φ being the last n
components of z → ϕ(z, 0).

Proof. From the eigenvalues of XH and −XH , one sees that the linear part of ϕ
sends (z1, . . . , zm)-subspace onto (w1, . . . , wm)-subspace. Put (z1, . . . , zm) = z′

and (z′, z′′) = z. Thus M = ϕ({z′′ = 0 = w}) is defined by

zj = fj(w′), 1 ≤ j ≤ n; wj = gj(w′), j > m

with fj(w′) = O(|w′|2) = gj(w′). Since −XH(zj−fj(w′)) and −XH(wj−gj(w′))
vanish on M , then

XH(zj − fj(w′)) =
n∑

k=1

ujk(zk − fk(w′)) +
∑

k>m

vjk(wk − gk(w′)),

XH(wj − gj(w′)) =
n∑

k=1

ũjk(zk − fk(w′)) +
∑

k>m

ṽjk(wk − gk(w′)),

(6)

in which ujk, ũjk, vjk, ṽjk are holomorphic functions in z, w. Comparing the
terms that are linear in z, w yields all ujk(0) = ũjk(0) = vjk(0) = ṽjk(0) = 0,
except that

ujj(0) = 2iαj , 1 ≤ j ≤ n; ṽjj(0) = −2iαj , j > m.

Assume for the sake of contradiction that f, g have a finite vanishing order s ≥ 2.
Setting w′′ = 0 = z in (6) and comparing terms of order s yields

(K · α′)fjK = −αjfjK , 1 ≤ j ≤ n; (K · α′)gjK = αjgjK , j > m

for K = (K1, . . . , Km), α′ = (α1, . . . , αm) and |K| = s. By the non-resonance
condition (3), fjK and gjK vanish. The contradiction shows that M is {z = 0 =
w′′}. By a similar argument, one can show that ϕ preserves zj = wj = 0 for
j > m.

We now know that
ϕ(z, 0) = (0, φ(z)),

where φ is a holomorphic transformation of Cn. When restricted to z = 0, the
identity ϕ∗XH = −XH becomes −va = (ϕ∗XH)|z=0 = ϕ∗|w=0(XH |w=0) = φ∗va.
The proof of the lemma is complete.

3. Non-reversibility of monodromy transformations

We shall consider the holomorphic foliations on a punctured neighborhood of
the origin in Cn, defined by vector fields (5). Two such foliations, defined by
va and vb, are said to be equivalent near the origin if there is a holomorphic
transformation ϕ sending leave of one foliation into leave of another, i.e, ϕ∗va =
uvb for some holomorphic function u. Assume that αj are non-resonant. Then
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an argument similar to the proof of Lemma 3 shows that a germ of complex
submanifold at origin, which is invariant under the flow, is the linear span of
some coordinate axes.

Let us recall the monodromy transformations of va. Let Σ be a separatrix (an
invariant holomorphic curve of va, passing through the origin). The monodromy
transformations associated to Σ are defined as follows. Let γ : [0, 1] → Σ∗ = Σ \
{0} be a real analytic curve with γ(0) = γ(1). Let C be a complex hypersurface
transverse to Σ at γ(0). Then

γ̇(t) = u(t)va(γ(t)).(7)

Let z = Z(t, z), with the initial value Z(0, z) = z, be the solution to the non-
autonomous system

ż = u(t)va(z).(8)

Then Z(t, p) is holomorphic in a neighborhood of the set [0, 1]×{γ(0)} in C×C.
The holomorphic curve Z(·, p) intersects C transversely at a point p′ = Z(t, p)
for some t ∈ C close to 1. Thus, p′ = h(p) defines a holomorphic transformation
of C, fixing γ(0). Let γ0, γ1 be two immersed real analytic curves connected by a
homotopy γs of real analytic curves in Σ∗, and let Cj be a complex hypersurface
transverse to Cj at γj(0). Then the monodromy transformations hj , associated
to Cj , γj , satisfy h1 = f ◦ h0 ◦ f−1, where f : C0 → C1 is some holomorphic
transformation sending γ0(0) to γ1(0). Thus, one can define the monodromy
transformation of the foliation associated to a closed continuous curve γ in Σ∗,
while the conjugate class of the monodromy transformations depends only on
the homotopy class of γ in Σ∗. Notice that two foliations on C2, defined by
vector fields of the form (5), are holomorphically equivalent, if and only if their
monodromy transformations are conjugate ([2], [5]).

The realization theorem of Pérez Marco and Yoccoz says precisely that the
conjugate class of any conformal map ξ → e2πβiξ + O(2) can be prescribed as a
monodromy transformation of some vector field (5) in C2 with β = −α2/α1 > 0,
where the monodromy transformation is associated to the z1-axis and closed
curve t → (e−2πit, 0) (0 ≤ t ≤ 1); see also a previous result of Martinet and
Ramis [5], when α is rational. Thus, we define ha to be such a monodromy
transformation of va given by (5) with n = 2.

Lemma 3. The monodromy transformation ha is conjugate to h
−1

a .

Proof. For z2 ∈ C, we have (1, ha(z2)) = Z(1, 1, z2), where Z(t, z) is the flow
defined by

∂

∂t
Z1(t, z) = −2πiZ1(t, z),

∂

∂t
Z2(t, z) = 2πiβZ2(t, z)

1 + A2(Z(t, z))
1 + A1(Z(t, z))
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for β = −αj/α1. Conjugating the equations and setting s = 1 − t yields

∂

∂s
{Z1(1 − s, z)} = −2πiZ1(1 − s, z),

∂

∂s
{Z2(1 − s, z)} = 2πiβZ2(1 − s, z)

1 + A2(Z(1 − s, z))
1 + A1(Z(1 − s, z))

for Z(t, z) ≡ Z(t, z). Hence, ha sends Z2(1, 1, z2) to Z2(0, 1, z2) = z2, i.e.,
h−1

a (z2) = Z2(1, 1, z2) = ha(z2). The proof of the theorem is complete.

Proof of Theorem 1. We want to find a real analytic function H of the form (4)
such that the corresponding holomorphic Hamiltonian vector field XH , given by
(5), is not weakly reversible. In particular, the real Hamiltonian vector field XH

is not reversible by any real analytic transformation.
We first consider the case n = 2. By a theorem in [3], there exists a confor-

mal map F : ξ → e2πiβξ + O(2) with β > 0 being irrational, such that F and
F

−1
are not equivalent by any holomorphic transformation. By the realization

theorem, F is the monodromy transformation of some vector field va. Let H
be the corresponding Hamiltonian of the form (4) with α1 = −π and α2 = πβ.
Assume for the sake of contradiction that XH is weakly reversible, that is that
ϕ∗XH = −XH for some holomorphic transformation ϕ. Put ϕ(z, 0) = (0, φ(z)).
Lemma 3 implies that the two foliations defined by va, va are equivalent through
φ, and that φ preserves the coordinate axes. Obviously, the holomorphic map
φ preserves the homotopy class of t → (e−2πit, 0) (0 ≤ t ≤ 1) in the punctured
z1-axis. Therefore, Lemma 2 and Lemma 3 imply that the monodromy trans-
formation ha is conjugate to h

−1

a , which contradicts that F and F
−1

are not
conjugate.

For n > 2, let H be the above real Hamiltonian on R4 such that the holo-
morphic Hamiltonian vector field XH is not weakly reversible by any holomor-
phic transformation. Let G be a real analytic Hamiltonian with α1, . . . , αn

non-resonant, of which the restriction to the (x1, x2, y1, y2)-subspace is H. If
the holomorphic Hamiltonian vector field XG is reversible by a holomorphic
transformation ϕ, then Lemma 3 implies that ϕ preserves the (z1, z2, w1, w2)-
subspace. Hence the complexification of XH is also weakly reversible, which is
a contradiction. The proof of the theorem is complete.

Addendum. After the manuscript was submitted, R. Peréz-Marco brought the
author the observation that if F (z) = λz + O(2) (λ �= 0) is a polynomial that is
not linearizable near the origin, then F and F

−1
are not equivalent by convergent

transformations. Peréz-Marco’s observation is based on the theory of Fatou and
Julia; namely, such an F has repellors accumulating at the origin, while it has
only finitely many attractors on the complex plane, from which one readily
sees that F and F

−1
are not equivalent by convergent transformations (see

Proposition 5.1 in [3]). A theorem of Yoccoz says that F (z) = λz+z2 (|λ| = 1) is
not linearizable, if λ does not satisfy the Bruno condition. Thus, the construction
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in this paper also shows the existence of non weakly reversible Hamiltonian
systems of the form (1), if α2/α1 < 0 and eiα2/α1 does not satisfies the Bruno
condition.

The author is grateful to R. Peréz-Marco for the above observation.
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