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ε-CONSTANTS AND ARAKELOV EULER CHARACTERISTICS

Ted Chinburg∗, Georgios Pappas†, and Martin J. Taylor‡

1. Introduction

Let X be a regular scheme projective and flat over Spec(Z), equidimen-
sional of relative dimension d. Consider the Hasse-Weil zeta function of X,
ζ(X, s) =

∏
x(1 − N(x)−s)−1 where x ranges over the closed points of X and

N(x) is the order of the residue field of x. Denote by L(X, s) the zeta function
with Γ-factors L(X, s) = ζ(X, s)Γ(X, s). The L-function conjecturally satisfies
a functional equation

L(X, s) = ε(X)A(X)−sL(X, d + 1 − s)

where ε(X) and A(X) are real numbers defined independently of any conjectures
(the “ε-constant” and the “conductor”). In fact, the unconditional definition of
ε(X) and A(X) involve choices of auxiliary primes l with embeddings Ql ⊂ C
(see [De]). In this note, we will suppress any notation regarding these choices;
this should not cause any confusion.

The purpose of this note is to explain a way to obtain the absolute value |ε(X)|
as an “arithmetic” Euler de Rham characteristic in the framework of the higher
dimensional Arakelov theory of Gillet and Soulé. Choose a hermitian metric
on the tangent bundle of X(C) which is Kähler; it gives a hermitian metric
on Ω1

XC
. Recall the definition of the arithmetic Grothendieck group K̂0(X) of

hermitian vector bundles of Gillet and Soulé ([GS1, II, §6]; all hermitian metrics
are smooth and invariant under the complex conjugation on X(C)). There is an
arithmetic Euler characteristic homomorphism

χQ : K̂0(X) −→ R,

such that if (F , h) is a vector bundle on X with a hermitian metric on FC,
then χQ((F , h)) is the Arakelov degree of the hermitian line bundle on Spec(Z)
formed by the determinant of the cohomology of F with its Quillen metric. The
arithmetic Grothendieck group K̂0(X) is a λ-ring with λi-operations defined in
loc. cit. §7: If (F , h) is the class of a vector bundle with a hermitian metric on
FC then λi((F , h)) is the class of the vector bundle ∧iF with the exterior power
metric on ∧iFC induced from h. Now consider the sheaf of differentials Ω1

X/Z
;
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this is a “hermitian coherent sheaf” in the terminology of [GS3, 2.5]. Since X is
regular, by loc. cit. 2.5.2, Ω1

X/Z
defines an element Ω in K̂0(X) as follows: Each

embedding of X into projective space over Spec(Z) gives a short exact sequence

E : 0 → N → P → Ω1
X/Z → 0

with P and N vector bundles on X (here P is the restriction of the relative
differentials of the projective space to X and N is the conormal bundle of the
embedding). Pick hermitian metrics hP and hN on PC and NC respectively
and denote by c̃h(EC) the secondary Bott-Chern characteristic class of the exact
sequence of hermitian vector bundles EC (as defined in [GS1]; there is a difference
of a sign between this definition and the definition in [GS3, 2.5.2]). Then

Ω = ((P, hP ), 0) − ((N, hN ), 0) + ((0, 0), c̃h(EC)) ∈ K̂0(X)

depends only on the original choice of Kähler metric.
For each i ≥ 0 we can consider now the element λi(Ω) in K̂0(X). Motivated

by the “higher dimensional Fröhlich conjecture” of [CEPT], we conjecture that

− log |ε(X)| =
d∑

i=0

(−1)iχQ(λi(Ω)).(1.1)

Denote by XS the disjoint union of the singular fibers of f : X → Spec(Z). In
[B], S. Bloch conjectures that the conductor A(X) is given by

A(X) = ord((−1)dcXS

d+1(Ω
1
X/Z)),

where cXS

d+1(Ω
1
X/Z

) := cX
d+1,XS

(Ω1
X/Z

) ∩ [X] is the localized d + 1-st Chern class
in CH0(XS) described in loc. cit. Here for a zero cycle

∑
i nixi, ord(

∑
i nixi) =∏

i(#k(xi))ni , with k(xi) the residue field of xi. In this paper we show:

Theorem 1.2. The equality 1.1 is equivalent to Bloch’s conjecture.

The main ingredients in the proof are the Arithmetic Riemann-Roch theorem
of Gillet and Soulé and the fact (Proposition 3.1) that Bloch’s localized Chern
class agrees with the corresponding “arithmetic” Chern class of Gillet-Soulé.

Since Bloch has proven in [B] his conjecture for an arithmetic surface (d = 1)
we see that 1.1 holds in this case. In this note we also show:

Theorem 1.3. Bloch’s conjecture, and therefore equality 1.1, holds when for
all primes p, the fiber of X → Spec(Z) over p is a divisor with strict normal
crossings with multiplicities relative prime to p.

In fact, under the hypothesis of the above theorem, we can show 1.1 directly by
replacing the use of the arithmetic Riemann-Roch theorem by Serre duality and
the fact, due to Ray and Singer ([RS], Theorem 3.1), that the analytic torsion of
the de Rham complex is trivial. We are grateful to C. Soulé for pointing this out
to us; this approach is explained in detail in [CPT2]. Also, as ε(X)2 = A(X)d+1,
we could have expressed 1.1 using the conductor A(X). However, it seems
that 1.1 is more canonical and it could generalize in a motivic framework (for
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example to varieties with a group action). Indeed, the inspiration for 1.1 comes
from [CEPT], see also [CPT1], where we observed a close connection between an
equivariant version of an Euler de Rham characteristic as above and ε-constants.
Viewed this way, Theorem 1.2 also provides some indirect positive evidence for
the general higher dimensional Fröhlich conjecture of [CEPT]. In [CPT2], we
use the results of this note to obtain the actual ε-constant (not just its absolute
value) of the Artin motive obtained from the pair (X, V ) of an arithmetic variety
X with an action of a finite group G and a symplectic character V of G.

We would like to express our thanks to C. Soulé; this note would not have
existed without his advice. We would also like to thank T. Saito for useful
conversations and B. Erez for pointing out the reference [A]. After a prelim-
inary version of this note was completed we have learned that K. Kato and
T. Saito have announced a proof of a stronger version of Theorem 1.3 in which
the assumption on the multiplicities is dropped; their proof is significantly more
involved than the proof of the tame case that we consider here. T. Saito in-
formed us that a similar argument to ours for the proof of the tame case is given
by K. Arai in his thesis, which is currently in preparation.

2. Arithmetic Riemann-Roch

The formulae of [De] imply that ε(X)2 = A(X)d+1 (we can see that this
also follows directly from the conjectural functional equation). Therefore, 1.1
translates to

d + 1
2

· log A(X) = −
d∑

i=0

(−1)iχQ(λi(Ω)).(2.1)

Denote by ĈH
·
(X), ĈH·(X) the arithmetic Chow groups of Gillet and Soulé

([GS1-2]), graded by codimension and dimension of cycles respectively. Since
XS has empty generic fiber, there is a natural homomorphism

zS : CH0(XS) → ĈH0(X) = ĈH
d+1

(X).

The direct image homomorphism

f∗ : ĈH
d+1

(X) → ĈH
1
(Spec(Z)) = R

satisfies f∗(zS(a)) = log(ord(a)) for a ∈ CH0(XS). Therefore, Theorem 1.2 will
follow if we show:

Theorem 2.2.
d∑

i=0

(−1)iχQ(λi(Ω)) = (−1)d+1 d + 1
2

f∗(zS(cXS

d+1(Ω
1
X/Z))).

In what follows we will use heavily the notations and results of [GS1], [GS2]
and [GS3].

First observe that from the definition of Ω, we obtain ch(Ω) = ch(Ω1
X(C)),

where ch denotes the Chern character form (its domain can be extended to
K̂0(X) as in [GS1]). By [GS1, Lemma 7.3.3], we have ch(Ωi

X(C)) = λi(ch(Ω1
X(C)));
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here Ωi
X(C), 0 ≤ i ≤ d, has the exterior power metric and the λ-ring structure

on differential forms is given by the grading as in loc. cit. We obtain that
ch(λi(Ω)) = λi(ch(Ω)) = λi(ch(Ω1

X(C))) = ch(Ωi
X(C)) where the first equality

follows from the fact that ch = ω · ĉh : K̂0(X) → A(XR) is a λ-ring homomor-
phism (see loc. cit.).

From the Arithmetic Riemann Roch theorem of Gillet and Soulé ([GS3], The-
orem 7, see also 4.1.5 loc. cit.) we now have

d∑
i=0

(−1)iχQ(λi(Ω)) = f∗

((
ĉh

( d∑
i=0

(−1)iλi(Ω)
)
· T̂d(X)

)(d+1)
)

(2.3)

− 1
2

∫
X(C)

ch
( d∑

i=0

(−1)iΩi
X(C)

)
Td(TX(C))R(TX(C))

where the notations are as in loc. cit. and the factor of 1/2 in front of the second
term results from the normalization discussed after equation (15) in section 4.1.5.
We first show:

Proposition 2.4.
∫

X(C)

ch
( d∑

i=0

(−1)iΩi
X(C)

)
Td(TX(C))R(TX(C)) = 0.

Proof. (Shown to us by C. Soulé.) By the classical identity applied on the level
of Chern forms we obtain

ch(λ−1(Ω1
X(C)))Td(TX(C))) = cd(TX(C))

(see [R, 6.19]). Therefore the integral is equal to:∫
X(C)

cd(TX(C))R(TX(C)).

But R(TX(C)) is non-zero in positive degrees only; therefore the degree of the
form cd(TX(C))R(TX(C)) is at least d + 1 and the integral vanishes.

It remains to deal with the first term of the right hand side of 2.3. We will
show:

Proposition 2.5.(
ĉh

( d∑
i=0

(−1)iλi(Ω)
)
· T̂d(X)

)(d+1)

= (−1)d+1 d + 1
2

ĉd+1(Ω).

Proof. Recall the definition of T̂d(X) from [GS3]; we have an exact sequence

E∗
C : 0 → TXC

= (Ω1
XC

)∗ → P ∗
C → N∗

C → 0.

We set
T̂d(X) := T̂d(P̄ ∗)T̂d

−1
(N̄∗) + a(T̃d(E∗

C)Td(N̄∗
C)−1),
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where T̃d(E∗
C) is the Todd-Bott-Chern secondary form attached to the sequence

E∗
C (see [GS3], p. 503) and Td is the usual Todd form. We are just interested

in the terms of degree 0 and 1 of T̂d(X). If Ē is a hermitian vector bundle, we
have

T̂d(Ē∗) = 1 +
ĉ1(Ē∗)

2
+ · · · , T̂d

−1
(Ē∗) = 1 − ĉ1(Ē∗)

2
+ · · · .

The (0, 0) component of Td(N̄∗
C)−1 is 1. We can also see that the (0, 0) compo-

nent of the secondary form T̃d(E∗
C) is given by

T̃d(E∗
C)(0,0) =

c̃1(E∗
C)

2
,

where c̃1(E∗
C) the “secondary” first Bott-Chern form associated to E∗

C. This gives

T̂d(X) = 1 +
ĉ1(P̄ ∗) − ĉ1(N̄∗)

2
+ a(

c̃1(E∗
C)

2
) + · · · = 1 +

ĉ1(Ω∗)
2

+ · · · ,

and therefore

T̂d(X) = T̂d(Ω∗) mod ĈH
≥2

(X)Q.(2.6)

Let us now consider the γ operations on the λ-ring K̂0(X) with augmentation
ε : K̂0(X) → Z given by ε((Ē, η)) = rk(E) (see [R, §4]). If ε(x) = d, then (as in
[CPT1] §1) we have:

(−1)dγd(x − ε(x)) =
d∑

i=0

(−1)iλi(x).(2.7)

Therefore ĉh(
∑d

i=0(−1)iλi(x)) is concentrated in degrees d and d + 1 only
and so by 2.6

ĉh
( d∑

i=0

(−1)iλi(Ω)
)
· T̂d(X) = ĉh

( d∑
i=0

(−1)iλi(Ω)
)
· T̂d(Ω∗).

By the above and 2.7 it is enough to show that for x ∈ K̂0(X) we have

(ĉh(γd(x − ε(x)) · T̂d(x∗))(d+1) = −d + 1
2

ĉd+1(x).

Let a1, . . . , ad+1 be the “arithmetic Chern roots” of x. By definition, these are
formal symbols such that the arithmetic Chern classes of x are the elementary
symmetric functions of ai; we can perform our calculation using these symbols.
The Chern roots of the dual x∗ are −a1, . . . ,−ad+1. A standard argument using
[GS1, Theorem 4.1] shows that we have

ĉh(γd(x − ε(x))) =
d+1∑
i=0

∏
j �=i

(eaj − 1),
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while by definition

T̂d(x∗) =
d+1∏
i=0

−ai

1 − e−(−ai)
=

d+1∏
i=0

ai

eai − 1
.

The product is equal to
d+1∑
j=1

a1a2 · · · ad+1

eaj − 1
=

d+1∑
j=1

(a1 · · · âj · · · ad+1 − a1 · · · ad+1

2
) + · · ·

= ĉd(x) − d + 1
2

ĉd+1(x) + · · ·
which gives the desired result.

3. Localized Chern classes.

We continue with the same assumptions and notations. Recall the homomor-
phism

zS : CH0(XS)Q → ĈH0(X)Q = ĈH
d+1

(X)Q.

Proposition 3.1. zS(cXS

d+1(Ω
1
X/Z

)) = ĉd+1(Ω).

Theorem 2.2 follows from Propositions 3.1, 2.4, 2.5 and equation 2.3.

Proof of Proposition 3.1. We review the construction of the localized Chern class
via the Grassmannian graph construction (as described in [B] §1, or in [GS3] §1)
applied to the complex 0 → N

δ→ P with cokernel Ω1
X/Z

. Set U = X − XS .
Let p be the projection X×P1 → X. Set M := p∗N(1)⊕p∗P where (1) denotes
the Serre twist (which we view as tensoring with the pull-back of OP1(∞) under
X×P1 → P1). Let us consider the Grassmannian Gr(r, M) over X×P1 of rank
r = rk(N) local direct summands of M . Denote by π0 : Gr(r, M) → X ×P1 the
natural projection morphism. The diagonal embedding p∗N ⊂ p∗N(1) ⊕ p∗P
gives a section s of π0 over the subscheme (X × A1) ∪ (U × P1). In fact, over
X × A1 the image of p∗N can be identified with the graph of δ. Denote by W
the Zariski closure of the image

s((X × A1) ∪ (U × P1)) ⊂ Gr(r, M);

this is an integral subscheme of Gr(r, M) which is called the Grassmannian graph
of N → P . The morphism π := π0|W is projective and gives an isomorphism on
the generic fibers. Let W∞ be the effective Cartier divisor on W given by the
inverse image of X × {∞} under π. Also let X̃ be the Zariski closure in W∞ of
the restriction of the section s to U ×{∞}. Then π|X̃ : X̃ → X is birational (an
isomorphism over U). As in [GS3], we see that the cycle

Z = [W∞] − [X̃]

is supported in the inverse image of XS . Looking at supports, we have |W∞| =
|X̃| ∪ |Z|.
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Denote by ξ1 the universal subbundle of rank r on Gr(r, M) and by ξ0 the
“constant” bundle which is the base change of P under the (smooth) morphism
Gr(r, M) → X. The section s gives

sC : XC × P1
C = WC → Gr(r, M)C.

The pull-back of ξ0 under sC is p∗PC; the pull-back of ξ1 under sC is p∗NC.
Denote the restrictions ξ0|W , ξ1|W by ζ0, ζ1. Equip ζ0C, ζ1C with the hermitian
metrics which correspond to the hermitian metrics on p∗PC, p∗NC obtained via
base change from the metrics on PC, NC. We will denote by ζ̄1, ζ̄0 the vector
bundles ζ1, ζ0 on W endowed with the above hermitian metrics on WC. Set
ζ̄ = (ζ̄0, 0) − (ζ̄1, 0) ∈ K̂0(W ).

There is a natural morphism ξ1 → ξ0 obtained by the natural inclusion ξ1 ⊂
π∗

0M followed by the projection π∗
0M → ξ0 = π∗

0p∗P . After restricting to WC

this corresponds to the composition p∗NC → p∗PC.
Over XC we have the exact sequence

EC : 0 → NC → PC → Ω1
XC

→ 0.

This gives an exact sequence over XC × P1
C = WC:

p∗EC : 0 → p∗NC → p∗PC → p∗Ω1
XC

→ 0.

Consider A = (0, c̃h(p∗EC)) in K̂0(W ). Let us now define the elements

b = ĉd+1(ζ̄ + A) ∈ ĈH
d+1

(W )Q,

µ = π∗(b) ∈ ĈH
d+1

(X × P1)Q.

Lemma 3.2. The restrictions of µ to X × {0} and X × {∞} are equal.

Proof. By [GS2, Theorem 4.4.6] the restrictions are well defined and their dif-
ference is given by

a
( ∫

P1(C)

ω(µ) log |z|2
)

where ω and a are defined in [GS2, 3.3.4]; ω(µ) is a (d + 1, d + 1)-form on
(X × P1)(C) and the integral in the parenthesis gives a (d, d)-form on X(C).
Since π is an isomorphism on the generic fibers, by the definition of ζ̄ and A,
we can see that the form ω(µ) is obtained by pulling back via the projection
pC : X(C) × P1(C) → X(C) a (d + 1, d + 1)-form on X(C). It follows that∫

P1(C)

ω(µ) log |z|2 = 0

(the integral changes sign when z is replaced by 1/z).

Recall that the morphism π : W → X × P1 restricts to give a projective
morphism π|Z| : |Z| → XS ×∞ = XS . Here |Z| is the (reduced) support of Z.
Set ξ = ξ0 − ξ1 ∈ K0(Gr(r, M)) and denote by [Z] the fundamental cycle of Z
in CHd+1(|Z|).
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Lemma 3.3. (a) The restriction of µ to X × {0} is equal to ĉd+1(Ω);
(b) The restriction of the class µ to X × {∞} is equal to the image of

π
|Z|
∗ (cd+1(ξ||Z|) ∩ [Z]) ∈ CH0(XS)Q under zS.

Before we continue with the proof, let us point out that since by definition
cXS

d+1(Ω
1
X/Z

) = cX
d+1,XS

(Ω1
X/Z

) ∩ [X] = π
|Z|
∗ (cd+1(ξ||Z|) ∩ [Z]), Lemmas 3.2 and

3.3 together imply the proof of Proposition 3.1.

Proof. Part (a) is straightforward; indeed ξ̄0 restricts to give P̄ , ξ̄1 gives N̄ and
A gives (0, c̃h(EC)).

Let us show part (b). Recall W is integral of dimension d + 2, W∞ is an
effective Cartier divisor in W and we have [W∞] = Z + [X̃]. Denote by |W∞|
the reduced support of W∞ in W . Since π|W∞| : |W∞| → X × {∞} = X is a
projective morphism which is an isomorphism on the generic fiber,

π
|W∞|
∗ : ĈH

d+1
(|W∞|)Q → ĈH

d+1
(X)Q

is well-defined. Also, since i : W∞ → W is the inclusion of an effective Cartier
divisor with smooth generic fiber, the pull-back i∗(b) makes sense in

ĈH
d+1

(W∞)Q = ĈH
d+1

(|W∞|)Q = ĈH0(|W∞|)Q,

and we have
µ|X×{∞} = π∗(b)|X×{∞} = π

|W∞|
∗ (i∗(b)).

(see for example [GS3, 2.2.7]).
In what follows, we will calculate i∗(b). For simplicity set G = Gr(r, M).

Equip the bundles ξ1, ξ0 on G with hermitian metrics and set

ξ̄ = (ξ̄0, 0) − (ξ̄1, 0) ∈ K̂0(G).

Consider B = ĉd+1(ξ̄) in ĈH
d+1

(G) and B|W = ĉd+1(ξ̄|W ) in ĈH
d+1

(W ). Note
that ξ̄|W ∈ K̂0(W ) need not agree with ζ̄ because the metrics might not agree.
In any case, we can write

B|W − ĉd+1(ζ̄ + A) = a(η)(3.4)

with η a (d, d)-form on W (C). The pull-back i∗(B|W ) is the d + 1-st arithmetic
Chern class of the restriction of the bundle ξ̄0 − ξ̄1 to W∞. We have

i∗(b) = i∗(B|W ) − a(i∗C(η)).(3.5)

By [GS3, Theorem 4 (1)], i∗(B|W ) = B ·j [W∞] in

ĈH
d+1

(|W∞|)Q = ĈH0(|W∞|)Q;

here j : |W∞| → G is the natural embedding and [W∞] ∈ ĈHd+1(|W∞|)Q is the
fundamental cycle of W∞ (the notations are as in loc.cit.). We may also consider
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[X̃] ∈ ĈHd+1(|W∞|)Q so that we have [W∞] = Z + [X̃] in ĈHd+1(|W∞|)Q. We
obtain

i∗(B|W ) = B ·j [W∞] = B ·j Z + B ·j [X̃].(3.6)

Denote by φ : |Z| → G and ψ : X̃ → G the natural immersions. By [GS3,
Theorem 3 (4)] the elements B ·j Z and B ·j [X̃] are the images of the elements
B ·φ Z and B ·ψ [X̃] of CH0(|Z|)Q and ĈH0(X̃)Q under the maps

CH0(|Z|)Q → ĈH0(|W∞|)Q

and
ĈH0(X̃)Q → ĈH0(|W∞|)Q

respectively. We have
B ·φ Z = cd+1(ξ||Z|) ∩ [Z]

and by [GS1, Theorem 4 (1)],

B ·ψ [X̃] = ĉd+1(ξ̄|X̃) ∩ [X̃] = ĉd+1(ξ̄|X̃)

in ĈH0(X̃)Q = ĈH
d+1

(X̃)Q (recall X̃ is integral of dimension d + 1).
Now subtract a(i∗C(η)) from both sides of 3.6. Using 3.5 and the above, we ob-

tain that i∗(b) can be written as a sum of the image of the class
ĉd+1(ξ̄|X̃) − a(i∗C(η)) under the map ĈH0(X̃)Q → ĈH0(|W∞|)Q plus the image

of cd+1(ξ||Z|) ∩ [Z] under CH0(|Z|)Q → ĈH0(|W∞|)Q. Since W∞ and X̃ have
the same generic fiber we can see from 3.4 that

ĉd+1(ξ̄|X̃) − a(i∗C(η)) = ĉd+1((ζ̄ + A)|X̃).

Hence, part (b) will follow if we show that ĉd+1((ζ̄ + A)|X̃) = 0.

Over X̃, there is an exact sequence of vector bundles

0 → ζ1|X̃ → ζ0|X̃ → Q → 0

with Q of rank d. We have X̃C = XC and, as we have seen before, there is an
isomorphism QC � Ω1

XC
which can be used to identify the above exact sequence

with EC. This implies that

((ζ̄0)|X̃ , 0) − ((ζ̄1)|X̃ , 0) + (0, c̃h(EC)) = (Q̄, 0)

in K̂0(X̃). Since A|X̃ = A|X×{∞} = (0, c̃h(EC)), this translates to

(ζ̄ + A)|X̃ = (Q̄, 0) in K̂0(X̃). Since d + 1 > rk(Q) = d, by [GS1, 4.9, p. 198],
ĉd+1((Q̄, 0)) = 0. Therefore, we obtain

ĉd+1((ζ̄ + A)|X̃) = 0.

This completes the proof of Lemma 3.3 and therefore also of Proposition 3.1.
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Remark. Let F̄ be a hermitian coherent sheaf on X. Suppose that Y ⊂ X
is a fibral closed subscheme and assume that F is locally free of rank m on
the complement X − Y . Let zi,Y : CHd+1−i(Y ) → ĈHd+1−i(X) be the natural
homomorphism. The same argument as in the proof above can be used to show
that for i > m,

zi,Y (cX
i,Y (F) ∩ [X]) = ĉi(F̄),

where cX
i,Y (F) is the localized Chern class of [B, §1].

4. Tame reduction

Here we show Theorem 1.3. Write I for an index set for the irreducible
components of the singular fibers of X → Spec(Z). If i ∈ I, we denote by Ti the
corresponding irreducible component and by mi its multiplicity in the divisor of
the corresponding special fiber. For a non-empty subset J of I, set

TJ = ∩i∈JTi

(scheme-theoretic intersection). Under our assumptions, TJ is either empty or a
smooth projective scheme of dimension d + 1− |J | over a finite field. The union
∪J �=⊂J′TJ′ is a divisor with strict normal crossings on TJ . We start with the
following proposition:

Proposition 4.1. With the assumptions of Theorem 1.3, we can consider the
sheaf of relative logarithmic differentials Ω1

X/Z
(log Xred

S / log S) (see below); it is
locally free of rank d on X. There is a morphism

ω : Ω1
X/Z → Ω1

X/Z(log Xred
S / log S),

whose kernel and cokernel are isomorphic to the kernel and cokernel of the mor-
phism

a : ⊕p∈SOX/pOX → ⊕i∈S OTi .

Proof. The statement is local on the base, and so to simplify notation we will
assume there is only one prime in S. We will use the logarithmic differentials
Ω1

X/Z
(log Xred

p ) defined in [K] §2. By definition,

Ω1
X/Z(log Xred

p ) := (Ω1
X/Z ⊕ (OX ⊗ j∗O∗

X[ 1p ]))/F ,

where j is the open immersion j : X[ 1p ] → X and F is the OX -subsheaf generated
by elements of the form (da, 0)− (0, a⊗ a) for a ∈ OX ∩ j∗O∗

X[ 1p ]
. We will write

the element a ⊗ b as a · d log(b). Notice that j∗O∗
X[ 1p ]

is the sheaf of elements
of the function field of X whose divisor has support contained in the special
fiber. By definition, Ω1

X/Z
(log Xred

S / log S) is the quotient of Ω1
X/Z

(log Xred
p ) by

the OX -subsheaf generated by d log(p). There is an exact sequence

OX/pOX
φ→ Ω1

X/Z(log Xred
p ) ω1→ Ω1

X/Z(log Xred
S / log S) → 0,
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where the homomorphism φ maps f to f · d log(p). There is also a natural exact
sequence

0 → Ω1
X/Z

ω2→ Ω1
X/Z(log Xred

p ) ⊕iResi→ ⊕iOTi → 0.(4.2)

Here the right hand homomorphism is given by taking residues along Ti. The
homomorphism ω is equal to the composition ω1 · ω2.

Under our assumptions, the scheme X is locally étale isomorphic to

Y = Spec(Z[t1, . . . , td]/(tm1
1 · · · tmd

d − p))

with all mi prime to p. The above constructions of logarithmic differentials etc.
make sense for the scheme Y ; we can see by an explicit calculation that φY is
injective and that the analogue of the sequence 4.2 for Y is exact. It follows
from the fact that taking (logarithmic) differentials commutes with étale base
change that φ is injective and that the sequence 4.2 is exact. On Y we have
tm1
1 · · · tmd

d = p and so

d log(p) = m1
dt1
t1

+ · · · + md
dtd
td

.

This shows that for f ∈ OY /pOY , φY (f) gives an element in the kernel of ω if and
only if f ∈ (t1 · · · td); this translates to a(f) = 0. Furthermore, f · d log(p) = 0 if
and only if f = 0 in OY /pOY . This shows the statement about the kernels for X.
Let us now discuss the cokernels: Let β : ⊕iOTi → ⊕iOTi be the automorphism
defined by β((fi)i) = (mifi)i (recall that all the mi are prime to p). The above
calculation on Y implies that the composition

OX/pOX
φ→ Ω1

X/Z(log Xred
p ) ⊕iResi→ ⊕iOTi

coincides with f �→ (m1f, · · · , mdf). The residue homomorphism Res = ⊕iResi

now gives a surjection:

Ω1
X/Z(log Xred

S / log S)
β−1·Res→ coker(a) → 0

and we have ker(β−1 · Res) = ker(Res) = ω(Ω1
X/Z

). This implies coker(ω) �
coker(a).

Let KXS
0 (X) be the Grothendieck group of complexes of locally free OX -

sheaves which are exact off XS ; since X is regular, KXS
0 (X) can be identified

with K ′
0(XS). Set q =

∏
p∈S p. Consider the following complexes of locally free

OX -sheaves which are exact off XS :

E1 : N
δ→ P → Ω1

X/Z(log Xred
S / log S)

E2 : OX
(q,−q)→ OX ⊕ (⊕iOX(−Ti)) → ⊕i OX

concentrated in degrees −1, 0, 1. The second homomorphism of E1 is the com-
position of P → Ω1

X/Z
with ω; the second homomorphism of E2 is given by
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(g, (hi)i) �→ (g + hi)i. Proposition 4.1 implies that [E1] = [E2] in KXS
0 (X).

Consider also the complex

E3 : N
(δ,0)→ P ⊕ Ω1

X/Z(log Xred
S / log S)

(0,id)→ Ω1
X/Z(log Xred

S / log S)

concentrated in degrees −1, 0, 1. The complex E3 is quasi-isomorphic to the
complex N

δ→ P (in degrees −1 and 0). There is an exact sequence of complexes

0 → E1 → E3
pr→ Ω1

X/Z(log Xred
S / log S) → 0,

where on the right end, Ω1
X/Z

(log Xred
S / log S) is considered as a complex sup-

ported on degree 0. Therefore, the main result of [A] (see loc. cit. Proposition
1.4 also [B] Prop. 1.1) implies that

cXS

d+1(Ω
1
X/Z) =

∑
k+l=d+1

ck(Ω1
X/Z(log Xred

S / log S)) · cXS

l ([E1]).(4.3)

In fact, since [E1] = [E2] we can replace cXS

l ([E1]) by cXS

l ([E2]) in this equality.
We have

[E2] = [OX/qOX ] −
∑

i

[OTi
]

(here we identify KXS
0 (X) with K ′

0(XS)) and so

cXS

l ([E2]) = cXS

l ([OX/qOX ] +
∑

i

(−[OTi ])).(4.4)

We have cXS
1 ([OX/qOX ]) =

∑
i mi[Ti], cXS

l ([OX/qOX ]) = 0 for l > 1. Similarly,
cXS
1 (−[OTi ]) = −[Ti], cXS

l (−[OTi ]) = 0, for l > 1. Combining these with 4.4 we
obtain from the usual Chern class identities

cXS

l ([E2]) =
∑

J⊂I,|J|=l

(−1)|J|[TJ ] +
( ∑

i∈I

mi[Ti]
)( ∑

J′⊂I,|J′|=l−1

(−1)|J
′|[TJ′ ]

)
.

(4.5)

Now since
∑

i mi[Ti] is a principal divisor in X we get for l ≥ 2( ∑
i∈I

mi[Ti]
)( ∑

J′⊂I,|J′|=l−1

(−1)|J
′|[TJ′ ]

)
= 0 ∈ CH∗(XS).

Combining this with 4.3 and 4.5 we get

cXS

d+1(Ω
1
X/Z) =

∑
i∈I

(mi − 1)cd(Ω1
X/Z(log Xred

S / log S)) · [Ti] +(4.6)

+
∑

J⊂I,|J|≥2

(−1)|J|cd+1−|J|(Ω1
X/Z(log Xred

S / log S)) · [TJ ].
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Therefore

cXS

d+1(Ω
1
X/Z) =

∑
i∈I

(mi − 1)cd(Ω1
X/Z(log Xred

S / log S)|Ti
) +(4.7)

+
∑

J⊂I,|J|≥2

(−1)|J|cd+1−|J|(Ω1
X/Z(log Xred

S / log S)|TJ
).

Proposition 4.8. For a non-empty subset J of I, set T ∗
J = TJ − ∪J �=⊂J′TJ′ .

We have

deg(cd+1−|J|(Ω1
X/Z(log Xred

S / log S)|TJ
)) = (−1)d+1−|J|χc(T ∗

J ),

where χc(T ∗
J ) is the l-adic (l /∈ S) Euler characteristic with compact supports of

T ∗
J .

Proof. Denote by log Xred
p |TJ the logarithmic structure on TJ obtained by re-

stricting the logarithmic structure given by (X, Xred
p ) to TJ . This is isomorphic

to the logarithmic structure defined on TJ by its divisor with strict normal cross-
ings ∪J �=⊂J′TJ′ . We will show that

[Ω1
X/Z(log Xred

S / log S)|TJ
] = [Ω1

TJ/k(log Xred
p |TJ)] + (|J | − 1)[OTJ

](4.9)

in K0(TJ). The proposition will follow from 4.9 and the well-known fact (see for
example [S], p. 402) that

deg(cd+1−|J|(Ω1
TJ/k(log Xred

p |TJ))) = (−1)d+1−|J|χc(T ∗
J ).

From the proof of Proposition 4.1 there is an exact sequence

0 → OTi → Ω1
X/Z(log Xred

p )|Ti
→ Ω1

X/Z(log Xred
S / log S)|Ti

→ 0.(4.10)

By [K] §2 (see also [S], p. 404) there are also exact sequences

0 → Ω1
Ti/Fp

(log Xred
p |Ti) → Ω1

X/Z(log Xred
p )|Ti

→ OTi → 0,(4.11)

and for |J ′| = |J | + 1,

0 → Ω1
TJ′/Fp

(log Xred
p |TJ′) → Ω1

TJ/Fp
(log Xred

p |TJ)|TJ′ → OTJ′ → 0.(4.12)

We can now see that 4.9 follows by induction on the cardinality of J .

Proposition 4.8 and 4.7 give for p ∈ S:

deg((−1)d+1cXS

d+1(Ω
1
X/Z)|Xp

) = −
∑
i∈Ip

(mi − 1)χ∗
c(Ti) +

∑
J⊂Ip,|J|≥2

χ∗
c(TJ)(4.13)

= −
∑
i∈Ip

miχ
∗
c(Ti) + χ(Xp)

where Ip is the subset of I that corresponds to components over p.
Under our assumption, the ramification is tame (there is no Swan term in the

conductor) and for each p ∈ S,

χ(XQ) =
∑
i∈Ip

miχ
∗
c(Ti)
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(see for example [S], Cor. 2, p. 407). Therefore,

A(X) =
∏
p∈S

pχ(XQ)−χ(Xp) =
∏
p∈S

p
∑

imiχ
∗
c(Ti)−χ(Xp).

This together with 4.13 completes the proof of 1.3.
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