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INTEGRAL GEOMETRY ON SL(2; R)

Simon Gindikin

Abstract. We define a complex horospherical transform on the group SL(2; R)
which corresponds to the Plancherel formula on it.

Gelfand and Graev found that the computation of the Plancherel measure for
complex semisimple Lie groups or noncompact Riemannian symmetric spaces is
equivalent to a problem of geometrical analysis - the inversion of the horospher-
ical transform [GGr,GGrV]. Unfortunately, this result does not admit a direct
generalization on real semisimple Lie groups or, more generally, on semisim-
ple pseudo-Riemannian symmetric spaces: the horospherical transform for them
has a kernel, corresponding to the discrete series of representations. Gelfand
several times suggested the problem to find a version of the integral geometry,
corresponding to the harmonic analysis on real groups, starting with SL(2; R).
In this paper we develop such integral geometry on SL(2; R). The starting
idea is very simple. The desired integral geometry uses complex horospheres
in the SL(2; C)\SL(2; R) instead of real horospheres in SL(2; R) and Cauchy
kernels instead of δ-functions. This “complex” horospherical transform already
has no kernel and gives the ability to write the Plancherel formula, including
discrete series. Let us remark that a complex language is useful already for the
real Radon transform [Gi1]. Connections of representations of SL(2; R) with a
complex geometry of SL(2; C)\SL(2; R) was considered in [GGi] and our con-
siderations here in a sense develop the ideology of this paper (cf.also [Gi2]). I
hope that these results give a good chance to develop the integral geometry
on pseudo-Riemannian symmetric spaces, including real semisimple Lie groups,
which corresponds to the harmonic analysis on them.
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Complex geometry. Essentially we do not use the group structure of GC =
SL(2; C) of 2 × 2-matrices:

g =
(

α β
γ δ

)
, det g = 1

and consider it as the hyperboloid in C
4:

(1) �g = αδ − βγ = 1.

It is a (pseudo-Riemannian) symmetric space GC × GC/GC (relative to left and
right multiplications). The group GC × GC is locally isomorphic to SSO(2, 2).

Let the bilinear form g1 · g2 in C
4 be the polarization of the quadratic form

�g such that we can can rewrite (1) as

g · g = 1.

If det g2 = 1 then

g1 · g2 =
1
2

tr(g1g
−1
2 ).

Often in our computations we will transform the hyperboloid (1) in the hyper-
boloid

(1′) �z = z2
1 + z2

2 − z2
3 − z2

4 = 1,

replace correspondingly the form z · w and consider the action of the group
SO(2; 2), locally isomorphic to GC × GC.

Basic objects of integral geometry are horospheres. There are two alternative
types of horospheres which can be put in the base of the integral geometry on
SL(2; C): one-dimensional horocycles and two-dimensional horospheres. Let us
start from the description of horospheres. They are parameterized by the points
of the cone

(2) Ξ = {ζ;�ζ = ζ · ζ = αδ − βγ = 0, ζ �= 0}.

We have

(3) Ξ = GC × GC/C, ζ �→ g�1 ζg2,

where C is the direct product of Borelian (triangle) subgroups B with the joint
Cartan (diagonal) subgroups.

For ζ ∈ Ξ we define the horosphere Ω(ζ) (of the dimension 2) as the section
of the hyperboloid G (1) by the hyperplane

(4) ζ · g = 1, �ζ = 0.
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These sections are 2-dimensional hyperbolic paraboloids (of course in the com-
plex picture all quadrics are equivalent) .

Usually we will work with an extended family of horospheres Ξ̃. It includes
also “limit” horospheres Ω(ζ, 0) - sections of G by hyperplanes

ζ · g = 0, �ζ = 0.

These sections are cylinders. We can represent hyperplanes from the extended
family Ξ̃ as Ω(ζ, p):

(5) ζ · g = p, �ζ = 0;

(ζ, p) are homogeneous coordinates in Ξ̃. Of course, the extended space of horo-
spheres Ξ̃ is not homogeneous relative to the SO(2, 2)-action.

Let us define another (projective) set of coordinates on the manifold Ξ of
horospheres. Let U, V ∈ C

2 be realized as row-vectors. Then elements of Ξ can
be present as

ζ = U�V

and we can parameterize horospheres by triplets (U, V, p) such that

(λU, µV, λµp) ∼ (U, V, p), λ, µ ∈ R

and the action ζ �→ g�1 ζg2 corresponds to the action U �→ Ug1, V �→ V g2. We
will use affine coordinates for ζ in the coordinate chart

(6)
V1 = v, V2 = 1, U1 = λu, U2 = λ,

ζ(λ|u, v) =
(

λuv λu
λv λ

)
.

Correspondingly we will write Ω(ζ, p) = Ω(λ|u, v; p). In these coordinates GC ×
GC acts in the following way;

(7)

g�1 (λ|u, v)g2 = (λ̃|ũ, ṽ)

ũ = g1(u), ṽ = g2(v), g(u) =
αu + γ

βu + δ
,

λ̃ = λ(β1u + δ1)(β2v + δ2).

Horocycles are exactly the linear generators on the hyperboloid G (3-parametric
family). They have the form ω(ζ, a):

(8) g = a + tζ, �ζ = 0, ζ · a = 0.

The point a here is defined up to any multiple of ζ. Let Ξ′ be a set of horocycles;
as a homogeneous space Ξ′ = GC ×GC/C, where C is the product of two copies
of Borel subgroups B with the joint Cartan subgroups.
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The family Ξ′ of horocycles includes the unipotent subgroup Z =
(

1 t
0 1

)
and coincides with all its translations by elements GC × GC:

(9) ω[g1, g2] = g−1
1 Zg2.

It is possible to define a projective parameterization of Ξ′ similar to the param-
eterization of Ξ, but we give here only the affine parameterization, induced by
g1, g2 ∈ B� at (9): the horocycle ω[λ|u, v] consists of matrices

(10)
(

λ−1 + vt t
−λ−1u + λv − uvt λ − ut

)
.

The parameters (λ|u, v) here transform on formulas (7). We have the connections
between two parameterizations:

ω[λ|u, v] = ω(ζ, a), where ζ =
(

v 1
−uv −u

)
, a =

(
λ−1 0

−λ−1u + λv λ

)
.

Between horospheres and horocycles there is a simple connection of incidence.
Firstly, a limit horosphere Ω(ζ, 0) is the union of horocycles ω(ζ, a) with the
same ζ (let us remind that limit horospheres are cylinders). Limit horospheres
for nonproportional ζ do not intersect.

The horosphere Ω(ζ, p) contains a horocycle ω(ζ̃, a) if and only if

(11) ζ · ζ̃ = 0, ζ · a = p.

For a fixed ζ the first equation gives the section of the cone Ξ which is a pair
of 2-subspaces intersecting on the line {tζ}. If we are to consider ζ̃ as homo-
geneous coordinates, we have 2 lines, intersecting at ζ. If p �= 0 and ζ̃, ζ are
nonproportional, we can find an unique a ∈ G, up to a multiple of ζ̃, from (11)
and the condition ζ̃ · a = 0. Therefore the family of horocycles ω(ζ̃, a) on the
horosphere Ω(ζ, p), p �= 0, is parameterized by ζ̃ on the pair of affine lines, which
are obtained from the intersection of Ξ by the hyperplane in (11) and by the
removal of the point ζ. Let us recall that horospheres Ω(ζ, p), p �= 0, are hyper-
bolic paraboloids and they have 2 families of linear generators. Correspondingly,
horospheres Ω(ζ, p), containing a horocycle ω(ζ̃, a), are parameterized by points
of the pair of (projective) lines, intersecting in ζ̃ and defined by (11); the point
ζ̃ corresponds to the limit horosphere Ω(ζ̃, 0). In such a way we have the duality
between horospheres and horocycles.

In the integral geometry on SL(2; C) we consider the horospherical trans-
form: the integration either along horospheres or (more often) along horocycles
([GGrV]). These two versions of the horospherical transform have a very sim-
ple connection: in a sense 2-dimensional transform is the composition of the
1-dimensional one and the usual 2-dimensional (complex) Radon transform. For
both transforms there are explicit inversion formulas which can be transformed
in the Plancherel formula for the group SL(2; C), using the Mellin transform.
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Real geometry. Let us consider the real group (hyperboloid) GR = SL(2; R)
and the action of GR × GR on GC. Let g = x + iy. We have

(12) �x − �y = x · x − y · y = 1, x · y = 0.

On GC\GR we have a different kind of orbits which we will characterize by some
canonical representatives. There are five domains, corresponding to different
types of orbits for this action: the domains G± are the connect components of
the set {�y > 0}; the domain G0 is defined by the condition {�y < 0, �x > 0}
and the domains G1, G2 are the connect components of the set {�y < 0,�x <
0}.We give below descriptions of these domains on the language of canonical
representatives of orbits.

Elements of G± can be transform to the form:

(13)
(

λ iµ
−iµ λ

)
, λ2 − µ2 = 1, λ > 0, µ ≷ 0

correspondingly. Points of G0 can be transform to the canonical form:

(14)
(

λ + iµ 0
0 λ − iµ

)
, λ2 + µ2 = 1

and points of G1, G2 to the form:

(15)
(

λ iµ
iµ −λ

)
, λ2 − µ2 = −1, λ > 0, µ ≷ 0.

The first three domains are tubes with GR as the edge; G± are Stein manifolds
(in [GGi] was shown that they are equivalent Zarisky open parts in Siegel half-
planes); G0 is 1-pseudoconcave. The boundaries of the domains G1, G2 do not
intersect GR and as a result these domains are not essential for our considera-
tions.

In the coordinates (1′) we can take

(13′) z = (λ, iµ, 0, 0), λ2 − µ2 = 1, λ > 0, µ ≷ 0

as representatives of G±,

(14′) z = (λ, 0, iµ, 0), λ2 + µ2 = 1

as representatives of G0, and

(15′) z = (0, 0, λ, iµ), λ2 − µ2 = −1, λ > 0, µ ≷ 0

as representatives of G1, G2.
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Complex horospheres in the real picture. Our principal geometrical prob-
lem is to find complex horospheres without real points (which do not intersect
GR). We consider complex horospheres (including limit ones) Ω(ζ, p) (5). It is
sufficient to consider p = 0, 1. Let ζ = ξ + iη. Then

(16) �ξ = �η = 0, ξ · η = 0.

Proposition. Complex horosphere Ω(ζ, p) has no real points in three situa-
tions:

(i) �ξ − |p|2 > 0;
(ii) �ξ = 0, η = 0,
p �= 0;
(iii) �ξ = �η = 0, p = 0, ξ �= rη, r �= 0.

Proof. We will use the representation (1′) and we are interesting when (5) has
no solutions z = x,�x = 1,
z = 0.

Let �ξ > 0, p = 1. Then we can transform ξ to the form ξ = (λ, 0, 0, 0), λ > 0,
η to the form η = (0,±λ, 0, 0). It must be ξ · x = 1, η · x = 0, therefore
x1 = λ−1, x2 = 0, x2

3 + x2
4 = −1 + λ−2. So we have a real solution if and only if

λ > 1 what corresponds in this case to (i).
If �ξ > 0, p = 0, then for similar reasons we take ζ = (λ,±iλ, 0, 0) and it

must be that x1 = x2 = 0 and we have no solutions since we have the condition
x2

3 + x2
4 = −1.

If �ξ < 0, then we can transform ζ to ζ = (0, 0, λ, iλ) and for both p = 0, 1
we can find real solutions x.

Let �ξ = �η = 0. If η = 0,
p = 0, we have a real horosphere on GR. If
η = 0,
p �= 0, the horospheres apparently have no real points. If η �= 0, we can
suppose, that η = (a, 0, a, 0), a �= 0, and then on (16) we have ξ = (b, c, b,±c).
For a solution x with p = 1 we have x1 = x3, c(x2 ∓ x4) = 1 and solutions exist
if and only if c �= 0. If c = 0 we can to change parameters such that η = 0. So
we obtain a condition equivalent to (ii).

If p = 0 and c �= 0, then again x1 = x3 and either x2 = x4 or x2 = −x4. In
both cases we have �x = 0 and we obtain the contradiction with �x = 1. So
these horospheres have no real points and we obtain the condition (iii). �

The set of parameters of horospheres satisfying condition (i) of Proposition
has two connected components Ξ±. Let us describe them in the coordinates (6).
Let p = 1 and then Ξ± will be the sets of ζ ∈ Ξ, equivalent to (λ,±iλ, 0, 0), λ > 1,
correspondingly. In matrix coordinates (1) such points have representatives

(17) ζ(λ| ± i,∓i) =
(

λ ±iλ
∓iλ λ

)
, λ ∈ R, λ > 1

and we need to describe the union of corresponding orbits of GR×GR (7). Let us
start of Ξ+. Points u = i, v = −i have the joint isotropy subgroup of orthogonal
matrices g. As the result of its action we have ζ(λ̃|i,−i), λ̃ ∈ C, |λ̃| > 1. The
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translation which transforms (i,−i) in (u, v),
u > 0,
v < 0, transforms λ̃ in
λ with |λ| = |λ̃|(−
u
v)−1/2. Then we obtain ζ(λ|u, v) with (−
u
v)|λ|2 >
1,
u > 0,
v < 0. Correspondingly, for Ξ− we have 
u < 0,
v > 0. For p �= 1
we obtain the description of Ξ±:

(18) (−
u
v)|λ|2 > |p|2, 
(±u) > 0,
(∓v) > 0.

Apparently, this description is correct also for p = 0.
The set of parameters of horospheres satisfying to (ii) we will denote through

Ξ0: we can take for them real ζ = ξ and nonreal p. Horospheres, satisfying to
(iii), will not participate in our results and we do not introduce a notation for
this set (it lies on the boundary of Ξ±).

In the relation to horocycles in the real picture we will consider only horocycles
ω(ξ, a), where ξ is real. We will distinguish three types of such horocycles. Let
us remark that a in their parameterization are unique up to the addition of
an multiple of ξ: ã = a + cξ. We will say that the horocycle has the real
(imaginary) type if it is possible to choose real (imaginary) a (such that if �a
(correspondingly 
a) is proportional to ξ). In other cases we will say that we
have a generic horocycle.

Connection between horospheres, horocycles and domains in the real
picture. Let G∓ be the supplements to the closure of G± correspondingly.

Proposition. (i)The domains G± coincide with the unions of horospheres Ω(ζ, p),
(ζ, p) ∈ Ξ±.

(ii) The domain G0 coincides with the union of generic horocycles ω(ξ, a).
The union of such horocycles of real (imaginary) type coincides with the part of
the boundary of G0 where �y = 0,�x = 1 (correspondingly �x = 0,�y = −1).

Proof. (i)We will work in the representation (1′). The basic thing which we
need to proof is that the horospheres Ω(ζ, p), (ζ, p) ∈ Ξ−, do not pass through
points of G+. We can reformulate it the following way. Let Π be the set of
such ζ,�ζ = 0, that �ξ = 1. They can be transformed to one of 2 canonical
forms (1,±i, 0, 0). Correspondingly, the set Π has 2 components Π±. We need
to prove that

(19) |ζ · z| > 1 for ζ ∈ Π−, z ∈ G+.

By virtue of invariance, it is enough to prove for ζ = (1,−i, 0, 0):

(19′) |z1 − iz2| > 1 for z ∈ G+.

We have |z1−iz2|2 = (x1+y2)2+(y1−x2)2 = (x2
1+x2

2)+(y2
1+y2

2)+(x1y2−x2y1).
As far as z ∈ G+, then �y > 0 and (y2

1 + y2
2) > 0; �x > 1 and (x2

1 + x2
2) > 1.

Therefore it is sufficient to check that

(19′′) (x1y2 − x2y1) > 0 on G+.
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Let us verify that this expression can not be zero on G+. If x̃ = (−x2, x1, 0, 0) (we
have in (19′′) x̃ ·y), then �x̃ > 1, since �x > 1; x̃ ·x = 0 . Suppose that x̃ ·y = 0.
Together with the condition x · y = 0 (on the definition) it gives y = 0. Indeed,
using the invariance, we can suppose x = (a, 0, 0, 0), x̃ = (0, b, 0, 0), a �= 0, b �= 0,
and it must be y1 = y2 = 0 and which is a contradiction to the condition �y > 0.
Thus x̃ · y conserves a sign on G+ and therefore positive since it is positive for
canonical elements (13′) in G+.

It remains to check, that for almost every element of G− there is a horosphere
with parameters in Ξ− , which passes through it. It is sufficient to consider
the canonical representatives of G−, G0, G1, G2 of (13′) - (15′) and to find such
ζ ∈ Π− that |ζ · z| < 1. In all cases ζ = (1,−i, 0, 0) satisfies to this condition.

Remark. Horospheres Ω(ζ, 1), ζ ∈ Π, are supporting ones for the real hyper-
boloid GR. Moreover, they intersect the hyperboloid only in one point x = ξ. It
is sufficient to consider ζ = (1,±i, 0, 0). Then for the intersection points must
be true that x1 = 1, x2 = 0 and on GR there is only one point – (1,0,0,0) – with
this condition. Supporting horospheres in each point of GR are parameterized by
points of a 2-dimensional hyperboloid of 2 sheets. They will play an important
role in our considerations.

(ii) The basic fact is that there is no points z with �(
z) > 0 on limit
horospheres Ω(ξ, 0) with a real ξ. Indeed, let ξ · z = 0, z = x + iy,�y > 0.
Using the invariance, we can consider only ξ = (1, 0, 1, 0). Then z1 = z3 and
z2
2 − z2

4 = 1. So

(20) x2
2 − x2

4 − y2
2 + y2

4 = 1, x2y2 − x4y4 = 0.

Let �y > 0. By the action of a transform, conserving ξ, we can obtain y with
y4 = 0, y2 �= 0. Then x2 = 0 and we obtain the nonrealizable condition:−x2

4 −
y2
2 = 1.

If �y = 0, then x2
2−x2

4 = 1 and we can transform x to the case x4 = 0, x2 = ±1
in (20). Then y2 = 0, y4 = 0, y = cξ and such points lie on horocycles ω(ξ, a)
with real a. On the other side, 
z = cξ on horocycles of real type and hence
�y = 0. Each point z with �y = 0 can be transform in the point (1, iλ, iλ, 0),
which lies on the horocycle ω(ξ, a) with a = (1, 0, 0, 0), ξ = (0, 1, 1, 0) of real
type. Such a way we connect a part of the boundary of G0, where �y = 0, with
horocycles of real type.

For other types of horocycles �y < 0. Then in the same notation as in (20)
we can suppose that y4 �= 0, y2 = 0 and as a result x4 = 0 and �x ≥ 0.

For our representatives the condition �x = 0 means that x2 = x4 = 0 and we
have a horocycle of imaginary type since �x = cξ. Again for points of any such
a horocycle we have �z = cξ,�x = 0. Points with conditions �x = 0,�y = −1
can be transform in points (0, λ, λ, i) which lie on horocycles of imaginary type
with ξ = (0, 1, 1, 0), a = (0, 0, 0, i).

Finally, on generic horocycles we have �x > 0,�y < 0 hence they belong to
the domain G0. Since there is a generic horocycle ω(ξ, a) passing through the
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canonical point z = (0, λ, iµ, 0) (ξ = (1, 0, 0, 1), a = z), for any point of G0 there
is a passing generic horocycle. The proof is finished. �

Complex horospherical transform. Let us start our analytic constructions
from some notations. Let

dx = dx1 ∧ dx2 ∧ dx3 ∧ dx4

and

(21) µ(x, dx) = d(�x)�dx =
dx2 ∧ dx3 ∧ dx4

2x1

be the invariant measure on the hyperboloid GR (in the form (1′)). In our
formulas we denote through [a1, a2, . . . , ak] the determinant with the columns
a1, . . . , ak. Some of them can be columns of 1-forms and we use the cup-product
for the computing of the determinant. As a result a determinant with identical
columns of 1-forms can be different from zero. The important example of such
a determinant is the form Leray

(22) L(ξ, dξ) = [ξ, dξ, . . . , dξ], ξ ∈ R
k,

where the column dξ repeats (k − 1) times. This form plays an important role
in the projective analysis.

Let H be the set of horospheres Ω(ζ, p) without real points, H± be components
of the set horospheres satisfying to the condition (i) of Proposition and H0

corresponds to the condition (ii). For p = 1 we will identify these sets with Ξ±,Ξ0

correspondingly. For f(x) ∈ C∞
0 (GR) we define the (complex) horospherical

transform as

(23) f̂(ζ, p) =
∫

GR

f(x)
ζ · x − p

µ(dx), (ζ, p) ∈ H.

Since Ω(ζ, p) has no real points, this transform is well defined. Let f̂±, f̂0 be its
restrictions on H±,H0 correspondingly. The functions f̂± are holomorphic and
f̂0 is a CR-function.

Our principal result is the possibility to reconstruct f through the horospherical
transform f̂ . We will give an explicit formula for the reconstruction of f through
boundary values of f̂ . For each x ∈ GR we consider the sets Γ±(x) of horospheres
Ω(ζ, 1), lying on the boundaries of H±(Ξ±) and passing through x. As we saw
for them

(24) ζ = x + iη, x · η = 0, �η = 1.
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We use η as parameters and the conditions (24) defines a 2-dimensional hyper-
boloid of two sheets, giving Γ±(x). If x = (1, 0, 0, 0), then (24) means η1 = 0
and Γ±(x) are the sheets

(25) (η2)2 − (η3)2 − (η4)2 = 1, η2 ≷ 0.

Let us denote Lx(η̃, dη̃) the Leray form (22) on Γ±(x) on coordinates in which
� has the form (25) (for x = (1, 0, 0, 0) we take η̃ = (η2, η3, η4)).

Relative to the taking of boundary values, we remark that the horospheres
Ω(x + iη, 1 + ε), ε > 0, lies in H± and we take the boundary values as ε → 0
which exist as distributions since we have the singularity only in the point x:

(26) f̂±(x + iη, 1) = lim
ε→0

f̂±(x + iη, 1 + ε).

Correspondingly, we take as Γ0(x) the set of (real) horospheres Ω(ξ, 1), x ·ξ =
1. Let ξ = x + ξ̃, x · ξ̃ = 0. Then �ξ̃ = −1 and we have a hyperboloid of one
sheet. If x = (1, 0, 0, 0), then ξ̃1 = 0 and we have the hyperboloid of one sheet

(27) (ξ̃2)2 − (ξ̃3)2 − (ξ̃4)2 = −1.

We define Lx(ξ̃, dξ̃) as above. Let f̂0(ξ, 1) be the boundary values in the sense
of distributions:

(28) f̂0(x + ξ̃, 1) = lim
ε→0

(f̂0(x + ξ̃, 1 + iε), x · ξ̃ = 0, �(ξ̃) = −1.

We take here the limit of f̂ for horospheres of H0.
The horospherical transform f̂0(ξ, 1) has a natural connection with the real

horospherical transform

(29) Rf(ξ, p) =
∫

GR

f(x)δ(ξ · x − p)µ(x, dx), p ∈ R.

Namely,

f̂0(ξ, 1 + iε) =
∫ ∞

−∞

Rf(ξ, q)
q − 1 − iε

dq.

Now we can formulate the principal result.

Main Theorem. For f(x) ∈ C∞
0 (GR) there exists an inversion formula

(30)

f(x) = f+(x) + f−(x) + f0(x), x ∈ GR,

f±(x) =
1

4π3

∫
Γ±(x)

Lf̂±(x + iη, 1)L(η̃, dη̃),

f0(x) =
1

4(πi)3

∫
Γ0(x)

Lf̂0(x + ξ̃, 1)L(ξ̃, dξ̃),

L =
∂

∂p
+ p

∂2

∂p2
.

The proof of this theorem uses a version [Gi3] of the central construction of
integral geometry - the operator κ of Gelfand-Graev-Shapiro [GGrSh].
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Operator κ (the proof of Main Theorem). The operator κ acts from func-
tions on GR to differential 2-forms on GR × C

4
ζ :

(31) κf [x] =
f(u)

(ζ · (u − x))3
µ(u, du) ∧ [u + x, ζ, dζ, dζ], �x = �u = 1,

where x is a fixed point of GR and we write the coordinates of u+x as a column
in the determinant. It is a general construction for arbitrary quadrics [Gi1, Gi3].
It plays a role of the decomposition of δ-function on plane waves for the case of
quadrics. The basic result is

Proposition. The form κf [x] is closed.

The proof is a direct consequence of the differentiation formula

(32) d[a(ξ), ξ, dξ, . . . , dξ] = (
∑

ξj∂aj/∂ξj)L(ξ, dξ),

where a(ξ) is a column of homogeneous functions aj(ξ) of the degree −k. The
proof of this formula is a direct calculation involving the Euler formula for ho-
mogeneous functions (cf. [Gi3]). Relative to u we have the form of the maximal
degree, so we only need to care about the differentiation on ζ. We include the
factor (ξ · (u − x))−3 in the first column and after the application of (32) we
obtain the factor �u − �x = 0.

The form κ is the basic tool to obtain new inversion formulas from simplest
ones. We integrate the form κf [x] on GR ×Γ, where Γ is a cycle in ζ-space. We
show that for a cycle Γ this integral coincides with the Radon inversion formula
and gives cf(x). Then we deformate this cycle in the cycle of horospheres and
through the virtue of the closeness of κ it gives us the inversion of the horo-
spherical transform. It is essential that we realize this deformation in complex
parameters.

To be more exact, we extend the set H of horospheres Ω(ζ, p) without real
points up to set H̃ of all sections L(ζ, p) of G by hyperplanes

ζ · z = p

without real points and also consider sections, corresponding to boundary pa-
rameters (ζ, p) ∈ ∂H̃. For (ζ, p) ∈ H̃ we define f̂(ζ, p) by the formula (23) and
then take the boundary values on holomorphic parameters. Thus all real pairs
(ξ, p) correspond to “boundary” sections and we define f̂ for them as in (28).

Let us put in (31) ζ · x = p and integrate it in the beginning on u ∈ GR.
This integral has a sense if (ζ, p) ∈ H̃ and gives a 2-form F (p; ζ, dζ), which can
be expressed through f̂(ζ, p) by a differential operator of 2-nd order, which can
be written down explicitly [Gi1, Gi3](but we do not need this expression in the
general case). It is important that this form is also closed.
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Then we substitute p = ζ ·x and integrate the result on different cycles Γ in ζ-
variables. In this situation we cannot find cycles with the condition (ζ, ζ ·x) ∈ H̃,
but we can find cycles with the condition (ζ, ζ · x) ∈ ∂H̃.

Firstly, we can take cycles with real ζ = ξ and f̂(ξ, p + i0). Let us take
as the cycle Γ0(x) any cycle homological to the unit sphere in the hyperplane
{ξ;x·ξ = 0} (the integrals for all such cycles will coincide in view of the closeness
of κ). Then

(33)
∫

GR×Γ0(x)

κf = 4(πi)3f(x).

It is a simple consequence of the usual Radon inversion formula in the projective
form [GGiGr,Gi1].Namely if x = (1, 0, 0, 0), then on Γ0(x) we have ξ1 = 0 and
let ξ = (0, ξ̃), u = (u1, ũ). Hence on Γ0(x) the form κf coincides with

(u1 + 1)f(u)
(ξ̃ · ũ − i0)3

L(ξ̃, dξ̃).

Then (33) for even f coincides with the projective Radon inversion formula
(restricted on the hyperboloid) and for odd f with the same formula for the
u1f(u).

Let us deformate this cycle Γ0(x) in the cycle of horospheres Γ1(x) inside
H̃

⋃
∂H̃ and through the virtue of closeness of κ we will obtain the inversion

formula for the horospherical transform. We will describe this deformation for
x = (1, 0, 0, 0). Let ξ = (0, ξ̃ ∈ Γ0(x) and

q(ξ̃) =
√

(−�ξ̃),

where in the real case we take the positive evaluation of the root and in the
imaginary case we take the evaluation of the form ai, a > 0.

Let us

(34) ζ(ε) = (εq(ξ̃), ξ̃), p(ε) = εq(ξ̃), 0 ≤ ε ≤ 1,

and let Γε(x) be the cycle of the sections L(ζ(ε), p(ε).
All these sections lie in ∂H̃. Indeed we need verify it only for the imaginary q.

Then, for ε �= 0, L has only one intersection point x = (1, 0, 0, 0) with GR. The
proof is the same as above, when we consider the support planes Π±. If we
replace p(ε) on p(ε) + iδ, δ > 0, we obtain the section without real points. In
this way the integral of κf has the same value on any cycle Γε(x). For ε = 1 we
have the cycle Γ1(x) of horospheres: �(ζ(0)) = 0. It decomposes on three parts:
Γ0(x) corresponds to ξ̃ with �(ξ) < 0; Γ± correspond to 2 components of the
set {�(ξ̃) > 0. If q(ξ̃) �= 0 we can transform pairs (ζ(1), p(1)) to the form (ζ, 1).

The last step is a transformation of the determinant in κ. We have ζ1 = 1.
Replace the first row by the combination of all rows with the coefficients ζj .
Then in the first row only the first element will be different of zero and equal
ζ · u + 1. The whole determinant will be equal to (ζ · u + 1)L(ζ.dζ) and we
can see directly that the factor in κf before L(ζ̃, dζ̃) is exactly the result of the
application of the differential operator L to f̂ and it gives (30).
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Spherical Fourier transform (discrete series). The connection with rep-
resentations goes through the spherical Fourier transform. As we already men-
tioned the domains Σ± are invariant (but not homogeneous) relative to the group
GR×GR. It is very important that on these domains there is also a commutating
action of the circle T. In the coordinates (λ, u, v) (7) it is the multiplication of
λ on exp(iρ).

Let us consider f̂±(ζ) as f̂±(λ|u, v) which are holomorphic in the domains Ξ±
(18):

|λ|2 >
1

−
u
v
, 
(±u) > 0,
(∓v) > 0.

Let us decompose them in the Taylor series in these domains on λ:

(35) f̂±(λ|u, v) =
∑
k>0

f̃±(k|u, v)λ−k−1, |λ| > (−
u
v)−1/2.

Let us call functions f̃±(k|u, v) which are holomorphic in the products of two
half-planes by the discrete spherical Fourier transforms of f . As follows from
(7) the group GR × GR acts on them in the following way:

(36)
T k

(g1,g2)
f̃±(k|u, v) = f̃±(k|g1(u), g2(v))(β1u + δ1)−k−1(β2v + δ2)−k−1,


(±u) > 0,
(∓v) > 0.

We see that the group GR × GR acts on the discrete spherical Fourier trans-
form as the corresponding discrete (holomorphic and antiholomorphic) series of
representations of this group.

Now we will rewrite the inversion formula (30) for f± through the discrete
spherical Fourier transform. We need to start from the definition of the action
of the operator L (30). Let us pass from f̂±(λ|u, v) to f̂±(λ|u, v; p). We need to
replace in the series (35) λ−k−1 by λ−k−1pk, to apply the operator L (on p) and
put p = 1. We obtain

(37) Lf̂±(λ|u, v) =
∑
k>0

k2f̃±(k|u, v)λ−k−1, |λ| > (−
u
v)−1/2.

So the operator L corresponds in the spherical Fourier transform to the multi-
plication on k2.

The next step is to investigate the cycles Γ±(x) in (30) in the parameters
(λ, u, v). Let us work in the group coordinates (1) and let x = e - the unit
element. Then Γ±(e) consists of matrices(

1 + iη1 iη2

iη3 1 − iη1

)
, −η2

1 − η2η3 = 1, η2 ≶ 0.
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We put here on the matrix η the conditions of the orthogonality to e (the trace
is equal to 0) and we wrote down that the determinant is equal 1. So we have
the sheets of the two-sheeted hyperboloid. We have on Γ±(e), according to (6),

λ = 1 − iη1, u =
iη2

1 + (iη1)2
, v =

iη3

1 + (iη1)2
.

As the result

(38) v = − 1
u

, λ−1 =
1
2
(uv + 1) =

−u + u

2u
.

It corresponds to the parameterization of one sheet of the hyperboloid by
points of the upper (lower) half-plane. Thus we need to substitute these v and λ
in (37) and for summation of the series, since we have a point on the boundary of
the domain of convergence (|λ| = (−
u
v)−1/2), we need for the regularization
to include factors ρ−k−1, ρ > 1 and take the limit as ρ → 1. We need also
to express L(η̃, dη̃) through the parameters u (apparently it must be invariant
relative to SL(2; R)). Finally,

(39) f±(x) =
2
π3

∫
	u≶0

(∑
k>0

k2f̃±

(
k|u,− 1

u

) (−u + u

2u

)−k−1
)

du ∧ du

|u|2 .

Spherical Fourier transform (continuous series). Using f̂(ξ, 1), ξ ∈ ΞR,
we will define the continuous part of the spherical Fourier transform. Let us
express ξ in parameters (λ, u, v). Then the boundary values (ξ, 1 + i0) will
correspond to the λ− sign(λ)i0. The set ΞR is invariant relative to the action of
R

× on λ and this action commutates with the action of GR ×GR on Ξ0. Let us
decompose f̂(ξ) in the Mellin integral on λ:

(40) f̂0(λ|u, v) =
∫ ∞

0

f̃e(ρ|u, v)|λ|iρ−1dρ +
∫ ∞

0

f̃o(ρ|u, v)|λ|iρ−1 sign(λ)dρ.

We will call f̃e, f̃o by the continuous parts of the spherical Fourier trans-
form(its even and odd parts). It is clear that they transform relative to the
action of the group GR ×GR by the corresponding representations of the contin-
uous series of representations (cf.(36)).To reproduce the inversion formula (30)
for f0 using the spherical Fourier transform we need to remark that the operator
L corresponds to the multiplication of f̃ on −ρ2.

The computations are similar to the discrete part and we will not reproduce
them in all details. We give formulas for the reconstruction in the point e ∈ GR.
In this case(in the group parameters) the cycle Γ0(e) consists of matrices
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(
1 + ξ1 ξ2

ξ3 1 − ξ1

)
, ξ2

1 + ξ2ξ3 = 1.

It is a hyperboloid of one sheet. Correspondingly, we have

u =
ξ2

1 − ξ1
, v =

ξ3

1 − ξ1
, λ = 1 − ξ1.

The pair u, v ∈ R is the usual parameterization on the hyperboloid Γ0(e).Eventualy
we transform the corresponding part of (30) in

(41)

f0(e) =
2

(πi)3

{ ∫ ∞

0

∫ ∞

−∞

∫ ∞

0

∫ ∞

−∞
ρ2f̃e(ρ|u, v)

∣∣∣∣uv + 1
2

∣∣∣∣
iρ−1

× (u − v)(uv − 1)
(uv + 1)3

dρ ∧ du ∧ dv

+
∫ ∞

0

∫ ∞

−∞

∫ ∞

0

∫ ∞

−∞
ρ2f̃o(ρ|u, v)

∣∣∣∣uv + 1
2

∣∣∣∣
iρ−1

sign
(

uv + 1
2

)

× (u − v)(uv − 1)
(uv + 1)3

dρ ∧ du ∧ dv

}
.

Remarks.
(1) If instead of horospheres we consider horocycles we will have essentially

different formulas not only for the horospherical transform but also for
the corresponding spherical Fourier transform (in the continuous part we
will have the inversion formula which includes ρ tanh ρ instead ρ2). We
will give these formulas in the next publication.

(2) In the next paper we will give several applications: Plancherel formula,
models of series, descriptions of projections on series f �→ f±, f0 on the
language of complex analysis.
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