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POLYNOMIALS AND ENTIRE FUNCTIONS: ZEROS AND
GEOMETRY OF THE UNIT BALL

Konstantin M. Dyakonov

Abstract. We characterize the extreme and exposed points of the unit ball in
certain L1-spaces of polynomials and entire functions.

1. Introduction

Given a Banach space X, we write b(X) for its unit ball:

b(X) := {x ∈ X : ‖x‖ ≤ 1} .

As usual, an element x ∈ b (X) is said to be an extreme point of b(X) if it is
not a proper convex combination of two distinct points in b (X). Further, an x
in b(X) is called an exposed point of b(X) if there exists a functional Φ ∈ X∗

such that ‖Φ‖ = 1 and the set {y ∈ b(X) : Φ(y) = 1} consists of precisely one
element, x. Of course, every exposed point is extreme, and every extreme point
is of norm one.

In this paper, we determine the extreme and exposed points of the unit ball
in the following spaces:

• the space Pn(T) of all (analytic) polynomials p of degree ≤ n, living on
the circle T := {z ∈ C : |z| = 1} and endowed with the L1-norm

‖p‖1,T :=
1
2π

∫
T

|p(z)| |dz|,

• the space Pn(K) of all polynomials p of degree ≤ n, living on a reasonable
subset K of the real line R, with norm

‖p‖1,K :=
∫

K

|p(x)|dx,

• the space E1
a of all entire functions f : C → C of exponential type ≤ a

satisfying

‖f‖1,R :=
∫

R

|f(x)|dx < ∞.

Before describing our results, let us take a look at two other classical spaces.
The first is L1 itself (say, with respect to Lebesgue measure living on some subset
of R

d). It is well known that b(L1) has no extreme points, and hence a fortiori
no exposed points. Next, consider the Hardy space H1 (on T or on R). This

Received January 20, 2000.

393



394 KONSTANTIN M. DYAKONOV

time, the extreme points turn out to be the unit-norm outer functions (see [2]
or [6, pp. 157–158]), whereas the exposed points of b(H1) seem to admit no
nice characterization at all (see, however, [11] for some partial results). Now,
when passing from H1-functions to polynomials or to entire functions in E1

a , we
actually replace the semiboundedness condition on the spectrum (i.e., on the
support of the Fourier transform) by a boundedness condition. This done, the
exposed points become far less mysterious, as we are going to show.

The rest of the paper is organized as follows. In Section 2 below, we state a
preliminary lemma on extreme and exposed points in subspaces of L1. Then we
proceed by solving the problem for each of the three spaces in question; this is
done in Sections 3, 4, and 5. Basically, our treatment of the three spaces follows
the same pattern; however, each case has its own specific features. In particular,
Pn(K) differs from Pn(T) in that K may have ”endpoints” (in the appropri-
ate sense), while T has none; the role of these becomes apparent in Section 4.
Further, moving on to entire functions, we have to face a new difficulty which
stems from the fact that there are nontrivial entire functions of exponential type
0 (while the only polynomials of degree 0 are constants). The resulting compli-
cation manifests itself in Theorem 3(B) and is discussed at length in Section 6.
That last section also contains some other remarks and a question.

2. Preliminaries

The following (known) result will be frequently used in the sequel. When
stating it, we write L∞

R
for the set of real-valued functions in L∞.

Lemma 1. Let (S, µ) be a measure space, and X a closed subspace of L1(S, µ).
Suppose f ∈ X is a function with ‖f‖1 :=

∫
S
|f |dµ = 1 that vanishes on no set

of positive measure. Then

(A) f is an extreme point of b(X) if and only if every function h ∈ L∞
R

(S, µ)
satisfying fh ∈ X is a.e. constant.

(B) f is an exposed point of b(X) if and only if every nonnegative measurable
function h on S satisfying fh ∈ X is a.e. constant.

Sketch of the Proof. For part (A), we refer to [5, Chap. V, Sect. 9], where the
required fact is established for X = H1; the general case is completely similar.

To prove (B), take a Φ ∈ X∗ with ‖Φ‖ = 1. The Hahn–Banach theorem
yields

Φ(g) =
∫

S

ϕg dµ, g ∈ X,

for some ϕ ∈ L∞(S, µ) with ‖ϕ‖∞ = 1. Therefore, the equality Φ(g) = 1 occurs
for g ∈ b(X) if and only if ‖g‖1 = 1 and ϕg = |g| almost everywhere. Combining
this with the definition of an exposed point leads to the desired conclusion.

We also refer to [2, p. 478], where the above reasoning is applied to the case
X = H1 (without actually using any specific facts about H1).
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Besides, we need the notation Z(f) for the zero-set of an entire function f ;
multiple zeros are included in several copies, according to their multiplicities. In
particular, if p is a polynomial of degree m, then Z(p) is the m-tuple of its zeros.

3. Polynomials on the circle

Theorem 1. Let

p(z) = c0 + c1z + ... + cnzn(1)

be a polynomial with ‖p‖1,T = 1. Then

(A) p is an extreme point of b (Pn(T)) if and only if the following two conditions
hold:

(i.1) |c0| + |cn| 
= 0,
(ii.1) p has no pair of symmetric zeros with respect to T.

(B) p is an exposed point of b (Pn(T)) if and only if p satisfies (i.1), (ii.1), and
(iii.1) the zeros of p lying on T (if any) are all simple.

We emphasize that the pairs in (ii.1) are nondegenerate pairs consisting of
two distinct points (the same applies to conditions (ii.2) and (ii.3) below), so
that multiple zeros on T are allowed in (ii.1). Now (ii.1) and (iii.1) together
forbid both degenerate and nondegenerate pairs of symmetric zeros.

Proof. (A) If c0 = 0 and cn = 0, then both zp and zp (= p/z) are in Pn(T),
whence p · �z ∈ Pn(T). Similarly, if p(a) = p(1/a) = 0 for some a ∈ D\{0}
(here D is the open unit disk) then, setting b(z) := (z − a)/(1 − az), we have
pb ∈ Pn(T) and pb (= p/b) ∈ Pn(T), whence p · �b ∈ Pn(T). The functions �z
and �b being real and bounded on T, an application of Lemma 1(A) shows that
(i.1) and (ii.1) are necessary for p to be an extreme point.

Conversely, let (i.1) and (ii.1) hold. Suppose h ∈ L∞
R

(T) is a function such
that q := ph is a polynomial of degree ≤ n. Set

p∗(z) := znp(1/z),

so that
p∗(z) = cn + cn−1z + ... + c0z

n,

and let q∗ be similarly built from q. Since h is real-valued, we have

h =
q

p
=

q

p
=

q∗

p∗
(2)

a.e. on T. In particular,

pq∗ = p∗q(3)

a.e. on T, and hence everywhere in C (indeed, both sides of (3) are polynomials).
Now, since conditions (i.1) and (ii.1) together mean that p and p∗ have no
common zeros in C \ T, it follows from (3) that

Z(p) \ T ⊂ Z(q).(4)
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In fact, we also have Z(p) ∩ T ⊂ Z(q), since otherwise the ratio h = q/p would
not be essentially bounded on T. Thus,

Z(p) ⊂ Z(q).(5)

Similarly, we infer from (2) and (3) that

Z(p∗) ⊂ Z(q∗).(6)

(To keep on the safe side, we recall that multiplicities are taken into account in
all of the above inclusions between zero-sets.)

Assume for the moment that cn 
= 0. Then the degree of p equals n, and
since the degree of q is no larger, we deduce from (5) that Z(p) = Z(q) and
q/p = const. Otherwise, we have cn = 0 and (i.1) gives c0 
= 0, so that p∗

has degree n. The degree of q∗ being ≤ n, we then invoke (6) to find that
q∗/p∗ = const.

Recalling (2), we eventually conclude, in both cases, that h = const. Now
Lemma 1(A) convinces us that p is an extreme point.

(B) Since every exposed point is extreme, (i.1) and (ii.1) are necessary for p
to be exposed in b (Pn(T)). Now if ζ0 ∈ T were a multiple zero for p (here and
below, multiple means of multiplicity ≥ 2), then

h0(z) := −
(

z + ζ0

z − ζ0

)2

, z ∈ T \ {ζ0},

would be a nonnegative function with the property that ph0 ∈ Pn(T). Therefore,
by Lemma 1(B), condition (iii.1) is also necessary.

Conversely, let (i.1), (ii.1) and (iii.1) hold, and assume h ≥ 0 is a (measurable)
function on T such that q := ph ∈ Pn(T). As before, we have then (2), (3) and
(4) at our disposal: indeed, these were deduced above from (i.1), (ii.1) and
the mere fact that h is real-valued. It follows that the rational function q/p is
analytic on C\T, while by (iii.1) it has at worst several simple poles on T. This in
turn implies that q/p belongs to the Hardy space H1−ε of the disk D, whenever
0 < ε < 1; in particular, q/p ∈ H1/2. Since positive H1/2-functions are constant
(see, e.g., [6, Exercise 13(c) in Chap. II]), we conclude that h = q/p = const. In
view of Lemma 1(B), this completes the proof.

4. Polynomials on subsets of the real line

Given a measurable set K ⊂ R, we put

K∗ := {x ∈ R : |K ∩ (x − ε, x + ε)| > 0 for all ε > 0} ,

where | · | denotes length. Further, we define K0 as the set of those x ∈ K∗

which have the following property: there is a δ = δ(x) > 0 such that either
|K ∩ (x − δ, x)| = 0 or |K ∩ (x, x + δ)| = 0. We say that K is essentially bounded
if K∗ is bounded.

Theorem 2. Let K be an essentially bounded subset of R, and suppose p is a
polynomial of the form (1) with ‖p‖1,K = 1. Then
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(A) p is an extreme point of b (Pn(K)) if and only if the following three condi-
tions hold:

(i.2) cn 
= 0,
(ii.2) p has no pair of symmetric zeros with respect to R,
(iii.2) the real zeros of p (if any) are all contained in K∗.

(B) p is an exposed point of b (Pn(K)) if and only if it satisfies (i.2), (ii.2), and
(iii.2) in conjunction with

(iv.2) p(x) 
= 0 whenever x ∈ K0, and
(v.2) the real zeros of p (if any) are all simple.

Proof. (A) If (i.2) fails (i.e., if cn = 0), then xp(x) ∈ Pn(K). Next, if (ii.2)
fails (i.e., if p(w) = p(w) = 0 for some w ∈ C \ R), then we put bw(x) :=
(x − w)/(x − w) and notice that both pbw and pbw are in Pn(K); hence also
p · �bw ∈ Pn(K). Finally, if (iii.2) fails, then p(γ) = 0 for some γ ∈ R \K∗, and
so p(x) · (x − γ)−1 ∈ Pn(K). The functions h1(x) := x, h2(x) := �bw(x) and
h3(x) := (x − γ)−1 being real, nonconstant and essentially bounded on K, we
see (in light of Lemma 1) that (i.2), (ii.2) and (iii.2) are necessary for p to be
extreme in b (Pn(K)).

Conversely, suppose (i.2), (ii.2) and (iii.2) hold. Assume furthermore that
q := ph ∈ Pn(K) for some h ∈ L∞

R
(K). Consider the polynomials

p∗(z) := p(z) and q∗(z) := q(z).

As in the proof of Theorem 1, we arrive at (2) and (3) (with the new p∗ and q∗

plugged in). This time (2) holds a.e. on K, and (3) everywhere in C. Since (ii.2)
tells us that p and p∗ have no common zeros in C \ R, we deduce from (3) that

Z(p) \ R ⊂ Z(q).(7)

Besides,

Z(p) ∩ R = Z(p) ∩ K∗ ⊂ Z(q),(8)

where we have first used (iii.2) and then the fact that h = q/p is essentially
bounded on K. (Indeed, if x0 ∈ K∗ were a zero of multiplicity m1 for p and of
multiplicity m2 ∈ [0, m1) for q, then q/p would be essentially unbounded in any
neighborhood of x0, and hence also on K.)

Combining (7) and (8), we get

Z(p) ⊂ Z(q).(9)

Since the degree of q does not exceed n, while (i.2) says the degree of p is precisely
n, we conclude from (9) that Z(p) = Z(q) and q/p = const. Thus, h = q/p must
be constant a.e. on K, and p is an extreme point.

(B) Of course, (i.2), (ii.2) and (iii.2) are necessary for p to be exposed. Now let
α ∈ K0, so that α is an endpoint of some open interval I satisfying |K ∩ I| = 0.
Pick a point β ∈ I and put h(x) := (x − β)/(x − α). If p(α) = 0, then

ph ∈ Pn(K),(10)
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while h 
= const and h ≥ 0 on R \ I (hence a.e. on K). When coupled with
Lemma 1, this shows that (iv.2) is necessary in order that p be exposed in
b (Pn(K)).

Finally, if γ ∈ R is a multiple zero for p, then (10) holds with h(x) = (x −
γ)−2 ≥ 0, and p fails to be exposed. The necessity of (v.2) is thus established,
too.

Conversely, suppose the five conditions (i.2)–(v.2) are fulfilled. Assume also
that q ∈ Pn(K) and

h :=
q

p
≥ 0 a.e. on K.(11)

Using (ii.2), we arrive at (7) exactly as before. Further, we claim that the real
zeros of p must be contained among those of q. Indeed, let x0 ∈ Z(p) ∩ R. By
(iii.2) and (iv.2), we have then x0 ∈ K∗\K0, so that both K−

ε := K∩(x0−ε, x0)
and K+

ε := K ∩ (x0, x0 + ε) are sets of positive measure whenever ε > 0. Now
if x0 /∈ Z(q), then, by virtue of (v.2), x0 would be a simple zero for the function
p/q. This, however, would contradict (for ε sufficiently small) the fact that p/q
is a.e. nonnegative on both K−

ε and K+
ε , as ensured by (11).

Consequently, we have (8) and hence also (9) at our disposal. Arguing as in
the proof of part (A), we readily conclude that h = const a.e. on K, and so p is
an exposed point.

Of course, if K is a bounded interval, say K = (a, b), then Theorem 2 applies
with K∗ = [a, b] and K0 = {a, b}. As more sophisticated examples, we mention
various Cantor-type sets of positive measure.

Now let us consider essentially unbounded (i.e., not essentially bounded)
sets K. Among these, we single out the class of essentially semibounded sets.
We say that K is essentially semibounded if K∗ is semibounded (i.e., if either
inf K∗ > −∞ or supK∗ < ∞).

Theorem 2′. Let K be an essentially unbounded subset of R such that∫
K
|x|ndx < ∞. Suppose p is a polynomial given by (1), with ‖p‖1,K = 1.

Then

(A) p is an extreme point of b (Pn(K)) if and only if it satisfies (ii.2) and (iii.2).
(B) Assume in addition that K is essentially semibounded. Then p is an ex-

posed point of b (Pn(K)) if and only if it satisfies conditions (i.2)–(v.2).
(B′) Assume now that K is not essentially semibounded. Then p is an exposed

point of b (Pn(K)) if and only if it satisfies
(i.2′) |cn| + |cn−1| 
= 0

in conjunction with (ii.2)–(v.2).

Proof. Let us begin with the ”only if” parts. Here, we only have to explain why
condition (i.2) is necessary in (B) (observe that it no longer appears in (A)) and
why (i.2′) is necessary in (B′). The necessity of the other conditions involved is
verified as in Theorem 2.
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If K is essentially semibounded, then, for a suitable a ∈ R, the function
ha(x) := x − a is either a.e. positive or a.e. negative on K. Now if (i.2) fails,
then (10) holds with h = ±ha, and p fails to be exposed.

Similarly, for generic K’s (in particular, for the ones figuring in (B′)), the
failure of (i.2′) would imply (10) with h(x) = x2.

The “if” part of (B) is established exactly as in the preceding theorem, while
the proofs of the “if” parts of (A) and (B′) mimic those of (A) and (B) in
Theorem 2. Namely, arguing as before, we reach (9) and infer that q/p is a
polynomial. This done, the rest of (A) follows from the fact that a polynomial
which is bounded on an unbounded set must be constant. Similarly, to complete
the proof of (B′) we invoke the following fact: If a polynomial is positive on a
real set for which both +∞ and −∞ are cluster points, then it is either constant
or of degree ≥ 2.

Among the admissible K’s to which Theorem 2′ applies, let us mention count-
able unions of intervals with suitably decreasing lengths. For such a K, it
may well happen that K∗ = R and K0 = ∅, in which case conditions (iii.2)
and (iv.2) disappear from (A) and (B′). Consider, as an example, the set
K =

⋃∞
j=1(xj−rj , xj+rj), where {xj} is an enumeration of the rational numbers

and rj = 2−j (1 + |xj |)−n.

5. Entire functions of exponential type

Before stating the result, we introduce the notation σ(f) for the type of an
entire function f (with respect to order 1). Thus

σ(f) := lim
z→∞

log |f(z)|
|z| ,

and the space E1
a consists of (the traces on R of) those entire functions f for

which σ(f) ≤ a and f |R ∈ L1(R).

Theorem 3. Let a > 0, and let f ∈ E1
a satisfy ‖f‖1,R = 1. Then

(A) f is an extreme point of b
(E1

a

)
if and only if the following conditions hold:

(i.3) σ(f) = a,
(ii.3) f has no pair of symmetric zeros with respect to R.

(B) f is an exposed point of b
(E1

a

)
if and only if it satisfies (i.3) and (ii.3) in

conjunction with
(iii.3) the real zeros of f (if any) are all simple, and
(iv.3)

∫ ∞
−∞ |f(x)|h(x)dx = ∞ whenever h is a nonconstant entire function

such that σ(h) = 0 and h ≥ 0 on R.

Much of the proof will be similar to what was done in preceding sections, but
this time we also need some facts about entire functions of the Cartwright class.
This class, denoted in what follows by Cart, consists of all entire functions f
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satisfying σ(f) < ∞ and ∫
R

log+ |f(t)|
1 + t2

dt < ∞.

It is easy to see that
⋃

a>0 E1
a ⊂ Cart. Further, with an entire function f we

associate the quantities σ+(f) and σ−(f), defined by

σ±(f) = lim
y→±∞

log |f(iy)|
|y| .

Lemma 2. (a) If f1, f2 ∈ Cart, and if the ratio f1/f2 is an entire function,
then it is in Cart.

(b) If f1 is entire and of exponential type, and if f2 ∈ Cart, then σ+(f1f2) =
σ+(f1) + σ+(f2) and σ−(f1f2) = σ−(f1) + σ−(f2).

(c) If f ∈ Cart, then σ(f) = max{σ+(f), σ−(f)}.
In fact, part (a) follows at once from Krein’s characterization of the Cartwright

class; see [7, p. 192], or [9, p. 115]. For part (b), see Theorem 4 on p. 118 of [9]
(where more is proved). Finally, a proof of (c) can be found on p. 194 of [7].

Proof of Theorem 3. (A) If σ(f) < a, then we can find an ε > 0 such that
f(x) · cos εx ∈ E1

a . Further, if f(w) = f(w) = 0 for some w ∈ C \ R, then we
put bw(x) := (x − w)/(x − w) and note that both fbw and fbw(= f/bw) are in
E1

a (the functions involved are regarded as living on R); hence also f · �bw ∈ E1
a .

Since the arising multipliers cos εx and �bw are real, nonconstant and bounded
on R, we see, with the help of Lemma 1, that (i.3) and (ii.3) are necessary for f
to be an extreme point.

Conversely, let (i.3) and (ii.3) hold, and suppose h ∈ L∞
R

(R) is such that

g := fh ∈ E1
a .(12)

Following the strategy employed in the proofs of Theorems 1 and 2, we put

f∗(z) := f(z) and g∗(z) := g(z),

so that f∗, g∗ ∈ E1
a . We have then

h =
g

f
=

g

f
=

g∗

f∗ a.e. on R.

Hence fg∗ = f∗g on R, as well as everywhere in C. This last equality yields

Z(f) \ R ⊂ Z(g),(13)

because (ii.3) ensures that f and f∗ have no common zeros in C \ R. Besides,

Z(f) ∩ R ⊂ Z(g),(14)

since otherwise the ratio g/f would not be essentially bounded on R. Combining
(13) and (14), we get

Z(f) ⊂ Z(g),(15)
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whence it follows that g/f = h is an entire function. (Strictly speaking, we use
the latter formula to extend h from R to the whole of C, and we now know that
the extension is holomorphic on C.) Moreover, Lemma 2(a) yields h ∈ Cart,
because both f and g are in Cart.

Finally, we claim that σ(h) = 0. To see why, recall first that h is real on R,
and so

h(z) = h(z), z ∈ C.(16)

Using (12) in conjunction with Lemma 2(b), we now find that

σ+(f) + σ+(h) = σ+(g) ≤ σ(g) ≤ a,

whence

σ+(h) ≤ a − σ+(f).(17)

Similarly, we obtain

σ−(h) ≤ a − σ−(f).(18)

Since
σ+(h) = σ−(h) = σ(h) ≥ 0

(thanks to (16) and Lemma 2(c)), while either σ+(f) or σ−(f) equals a (thanks
to (i.3) and Lemma 2(c) again), it follows from (17) and/or (18) that σ(h) = 0.

It is a well-known consequence of the Phragmén–Lindelöf theorem that an
entire function of zero exponential type must be constant if it is bounded on a
line. Thus h = const, and f is an extreme point.

(B) To prove the ”only if” part, it suffices to show that (iii.3) and (iv.3) are
necessary in order that f be exposed. To see why (iii.3) is needed, assume x0 ∈ R

is a multiple zero for f and put h0(x) := (x − x0)−2; we have then

fh ∈ E1
a(19)

with h = h0 ≥ 0, and f fails to be exposed. Finally, (iv.3) is needed because (19)
holds whenever h is entire, of zero exponential type, and such that fh ∈ L1(R).
(In both cases, we have Lemma 1 in mind.)

We now turn to the ”if” part. Given that (i.3)–(iv.3) are fulfilled, suppose (12)
holds with some nonnegative (possibly unbounded) function h on R. Proceed-
ing as in part (A) above, we reach (13) without trouble. The next step is to
verify (14), but the argument is now different. Namely, x0 ∈ Z(f) ∩ R implies
x0 ∈ Z(g), because otherwise the ratio g/f = h would have a simple pole at x0

(due to (iii.3)), contradicting the fact that h ≥ 0 in a neighborhood of x0.
Now that (14) is established, we readily arrive at (15) and conclude that h

extends to the whole plane as an entire function. Furthermore, arguing as before,
we find that h is of exponential type 0. That h = const now follows by (iv.3).
An application of Lemma 1 completes the proof.
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6. Concluding remarks and a question

(1) At first sight, condition (iv.3) in Theorem 3 seems to be quite implicit.
Notice, however, that (iv.3) is only concerned with the behavior of f at ∞.
The condition roughly means that f |R “has no multiple zero at ∞” (i.e., f does
not decrease too rapidly along the real line); thus (iv.3) can be viewed as an
extension of (iii.3). To make our point clearer, let us consider the following two
conditions:

(iv.3′) There is an A > 0 such that inf
{
x2|f(x)| : x ∈ R, |x| ≥ A

}
> 0;

(iv.3′′)
∫ ∞
−∞ x2|f(x)|dx = ∞.

We claim that the implications

(iv.3′) =⇒ (iv.3) =⇒ (iv.3′′)(20)

hold true. Indeed, it is obvious that (iv.3) implies (iv.3′′ ), since x2 is eligible
as one of the functions h(x) figuring in (iv.3). To see that (iv.3′) implies (iv.3),
suppose fh ∈ L1(R) for some entire function h such that σ(h) = 0 and h ≥ 0 on
R. Since x2|f(x)| ≥ c > 0 for |x| ≥ A, we have∫

R\(−A,A)

h(x)
x2

dx ≤ 1
c

∫
R

|f(x)|h(x)dx < ∞.(21)

Now if h is nonconstant, then Z(h) contains at least two (possibly equal) ele-
ments, say λ1 and λ2. The function h(z)/ [(z − λ1)(z − λ2)] is therefore entire,
of exponential type 0, and belongs to L1(R) (as implied by (21)). This, however,
is only possible if h ≡ 0.

Condition (iv.3′) makes it easy to produce examples of exposed points in
b
(E1

a

)
. One such example is

f(z) = c0
i + sin az

(z − z1)(z − z2)
,

where c0 is a normalizing constant factor and z1,2 are some fixed zeros of the
numerator.

On the other hand, none of the two implications in (20) can be reversed.

(2) Yet another class of examples arises as follows. Let {λn} be a sequence of
pairwise distinct real numbers such that the system of exponentials {exp(iλnx)}
is both complete and minimal in L2(−a, a). Consider the canonical product

ϕ(z) := lim
R→∞

∏
|λn|≤R

(
1 − z

λn

)

(if one of the λ’s is zero, replace the corresponding factor by z) and set

f(z) = fj,k(z) :=
ϕ(z)

(z − λj)(z − λk)
,

where j and k are any two distinct indices. It is known (see [9, Theorem 4,
p. 134],) that ϕ is of exponential type a and that ϕ(x)/ (1 + |x|) ∈ L2(R), while
ϕh /∈ L2(R) for each nonzero entire function h with σ(h) = 0. From this, it
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follows easily that f is in E1
a and satisfies the four conditions of Theorem 3.

When suitably normalized, it therefore becomes an exposed point of b
(E1

a

)
.

A similar construction is possible with complex λn’s. In connection with
completeness and minimality of exponential systems, see e.g. [8] and [10].

(3) Condition (iv.3) remains intact if the functions h appearing there are
assumed to be in the Cartwright class. On the other hand, given h ∈Cart and
a > 0, the Beurling–Malliavin multiplier theorem (see [1], [7], [8], or [10]) enables
us to find a nonzero f ∈ E1

a such that fh ∈ L1(R). Thus, the f ’s satisfying
condition (iv.3) are precisely the ones which are not multipliers, in this sense,
for any nontrivial positive h ∈ Cart with σ(h) = 0.

(4) One can extend Theorems 1 and 3 to the case where the underlying
support set (T or R, respectively) is replaced by a certain subset K thereof.
That would entail additional conditions on the zeros, similar to those appearing
in Theorems 2 and 2′. When dealing with entire functions, it seems reasonable
to restrict attention to the so-called relatively dense sets K ⊂ R, since the
arising L1(K)-norms on E1

a are then equivalent to the original one. (We refer
to [7, pp. 113–115], for the notion of a relatively dense set and for the fact just
stated.) Our results are also adjustable for the case of weighted L1-norms on T
and R; however, it is only the support of the weight that actually matters.

(5) In [3], we described the extreme points of the unit ball in a generic sub-
space X ⊂ H1 that coincides with the kernel of some Toeplitz operator. (A
characterization of such X’s can be found in [4].) The (A) parts of our current
Theorems 1 and 3 – but not the other results above – fit into that framework
and could have been deduced from Theorem 6 of [3]. In the present paper, we
were primarily concerned with exposed points. However, it was our choice to
explicitly derive the relevant facts about extreme points, too, so as to make the
presentation self-contained.

(6) A question, to conclude with: What happens in higher dimensions (say,
on Td and R

d)?
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