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A PROOF OF BOUNDEDNESS OF THE CARLESON
OPERATOR

Michael Lacey and Christoph Thiele

Abstract. We give a simplified proof that the Carleson operator is of weak type
(2, 2). This estimate is the main ingredient in the proof of Carleson’s theorem on
almost everywhere convergence of Fourier series of functions in L2([0, 1]).

1. Introduction

We define the Carleson operator C acting on a Schwartz function f on R by

Cf(x) := sup
N

∣∣∣∣∣
∫ N

−∞
f̂(ξ)e2πiξx dξ

∣∣∣∣∣ ,(1)

where the Fourier transform f̂ is defined by

f̂(ξ) :=
∫

f(x)e−2πiξx dx.

We give a simplified proof of the well known theorem [1], [2]:

Theorem 1.1. The Carleson operator C is of weak type (2, 2), i.e.,

‖Cf‖L2,∞ ≤ C‖f‖2,

with a constant C not depending on f .

This theorem is the key ingredient in the proof of Carleson’s celebrated the-
orem, which asserts that the Fourier series of a function in L2([0, 1]) converges
pointwise almost everywhere.

We became interested in Carleson’s theorem while studying the bilinear Hilbert
transform [3], [4], [5], [6]. As it turns out, these two subjects are closely related.
The purpose of the current article is to exhibit these connections by giving a
proof of Carleson’s theorem in the spirit of [3], [4], [5], [6]. In particular, the key
Proposition 3.2 below is essentially taken from these papers.

While L. Carleson [1] uses a decomposition of the function f and C. Fef-
ferman [2] features a decomposition of the Carleson operator guided by N (the
function which picks the worst N for each x in the Carleson operator), we empha-
size a symmetry between f and N , as expressed by the duality of Propositions 3.1
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and 3.2. This symmetry is more perfect in the case of the bilinear Hilbert trans-
form, where instead of f and N one has three Schwartz functions f1, f2, and f3,
and a variant of Proposition 3.2 is applied to all three of them.

In Section 2 we introduce most of the notation used in this paper, and we do
a discretization of the Carleson operator. In Section 3 we prove boundedness of
the discretized Carleson operator by taking for granted Propositions 3.1 and 3.2
and some technical inequality (8) from standard singular integral theory. These
remaining items are proved in Sections 4, 5, and 6.

The authors would like to thank the referee and John Garnett for their helpful
comments on previous versions of the manuscript.

2. Notation and preliminary reductions

Define translation, modulation, and dilation operators by

Tyf(x) = f(x − y),

Mηf(x) = f(x)e2πiηx,

Dp
Λf(x) = Λ− 1

p f(Λ−1x).

We write |E| for the measure of a set E ⊂ R
n. By an interval we mean a subset

[x, y) of R with x < y. We write c(I) for the center of the interval I, and αI for
the interval with the same center and α times the length of I, where α > 0. We
write 1I for the characteristic function of I and define weight functions

w(x) := (1 + |x|)−ν , wI(x) := Tc(I)D
1
|I|w,

where the letter ν as in the rest of the paper is used for a large integer whose
exact value is not important and may be different at different places of the
argument.

Let φ be a Schwartz function such that φ̂ is real, non-negative, supported in
[−0.1, 0.1], and equal to 1 on [−0.09, 0.09]. For each rectangle P = IP × ωP of
area 1 in the (phase-) plane define

φ1P := Mc(ω1P )Tc(IP )D
2
|IP |φ,

where we have written ω1P for the lower half ωP ∩ (−∞, c(ωP )) of ωP . Similarly
we write ω2P for the upper half ωP \ ω1P . Observe that φ̂1P is supported in
1
2ω1P and we have

|φ1P (x)| ≤ C|IP |
1
2 wP (x),

where wP := wIP
and C denotes as in the rest of the paper a large number whose

value depends only on the choice of φ and ν and may be different at different
places of the argument.

A dyadic interval is of the form [n2k, (n + 1)2k) with integers n and k. Let P
denote the set of rectangles I × ω with I, ω dyadic and |I||ω| = 1. Define

Aξf :=
∑
P∈P

1ω2P
(ξ) 〈f, φ1P 〉φ1P .
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Observe that for every integer k we have

Aξf = D2
2−kA2−kξD

2
2kf.

Averaging over translates and dilates of the involved dyadic structures we define

Πξf := lim
n→∞

1
|Kn|

∫
Kn×[0,1]

M−ηT−yD2
2−κA2−κ(η+ξ)D

2
2κTyMηf dy dη dκ,

where Kn is any increasing sequence of rectangles In × ωn filling out R
2. To

see the pointwise convergence of the last expression, consider separately those
rectangles P ∈ P with |IP | fixed, then the integrand becomes periodic in y and η,
and observe that for very large and very small values of |IP | the integrand
becomes small. It is easy to verify that Πξ extends to a bounded operator
on L2, is nonzero and positive semidefinite, commutes with Ty for all y and with
D2

λM(λ−1)ξ for all λ > 0, and satisfies Πξf = 0 if f̂ is supported in [ξ,∞]. This
identifies Πξ as

Πξf(x) = cξ

∫ ξ

−∞
f̂(η)e2πixη dη

for some constant cξ �= 0. By conjugating with Mξ′ one observes that c = cξ

does not depend on ξ. Hence the Carleson operator is equal to

Cf(x) = c−1 sup
ξ

|Πξf(x)| .

We will prove that ∥∥supξ |Aξf |
∥∥

L2,∞ ≤ C‖f‖2.(2)

By averaging this implies∥∥supξ |Πξf(x)|∥∥
2,∞

≤ lim sup
n

1
|Kn|

∫ ∥∥supξ |AξD2κTyMηf |∥∥
2,∞ dydηdκ ≤ C‖f‖2,

which is enough to conclude Theorem 1.1.
By duality and the triangle inequality estimate (2) follows from∑

P∈P
|〈f, φ1P 〉 〈φ1P (1ω2P

◦ N), 1E〉| ≤ C‖f‖2|E| 12(3)

for all Schwartz functions f , measurable functions N , measurable sets E, and
finite subsets P of P. Since this estimate is homogeneous in f and invariant
under appropriate simultaneous dilations of f , N , E , and P, it suffices to prove
the estimate for ‖f‖2 = 1 and |E| ≤ 1. With E fixed for the rest of the paper,
we write

EP := E ∩ {x : N(x) ∈ ωP }, E2P := E ∩ {x : N(x) ∈ ω2P }.
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3. The main argument

A rectangle P = IP × ωP of P will be called a tile. Each tile has area 1
and is the union of two semitiles P1 = IP × ω1P and P2 = IP × ω2P . Observe
that dyadic intervals such as IP , ωP , ωjP have the property that any two of
them are either disjoint or one is contained in the other. Moreover, if ω1P is
strictly contained in a dyadic interval, then ω2P is strictly contained in the same
interval and vice versa. We will use these geometric properties without referring
to them. We define a partial ordering on the set of tiles by P < P ′ if IP ⊂ IP ′

and ωP ′ ⊂ ωP .
A set T of tiles is called a tree, if there is a tile PT = IT × ωT , the top of the

tree, such that P < PT for all P ∈ T . Observe that we do not require the top
to be an element of the tree. A tree is called j-tree if ωjPT

⊂ ωjP for all P ∈ T .
For the following definitions and propostitions recall that we are given data E,

f , and N with |E| ≤ 1 and ‖f‖2 = 1. For a finite subset P ⊂ P, define

mass(P) := sup
P∈P

sup
P ′∈P:P<P ′

∫
EP ′

wP ′(x) dx,

energy(P) := supT

(
|IT |−1

∑
P∈T

∣∣〈f, φ1P 〉
∣∣2) 1

2
,

where the sup in the definition of energy is taken over all 2-trees T ⊂ P.

Proposition 3.1. Let P be a finite set of tiles, then P can be decomposed as
the union of sets Plight and Pheavy with

mass(Plight) ≤ 2−1 mass(P),

and Pheavy is the union of a set T of trees such that∑
T∈T

|IT | ≤ C mass(P)−1.(4)

Proposition 3.2. Let P be a finite set of tiles, then P can be decomposed as
the union of Plow and Phigh with

energy(Plow) ≤ 2−1 energy(P),

and Phigh is the union of a set T of trees such that∑
T∈T

|IT | ≤ C energy(P)−2.(5)

We prove these propositions in Sections 4 and 5. Given a finite collection P
of tiles, we use Propositions 3.1 and 3.2 to obtain a decomposition of P into
sets Pn, where n runs through some finite set of integers, such that for each n
we have

mass(Pn) ≤ 22n, energy(Pn) ≤ 2n(6)

and Pn is the union of a set Tn of trees with∑
T∈Tn

|IT | ≤ C2−2n.(7)
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Namely, initially P satisfies estimates as in (6) for some large n. If the mass of P
is greater than 22(n−1), we split it into Plight and Pheavy, replace P by Plight,
and add Pheavy to Pn. Then, if the energy of P is greater than 2n−1, we
split P into Phigh and Plow, replace P by Plow, and add Phigh to Pn. Then P
satisfies (6) with n replaced by n − 1 and we iterate.

In Section 6 we prove for each tree T the inequality∑
P∈T

|〈f, φ1P 〉 〈φ1P , 1E2P
〉| ≤ C energy(T ) mass(T )|IT |.(8)

Hence, with the observation that the mass of any collection of tiles is bounded
by a universal constant, we have the estimate∑

T∈Tn

∑
P∈T

|〈f, φ1P 〉 〈φ1P , 1E2P
〉| ≤ C2n min(C, 22n)2−2n.

This is summable over n ∈ Z, which proves (3) and therefore Theorem 1.1.

4. Proof of Proposition 3.1

Let µ = mass(P). Let Pheavy be the set of tiles P ∈ P with mass({P}) >
2−1µ. To each such tile P we may associate a tile P ′(P ) with P < P ′(P ) and∫

EP ′(P )

wP ′(P ) dx > 2−1µ.

Then, let P′ be those elements in {P ′(P ) | P ∈ Pheavy} which are maximal with
respect to the partial order < of tiles. It suffices to show that∑

P ′∈P′ |IP ′ | < Cµ−1,

because the tiles P ∈ Pheavy can be collected into trees with tops in P′.
For κ ∈ N define Pκ to be the set of all P ∈ P′ with

|EP ∩ 2κIP | ≥ c22κµ|IP |
for some constant c. If c is small enough, then one can conclude from the mass
estimate that each element P of P′ is contained in one of the sets Pκ. Hence it
suffices to show for every κ∑

P∈Pκ

|IP | ≤ C2−κµ−1.

Fix κ. For each P ∈ Pκ we have an enlarged rectangle (2κIP )×ωP . We select
successively elements P ∈ Pκ with maximal |IP | whose enlarged rectangles are
disjoint from the enlarged rectangles of all previously selected elements. When no
further element can be selected, then each rectangle P ′ ∈ Pκ can be associated
to a selected rectangle P such that |IP ′ | < |IP | and the enlarged rectangles of
P and P ′ intersect. Since the rectangles in Pκ are pairwise disjoint, we see that
the intervals IP ′ of the rectangles P ′ associated to a fixed selected P are pairwise
disjoint and contained in 2κ+2IP . Hence∑

P∈Pκ

|IP | ≤ C2κ
∑

P selected
|IP | ≤ C2−κµ−1

∑
P selected

|EP ∩ 2κIP | .
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This is bounded by C2−κµ−1 because the enlarged rectangles of the selected
elements P are pairwise disjoint and therefore the subsets EP ∩ 2κIP of E are
pairwise disjoint. This finishes the proof of Proposition 3.1.

5. Proof of Proposition 3.2

Let ε = energy(P). For a 2-tree T , let

∆(T )2 = |IT |−1
∑

P∈T
| 〈f, φ1P 〉 |2.

We inductively construct the collection T of trees whose union will be Phigh.
Pick a 2-tree T ∈ P such that (1) ∆(T ) ≥ 2−1ε and (2) c(ωT ) is minimal

among all 2-trees satisfying the first condition. Then let T 1 be the maximal
(with respect to set inclusion) tree in P with top IT × ωT .

Add T 1 to T, add T to T2, which will be a collection of 2-trees we will work
with in the sequel because it has better disjointness properties than the collection
T. Remove each element of T 1 from P. Then repeat the procedure above until
there is no tree in P with ∆(T ) ≥ 2−1ε. Then we can define P to be Plight.

Let T, T ′ ∈ T2 and let P ∈ T and P ′ ∈ T ′. If ωP is contained in ω1P ′ , then
IP ′ ∩ IT = ∅. To see this, note that c(ωT ), which is contained in ωP , is less
than c(ωT ′) ∈ ω2P ′ . Therefore T was selected before T ′. But if IP ′ and IT had
nonempty intersection, then P ′ would qualify to be in the tree T 1 and would
have been removed from P before T ′ was selected. This is impossible.

It remains to show that

ε2
∑

T∈T2

|IT | ≤ C.

Letting P be the union of the 2–trees T in T2, the left hand side is at most a
constant times ∑

P∈P
|〈f, φ1P 〉|2 ≤

∥∥∥∑
P∈P

〈f, φ1P 〉φ1P

∥∥∥
2
.

Here we have used that the L2-norm of f is 1.
Therefore, it is sufficient to prove∥∥∥∑

P∈P
〈f, φ1P 〉φ1P

∥∥∥2

2
≤ Cε2

∑
T∈T2

|IT |.(9)

We estimate the left hand side of (9) by∑
P,P ′∈P:ωP =ωP ′

|〈f, φ1P 〉 〈φ1P , φ1P ′〉 〈φ1P ′ , f〉|(10)

+ 2
∑

P,P ′∈P:ωP ⊂ω1P ′

|〈f, φ1P 〉 〈φ1P , φ1P ′〉 〈φ1P ′ , f〉| .(11)

Here we have used symmetry and the fact that 〈f, φ1P 〉 = 0 unless one of the
intervals ω1P and ω1P ′ is contained in the other.

Observe that for |IP ′ | ≤ |IP | we have

|〈φ1P , φ1P ′〉| ≤ C|IP | 12 |IP ′ |− 1
2

∥∥wP 1IP ′
∥∥

1
.
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We estimate the smaller one of |〈f, φ1P 〉| and |〈f, φ1P ′〉| by the larger one and
use symmetry to obtain for (10) the upper bound

C
∑
P∈P

| 〈f, φ1P 〉 |2
∑

P ′∈P:ωP =ωP ′

∥∥wP 1IP ′
∥∥

1
.

The interior sum we can estimate by |IP |−1‖wP ‖1 ≤ C, because the intervals IP ′

with ωP ′ = ωP are pairwise disjoint. This proves the desired bound for (10).
The second summand (11) we estimate by∑
P∈P

|〈f, φ1P 〉|
∑

P ′∈P:ωP ⊂ω1P ′

|〈φ1P , φ1P ′〉 〈φ1P ′ , f〉|

≤
∑

T∈T2

(∑
P∈T

|〈f, φ1P 〉|2
) 1

2

H(T )
1
2 ≤ Cε

∑
T∈T2

|IT | 12 H(T )
1
2 ,

where

H(T ) :=
∑
P∈T

 ∑
P ′∈P:ωP ⊂ω1P ′

|〈φ1P , φ1P ′〉 〈φ1P ′ , f〉|
2

.

It remains to show that H(T ) ≤ Cε2|IT | for each tree T ∈ T2.
But,

H(T ) ≤ Cε2
∑
P∈T

|IP |
 ∑

P ′∈P:ωP ⊂ω1P ′

∥∥wP 1IP ′
∥∥

1

2

,

where we have used the upper energy estimate for each individual P ′ (which
is a 2-tree by itself), and the estimate on 〈φ1P , φ1P ′〉. Fix P , then the inter-
vals IP ′ with ωP ⊂ ω1P ′ are pairwise disjoint and disjoint from IT by the above
mentioned disjointness property. Hence we have∑

P ′∈P:ωP ⊂ω1P ′

∥∥wP 1IP ′
∥∥

1
≤ C

∥∥wP 1Ic
T

∥∥
1
.

For each x ∈ IT there is at most one P ∈ T of each scale with x ∈ IP . Hence
we have: ∑

P∈T

|IP |
∥∥wP 1Ic

T

∥∥2

1
≤ C

∑
P∈T

|IP |
∥∥wP 1Ic

T

∥∥
1

≤ C
∑
k∈N

∥∥∥(1IT
∗ D1

2−k|IT |w)1Ic
T

∥∥∥
1
≤ C|IT |.

This gives the appropriate bound for H(T ) and thus finishes the proof of (9).
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6. Proof of estimate (8)

Let J be the collection of all maximal dyadic intervals such that 3J does not
contain any IP with P ∈ T . Then J is a partition of R.

We estimate the left hand side of (8) as below, where the terms εP are phase
factors of modulus 1 which make up for the absolute value signs in (8).∥∥∥∑

P∈T
εP 〈f, φ1P 〉φ1P 1E2P

∥∥∥
1
≤∑

J∈J

∑
P∈T :|IP |≤|J| ‖〈f, φ1P 〉φ1P 1E2P

‖L1(J)(12)

+
∑

J∈J

∥∥∥∥∑
P∈T :|IP |>|J| εP 〈f, φ1P 〉φ1P 1E2P

∥∥∥∥
L1(J)

.(13)

To estimate (12), we calculate for each J ∈ J and P ∈ T :

‖〈f, φ1P 〉φ1P 1E2P
‖L1(J) ≤ Cεµ|IP |(1 + dist(IP , J)|IP |−1)−ν .(14)

Here, we have set ε := energy(T ) and µ := mass(T ). Fix an integer k with
2k ≤ |J |. Consider all P ∈ T with |IP | = 2k, then the intervals IP are pairwise
disjoint, disjoint from J , and contained in IT . Hence∑

P∈T :|IP |=2k

|IP |(1 + dist(IP , J)|IP |−1)−ν ≤ C2k(1 + dist(IT , J)|IT |−1)−ν′
.

These estimates, summed over 2k ≤ |J | and J ∈ J , yield no more than C|IT |.
Together with (14) this gives the desired bound for (12).

We consider (13). We can assume that the summation runs only over those
J ∈ J for which there exists a P ∈ T with |J | < |IP |. Then we have J ⊂ 3IT

and |J | < |IT | for all J occuring in the sum.
Fix an interval J ∈ J and observe that

GJ := J ∩
⋃

P∈T :|IP |>|J|
E2P

has measure at most Cµ|J |. Indeed, let J ′ be the dyadic interval which contains
J and |J ′| = 2|J | ≤ |IT |. By maximality of J , 3J ′ contains an interval IP for
some P ∈ T . Let P ′ be the tile with |IP ′ | = |J ′| and P < P ′ < IT × ωT . Then
GJ ⊂ J ∩ EP ′ . And since mass({P}) ≤ µ, our claim follows.

Let T2 be the 2-tree of all P ∈ T such that ω2T ⊂ ω2P , and let T1 = T \ T2.
Define, for j = 1, 2,

FjJ :=
∑

P∈Tj :|IP |>|J|
εP 〈f, φ1P 〉φ1P 1E2P

.

If P, P ′ are in the 1–tree T1 and have different scales, then the sets ω2P , ω2P ′

are disjoint and so are the sets E2P , E2P ′ . Therefore, by considering single scales
seperately one can estimate the L∞ norm of F1J by Cε. Hence

‖F1J‖L1(J) ≤ Cε|GJ | ≤ Cεµ|J |.
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Summing over the disjoint intervals J ⊂ 3IT gives the desired estimate for the
T1-part of (13).

Fix x and assume that F2J(x) is not zero. Since the intervals ω2P with P ∈ T2

are nested, there is a largest (smallest) interval ω+ (ω−) of the form ωP (ω2P )
with P ∈ T2, x ∈ E2p and |IP | > |J |. In other words, we have for any P ∈ T
that x ∈ E2P and |IP | > |J | if and only if |ω−| < |ωP | ≤ |ω+|.

Hence we can write F2J(x) as∑
P∈T2:|ω−|<|ωP |≤|ω+|

εP 〈f, φ1P 〉φ1P (x) =

∑
P∈T2

εP 〈f, φ1P 〉
(
φ1P ∗

(
Mc(ω+)D

1
0.1|ω+|−1φ − Mc(ω−)D

1
0.09|ω−|−1φ

))
(x).

The last equality is easily seen from the geometry of the supports of the functions
φ̂1P . Therefore we can estimate |F2J(x)| by

C sup
J⊂I

1
|I|

∫
I

∣∣∣∣∣ ∑
P∈T2

εP 〈f, φ1P 〉φ1P (z)

∣∣∣∣∣ dz ,

which is constant on J .
But F2J1J is supported on the set GJ of measure ≤ Cµ|J |, hence∑

J∈J :J⊂3IT

‖F2J‖L1(J) ≤ C
∑

J∈J :J⊂3IT

µ|J | sup
J⊂I

1
|I|

∫
I

∣∣∣∣∣ ∑
P∈T2

εP 〈f, φ1P 〉φ1P (z)

∣∣∣∣∣ dz

≤ Cµ
∥∥∥M

(∑
P∈T2

εP 〈f, φ1P 〉φ1P

)∥∥∥
L1(3IT )

≤ Cµ|IT | 12
∥∥∥∑

P∈T2
εP 〈f, φ1P 〉φ1P

∥∥∥
2
.

Here M denotes the Hardy Littlewood maximal function and we have used the
maximal theorem.

We observe that for different scales of P, P ′ ∈ T2 the intervals ω1P and ω1P ′

are disjoint and therefore the functions φ1P and φ1P ′ are orthogonal. Thus,
following the arguments to estimate (10), we estimate the L2 norm in the last
displayed expression by

C
(∑

P∈T2
|〈f, φ1P 〉|2

) 1
2 ≤ C|IT | 12 ε.

This completes the desired estimate for the T2-part of (13) and thereby finishes
the proof of (8).
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