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A PROOF OF BOUNDEDNESS OF THE CARLESON
OPERATOR

MiICHAEL LACEY AND CHRISTOPH THIELE

ABSTRACT. We give a simplified proof that the Carleson operator is of weak type
(2,2). This estimate is the main ingredient in the proof of Carleson’s theorem on
almost everywhere convergence of Fourier series of functions in L2([0, 1]).

1. Introduction

We define the Carleson operator C acting on a Schwartz function f on R by

N ~ .
/_ f(§)€27rz£m d€ ’

(1) Cf(x) = Sup

where the Fourier transform ]/”\is defined by

flo) = [ f@e e aa.

We give a simplified proof of the well known theorem [1], [2]:

Theorem 1.1. The Carleson operator C is of weak type (2,2), i.e.,
ICF NI 2 < ClISl2,

with a constant C' not depending on f.

This theorem is the key ingredient in the proof of Carleson’s celebrated the-
orem, which asserts that the Fourier series of a function in L?([0,1]) converges
pointwise almost everywhere.

We became interested in Carleson’s theorem while studying the bilinear Hilbert
transform [3], [4], [5], [6]. As it turns out, these two subjects are closely related.
The purpose of the current article is to exhibit these connections by giving a
proof of Carleson’s theorem in the spirit of [3], [4], [5], [6]. In particular, the key
Proposition 3.2 below is essentially taken from these papers.

While L. Carleson [1] uses a decomposition of the function f and C. Fef-
ferman [2] features a decomposition of the Carleson operator guided by N (the
function which picks the worst N for each x in the Carleson operator), we empha-
size a symmetry between f and N, as expressed by the duality of Propositions 3.1
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and 3.2. This symmetry is more perfect in the case of the bilinear Hilbert trans-
form, where instead of f and IV one has three Schwartz functions f;, fs, and f3,
and a variant of Proposition 3.2 is applied to all three of them.

In Section 2 we introduce most of the notation used in this paper, and we do
a discretization of the Carleson operator. In Section 3 we prove boundedness of
the discretized Carleson operator by taking for granted Propositions 3.1 and 3.2
and some technical inequality (8) from standard singular integral theory. These
remaining items are proved in Sections 4, 5, and 6.

The authors would like to thank the referee and John Garnett for their helpful
comments on previous versions of the manuscript.

2. Notation and preliminary reductions

Define translation, modulation, and dilation operators by
Mnf(x) — f(x)€27ri'r7m7
1 —
DR f(z) = A7 f(A12).
We write |E| for the measure of a set E C R™. By an interval we mean a subset
[z,y) of R with # < y. We write ¢(I) for the center of the interval I, and ol for

the interval with the same center and « times the length of I, where a > 0. We
write 1; for the characteristic function of I and define weight functions

w(z) = (1+|z])7", wr(x) = C(I)D‘lﬂw,
where the letter v as in the rest of the paper is used for a large integer whose
exact value is not important and may be different at different places of the

argument.

Let ¢ be a Schwartz function such that &5 is real, non-negative, supported in
[—0.1,0.1], and equal to 1 on [—0.09,0.09]. For each rectangle P = Ip x wp of
area 1 in the (phase-) plane define

L 2
¢1P = MC(UJ1P)TC(IP)D‘IP|¢’

where we have written wy p for the lower half wp N (—o00, ¢(wp)) of wp. Similarly

we write wop for the upper half wp \ wip. Observe that ¢;p is supported in
%wlp and we have
1
[¢1p(x)| < ClIp[?wp(z),

where wp := wy, and C denotes as in the rest of the paper a large number whose
value depends only on the choice of ¢ and v and may be different at different
places of the argument.

A dyadic interval is of the form [n2¥, (n+ 1)2%) with integers n and k. Let P
denote the set of rectangles I x w with I,w dyadic and |I||w| = 1. Define

Aef = Z Lusp (§) (fs P1P) 1P

PcP
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Observe that for every integer k we have
Averaging over translates and dilates of the involved dyadic structures we define

1
Hgf = lim

n— 00 ‘Kn|

/ M_yT D3 Ag-r(y 16y D3. T, M, f dy dn dx,
K, x[0,1]
where K, is any increasing sequence of rectangles I,, X w, filling out R?. To
see the pointwise convergence of the last expression, consider separately those
rectangles P € P with |Ip| fixed, then the integrand becomes periodic in 5 and 7,
and observe that for very large and very small values of |Ip| the integrand

becomes small. It is easy to verify that Il extends to a bounded operator
on L?, is nonzero and positive semidefinite, commutes with T, for all y and with

D?\M(A,l)g for all A > 0, and satisfies II¢ f = 0 if fis supported in [£, 0o]. This
identifies II¢ as

& .
e f(x) = ce / Fmyermion dy

for some constant c¢¢ # 0. By conjugating with Mg one observes that ¢ = ¢
does not depend on £. Hence the Carleson operator is equal to

Cflx)=c"! sup e f(2)] .

We will prove that
2) Isupe [A¢ 1] 2.0 < ClIFl2-

By averaging this implies
[supe M f ()],
. 1
< lim sup m / Hsupg |A§D2“TyMnf|H2,oo dydndr < C|| f||2,

which is enough to conclude Theorem 1.1.
By duality and the triangle inequality estimate (2) follows from

(3) > pop [(F:612) (17 (Luap 0 N), 15)| < Ol |2l B

for all Schwartz functions f, measurable functions N, measurable sets E, and
finite subsets P of P. Since this estimate is homogeneous in f and invariant
under appropriate simultaneous dilations of f, N, E , and P, it suffices to prove
the estimate for || f|l2 = 1 and |E| < 1. With E fixed for the rest of the paper,
we write

Ep:=En{z:N(z) €wp}, Eyp:=EN{z:N(z) € wap}.
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3. The main argument

A rectangle P = Ip x wp of P will be called a tile. Each tile has area 1
and is the union of two semitiles P, = Ip X wip and Py, = Ip X wop. Observe
that dyadic intervals such as Ip, wp, w;jp have the property that any two of
them are either disjoint or one is contained in the other. Moreover, if wyp is
strictly contained in a dyadic interval, then wsp is strictly contained in the same
interval and vice versa. We will use these geometric properties without referring
to them. We define a partial ordering on the set of tiles by P < P’ if Ip C Ip/
and wpr C wp.

A set T of tiles is called a tree, if there is a tile Pr = It X wr, the top of the
tree, such that P < Py for all P € T. Observe that we do not require the top
to be an element of the tree. A tree is called j-tree if w;jp, C wjp for all P € T.

For the following definitions and propostitions recall that we are given data F,
f,and N with |E| <1 and ||f]|2 = 1. For a finite subset P C P, define

mass(P) := sup sup / wps(x) dz,
PeP preP:P<p’ JEp:

energy (P) := supy (|IT|_1 Z }<f7 ¢1P>‘2> ’ ,

where the sup in the definition of energy is taken over all 2-trees T' C P.

pPeT

Proposition 3.1. Let P be a finite set of tiles, then P can be decomposed as
the union of sets Piighy and Preayy with

mass(Piignt) < 27 mass(P),

and Pheavy @s the union of a set T of trees such that
< _1
(4) ZTGT |I7| < C'mass(P) L.

Proposition 3.2. Let P be a finite set of tiles, then P can be decomposed as
the union of Piow and Pyien with

energy (Plow) < 27! energy(P),

and Puign s the union of a set T of trees such that
< _2
(5) ZTGT |I7| < C energy(P)~2.

We prove these propositions in Sections 4 and 5. Given a finite collection P
of tiles, we use Propositions 3.1 and 3.2 to obtain a decomposition of P into
sets P,,, where n runs through some finite set of integers, such that for each n
we have

(6) mass(P,,) < 22", energy (P,,) < 2"

and P,, is the union of a set T,, of trees with

(7) ZTGT 1Ip| < C272",



BOUNDEDNESS OF THE CARLESON OPERATOR 365

Namely, initially P satisfies estimates as in (6) for some large n. If the mass of P
is greater than 22("_1)7 we split it into Piign and Preavy, replace P by Piigne,
and add Pheayy to P,,. Then, if the energy of P is greater than 2"~ ! we
split P into Pyje, and Poy, replace P by Pioy, and add Phig, to P,,. Then P
satisfies (6) with n replaced by n — 1 and we iterate.

In Section 6 we prove for each tree T' the inequality

(8) ZPGT [(f,01P) (d1P, 15,p)| < C energy(T) mass(T)|I7|.

Hence, with the observation that the mass of any collection of tiles is bounded
by a universal constant, we have the estimate

ZTGTu ZPET [(f,d1P) (D1P, 1y, )| < C2" min(C,2°™)272".

This is summable over n € Z, which proves (3) and therefore Theorem 1.1.

4. Proof of Proposition 3.1

Let ¢ = mass(P). Let Preavy be the set of tiles P € P with mass({P}) >
271y To each such tile P we may associate a tile P'(P) with P < P’(P) and

/ wpr(py dz > 271y
Epr(p)

Then, let P’ be those elements in {P'(P) | P € Pheayy } which are maximal with
respect to the partial order < of tiles. It suffices to show that

-1
ZP’GP’ |IP'| <CN ’

because the tiles P € Ppeavy can be collected into trees with tops in P’.
For x € N define P, to be the set of all P € P’ with

|Ep N 25Ip| > 2% u|Ip|

for some constant c. If ¢ is small enough, then one can conclude from the mass
estimate that each element P of P’ is contained in one of the sets P,,. Hence it
suffices to show for every

< —k,,—1
D pep, Pl S C2750

Fix k. For each P € P, we have an enlarged rectangle (2°Ip) xwp. We select
successively elements P € P,, with maximal |Ip| whose enlarged rectangles are
disjoint from the enlarged rectangles of all previously selected elements. When no
further element can be selected, then each rectangle P’ € P, can be associated
to a selected rectangle P such that [Ip/| < |Ip| and the enlarged rectangles of
P and P’ intersect. Since the rectangles in P, are pairwise disjoint, we see that
the intervals Ip/ of the rectangles P’ associated to a fixed selected P are pairwise
disjoint and contained in 2°72Ip. Hence

< r < -k, —1 “
X:PEPN |IP‘ - 2 ZPselected |IP| - c2 K ZPselected |EP n2 IP’ ’
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This is bounded by C27%u~! because the enlarged rectangles of the selected
elements P are pairwise disjoint and therefore the subsets Ep N 2%Ip of E are
pairwise disjoint. This finishes the proof of Proposition 3.1.

5. Proof of Proposition 3.2
Let ¢ = energy(P). For a 2-tree T, let

AR =[P, (die) P

We inductively construct the collection T of trees whose union will be Phigt.

Pick a 2-tree T' € P such that (1) A(T) > 271¢ and (2) ¢(wr) is minimal
among all 2-trees satisfying the first condition. Then let 7' be the maximal
(with respect to set inclusion) tree in P with top I X wr.

Add T' to T, add T to Ts, which will be a collection of 2-trees we will work
with in the sequel because it has better disjointness properties than the collection
T. Remove each element of 7! from P. Then repeat the procedure above until
there is no tree in P with A(T) > 2~ '¢. Then we can define P to be Piight-

Let T,7" € Ty and let P € T and P’ € T’. If wp is contained in wips, then
Ip: N Ir = (. To see this, note that ¢(wr), which is contained in wp, is less
than ¢(wy/) € wapr. Therefore T was selected before T”. But if Ip and I had
nonempty intersection, then P’ would qualify to be in the tree 7! and would
have been removed from P before T" was selected. This is impossible.

It remains to show that

e > Il <c.

TeT,

Letting P be the union of the 2-trees T in Ts, the left hand side is at most a
constant times

ZPG? I, ¢1P>’2 = HZPG? (f,é1p) ¢1PH2.

Here we have used that the L?-norm of f is 1.
Therefore, it is sufficient to prove

© S o], < 0252, i
We estimate the left hand side of (9) by
(10) E [(fs @1p) (d1P, P1P7) (P1P7, f)]
P,P'cPwp=wp
(11) +2 > [(fs @1p) (B1ps P1p7) {Prp7, )] -

P,P'cP:wp Cwypr

Here we have used symmetry and the fact that (f, ¢1p) = 0 unless one of the
intervals wqp and wqpr is contained in the other.
Observe that for |Ip/| < |Ip| we have

(1P, dr1p)] < C|Ip|2|Ip| "2 |wpls,,

1
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We estimate the smaller one of |(f, ¢1p)| and |(f, p1p/)| by the larger one and
use symmetry to obtain for (10) the upper bound

c Z | (f, ¢1p) I? Z |wplr,,|

PcP P'GF:UJPZUJP/

1°

The interior sum we can estimate by |Ip|~!||wp||1 < C, because the intervals Ips
with wps = wp are pairwise disjoint. This proves the desired bound for (10).
The second summand (11) we estimate by

SLee) Y [bie.dip) (61p0 f)]

Peﬁ P’eﬁ:wPCwlp/
1
2
<y (Z !<f,¢1p>l2> H(T): <Ce Y |Ir|H(T)?,
TeT, PeT TeT,
where

H(T) = Z Z [(b1ps P1p7) (D1P7, [

PET \P'cP:wpCw;ps

It remains to show that H(T) < Ce?|Ir| for each tree T' € Ts.
But,

H(T) < Ce* Y |Ip] > wels,,

peT P'EP:wpCw, pr

1 )

where we have used the upper energy estimate for each individual P’ (which
is a 2-tree by itself), and the estimate on (¢1p,d1p/). Fix P, then the inter-
vals I'pr with wp C wyps are pairwise disjoint and disjoint from I by the above
mentioned disjointness property. Hence we have

> el ]l < Cllwets

P'EP:wpCuwypr

1

For each z € Iy there is at most one P € T of each scale with z € Ip. Hence
we have:

Z ’IP| HwPll% f < C Z ‘IP‘ H'U)Pl]%

pPeT PeT

<C). H(lfT * Dy w) g
keN

1

< C|Ir].
1

This gives the appropriate bound for H(7T') and thus finishes the proof of (9).
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6. Proof of estimate (8)

Let J be the collection of all maximal dyadic intervals such that 3. does not
contain any Ip with P € T. Then J is a partition of R.

We estimate the left hand side of (8) as below, where the terms ep are phase
factors of modulus 1 which make up for the absolute value signs in (8).

HZPGTGP <f7¢lP>¢1P1E2P )
(12) Z]ej ZPET:UPlS‘JI I{f, d1P) ¢1P1E2PHL1(J)

(13) + ZJGJ ‘ZPET:|1P>|J| ep (f,01P) d1P1E:p

<

LY(J)
To estimate (12), we calculate for each J € J and P € T
(14) 1(f, ¢1P) d1P1Esp |l 11 () < Cepllp|(1+ dist(Ip, J)|Ip| ™).
Here, we have set € := energy(7) and p := mass(7). Fix an integer k with

2% <'|J|. Consider all P € T with |Ip| = 2*, then the intervals Ip are pairwise
disjoint, disjoint from J, and contained in I7. Hence

S el dist(Ip, J)|Ip|TH) TV < C2(A + dist(Ir, )| I
PeT:|Ip|=2F

These estimates, summed over 2% < |J| and J € J, yield no more than C|Ir|.
Together with (14) this gives the desired bound for (12).

We consider (13). We can assume that the summation runs only over those
J € J for which there exists a P € T with |J| < |Ip|. Then we have J C 3Ip
and |J| < |Ir| for all J occuring in the sum.

Fix an interval J € J and observe that

Gy:=JnN U Esp

PeT:|Ip|>|J|

has measure at most Cu|J|. Indeed, let J’ be the dyadic interval which contains
J and |J'| = 2|J| < |Ir|. By maximality of J, 3J’ contains an interval Ip for
some P € T. Let P’ be the tile with |Ip/| = |J'| and P < P’ < Iy x wp. Then
Gj C JN Ep:. And since mass({P}) < pu, our claim follows.

Let T be the 2-tree of all P € T such that wor C wop, and let Ty = T\ T5.
Define, for j =1, 2,

F;y = Z ep (f,o1p) d1PLlE,p-
PETjZlIP‘>|J|

If P, P are in the 1-tree T} and have different scales, then the sets wop, wop:
are disjoint and so are the sets Fop, Fopr. Therefore, by considering single scales
seperately one can estimate the L norm of Fy; by Ce. Hence

| FLsllnr gy < CelGy| < CeplJ|.
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Summing over the disjoint intervals J C 31 gives the desired estimate for the
T -part of (13).

Fix x and assume that Fy;(x) is not zero. Since the intervals wop with P € Ty
are nested, there is a largest (smallest) interval w; (w_) of the form wp (wap)
with P € Ty, € Ey, and |Ip| > |J|. In other words, we have for any P € T
that @ € Eop and |Ip| > |J| if and only if |w_| < |wp| < |wi].

Hence we can write Fy;(x) as

Z ep (f,¢1p) d1p(z) =

PeTs:|w_|<|wp|<|wy]
Z ep (f,P1p) <¢1P * (Mc(w+)Dé.1\w+|fl¢ - Mc(w,)Dé_og‘w_H(ﬁ)) ().
PeT>

The last equality is easily seen from the geometry of the supports of the functions
¢1p. Therefore we can estimate |Fy(x)| by

> ep(f,d1p) d1p(2)

PETQ

1
Csup — dz

gcr 1| Jr

which is constant on J.
But Fy,1; is supported on the set G; of measure < C'u|J|, hence

1
Fogllpiy <C Jlsu _/
Z [ F2sllLr Z l |JCI; 1] J;

JeJ:JC3Ir JeJ:JC3Ir

= Cu HM (ZPGTQ ep (f,o1p) ¢1P>‘ -
ZP6T2 ep (f, ¢1p) ¢1PH2 :

Here M denotes the Hardy Littlewood maximal function and we have used the
maximal theorem.

We observe that for different scales of P, P’ € Ty the intervals wip and wip:
are disjoint and therefore the functions ¢1p and ¢1ps are orthogonal. Thus,
following the arguments to estimate (10), we estimate the L? norm in the last
displayed expression by

¢ (ZP€T2 I/, ¢1P>|2>§ < C’|IT|%5‘

This completes the desired estimate for the Th-part of (13) and thereby finishes
the proof of (8).

> ep(f.¢1p) dr1p(2)| dz

PeTs>

< CulIr|
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