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ARRANGEMENTS AND LOCAL SYSTEMS

Daniel C. Cohen† and Peter Orlik‡

Abstract. We use stratified Morse theory to construct a complex to compute
the cohomology of the complement of a hyperplane arrangement with coefficients
in a complex rank one local system. The linearization of this complex is shown
to be the Aomoto complex of the arrangement. Using this result, we establish
the relationship between the cohomology support loci of the complement and
the resonance varieties of the Orlik-Solomon algebra for any arrangement, and
show that the latter are unions of subspace arrangements in general, resolving a
conjecture of Falk. We also obtain lower bounds for the local system Betti numbers
in terms of those of the Orlik-Solomon algebra, recovering a result of Libgober and
Yuzvinsky. For certain local systems, our results provide new combinatorial upper
bounds on the local system Betti numbers. These upper bounds enable us to prove
that in non-resonant systems the cohomology is concentrated in the top dimension,
without using resolution of singularities.

1. Introduction

Let A = {H1, . . . , Hn} be a hyperplane arrangement in C
�, with complement

M = M(A) = C
� \ ⋃n

j=1 Hj . We assume that A contains � linearly inde-
pendent hyperplanes. Let λ = (λ1, . . . , λn) ∈ C

n be a collection of weights.
Associated to λ, we have a rank one representation ρ : π1(M) → C

∗ given by
γj �→ tj = exp(2π iλj) for any meridian loop γj about the hyperplane Hj of A,
and a corresponding rank one local system L on M . The need to calculate
the local system cohomology H∗(M ;L) arises in several problems: the Aomoto-
Gelfand theory of multivariable hypergeometric integrals [AK, Ge]; representa-
tion theory of Lie algebras and quantum groups and solutions of the Knizhnik-
Zamolodchikov differential equation in conformal field theory [Va]; determining
the cohomology groups of the Milnor fiber of the non-isolated hypersurface sin-
gularity at the origin obtained by coning the arrangement [CS1].
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We call a system of weights λ ∈ C
n non-resonant if the Betti numbers of

M with coefficients in the associated local system L are minimal. The set of
non-resonant weights is open and dense in C

n.

Theorem 1.1. If λ is non-resonant, then

Hq(M ;L) = 0 for q 	= �, and dimH�(M ;L) = |e(M)|,
where e(M) is the Euler characteristic of the complement.

We use the notation and results of [OT1]. Let A = A(A) be the Orlik-
Solomon algebra of A generated by the 1-dimensional classes aj , 1 ≤ j ≤ n. It is
the quotient of the exterior algebra generated by these classes by a homogeneous
ideal, hence a finite dimensional graded C-algebra. There is an isomorphism of
graded algebras H∗(M ; C) � A(A). In particular, dimAq(A) = bq(A) where
bq(A) = dimHq(M ; C) denotes the q-th Betti number of M with trivial local
coefficients C.

Theorem 1.1 is a consequence of two results which are quite different in
nature. One is the work of Esnault-Schechtman-Viehweg [ESV], refined by
Schechtman-Terao-Varchenko [STV], and obtained by using Deligne’s work [De].
It involves resolution of singularities and techniques of algebraic geometry. Here
the de Rham complex with a twisted differential is used to compute H∗(M ;L),
and the main aim is to reduce the infinite dimensional cochain groups to a com-
plex with finite dimensional cochain groups. In the passage from consideration
of global rational differential forms in C

� with poles of arbitrary order on the hy-
perplanes of A to poles of order one (logarithmic), certain geometric conditions
on λ arise. The final result is that for suitable λ there is an isomorphism

Hq(M ;L) � Hq(A•, aλ∧),

where the Orlik-Solomon algebra with differential Aq → Aq+1 given by mul-
tiplication by aλ =

∑n
j=1 λj aj is identified with a subcomplex of the twisted

de Rham complex. The second result, due to Yuzvinsky [Yu], is purely combi-
natorial in nature. It shows that if λ satisfies certain combinatorial conditions,
then

Hq(A•, aλ∧) = 0 for q 	= �, and dimH�(A•, aλ∧) = dimH�(M ;L) = |e(M)|.
The geometric conditions on λ noted above arise from conditions on the mon-

odromy of the local system about certain intersections of hyperplanes of A.
These conditions derive from Aomoto’s 1973 work [Ao], where slightly stronger
monodromy conditions were considered. Indeed, the results of [ESV] mentioned
previously resolved a conjecture from this paper. Kohno [Ko] used similar
(strong) monodromy conditions to prove a vanishing theorem analogous to The-
orem 1.1 for local system cohomology and locally finite homology, and exhibited
a basis for the non-zero homology group in a special case. Hattori [Ha] showed
that for general position arrangements only the trivial local system is resonant.
More recently, Falk-Terao [FT] constructed a basis for the non-zero local system
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cohomology group in the non-resonant case for any arrangement. Thus, much is
known in the case of non-resonant weights. See [OT2] for a detailed discussion.

Substantially less is known about resonant weights, which are of particular
interest in several of the applications noted above. This interest has been a
motivating factor in much recent work, including [C3, CS1, CS4, Fa, L1, LY]. In
this paper, the local system cohomology is studied using a complex to compute
H∗(M ;L) which arises from stratified Morse theory. The terms of this complex
are finite dimensional but the boundary maps are not easily computed. In fact,
we construct a universal complex, (K•

Λ(A),∆•(x)), where x = (x1, . . . , xn) are
non-zero complex variables, with the property that the specialization xj �→ tj
calculates H∗(M ;L). There is a similar universal complex, called the Aomoto
complex (A•

R(A), ay∧), where y = (y1, . . . , yn) are variables, with the property
that the specialization yj �→ λj calculates H∗(A•, aλ∧). Our first result is:

Theorem 1.2. For any arrangement A, the Aomoto complex (A•
R(A), ay∧) is

chain equivalent to the linearization of the universal complex (K•
Λ(A),∆•(x)).

Since this theorem applies to all weight systems, we obtain corollaries for
resonant weights. One is a proof of Falk’s conjecture that the resonance va-
rieties of the Orlik-Solomon algebra are unions of subspace arrangements, see
Corollary 3.8. Another is the known lower bound of Proposition 3.2:

dimHq(A•, aλ∧) ≤ dimHq(M ;L).

In the other direction, the upper bounds

dimHq(M ;L) ≤ dimHq(M ; C)

were conjectured in [AK], and established in [C2]. In most applications where
resonant weights occur, the λj are rational numbers. We call the associated
local system rational. Our next aim is to obtain better upper bounds for
dimHq(M ;L) for rational local systems. Let λj = kj/N , where kj ∈ Z and
N ∈ N. We define a complex, (A•

N , āk∧), whose cochain groups are the graded
parts of the Orlik-Solomon algebra with coefficients in the ring ZN = Z/NZ,
and whose differential operator is obtained from ak =

∑n
j=1 kj aj by reduction

mod N , and prove:

Theorem 1.3. Let λ = k/N be a system of rational weights, and let L be the
associated rational local system on the complement M of A. Then, for each q,

dimC Hq(M ;L) ≤ rankZN
Hq(A•

N , āk∧).

This result about rational, and often resonant, weights is used to give a proof
of Theorem 1.1 (about non-resonant weights) which does not rely on resolution
of singularities. Examples show that the inequalities in both the upper and lower
bounds may be strict.
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2. Linear approximation

Let A = {H1, . . . , Hn} be a hyperplane arrangement in C
�, and let L be a

complex rank one local system on the complement M of A. In this section,
we show that the Orlik-Solomon algebra complex (A•(A), aλ∧) is, in a natural
sense, a linear approximation of a Morse theoretic complex, (K•(A),∆•), the
cohomology of which is isomorphic to that of M with coefficients in L.

2.1. Preliminaries. Let B denote the Boolean arrangement in C
n, with coor-

dinates z1, . . . , zn. A defining polynomial for B is given by Q(B) = z1 · · · zn, and
the complement of B is the complex n-torus, T = (C∗)n.

Proposition 2.2. Let A be an arrangement of n hyperplanes in C
�. Then the

complement M of A may be realized as a linear section of the complex n-torus T .

Proof. Without loss of generality, assume that A is an essential arrangement in
C

�, so that A contains � independent hyperplanes. Choose coordinates z1, . . . , z�

for C
�. Ordering the hyperplanes of A appropriately, a defining polynomial for A

is then given by Q(A) = z1 · · · z�·α�+1 · · ·αn, where αj = αj(z1, . . . , z�) is a linear
polynomial.

Let S denote the �-dimensional affine subspace of C
n defined by the equations

{zj = αj(z1, . . . , z�) | � + 1 ≤ j ≤ n}. Identifying C
� with S in the obvious

manner, it is readily checked that M = S ∩ T .

Let λ = (λ1, . . . , λn) ∈ C
n be a collection of weights. Associated to λ, we

have a rank one representation ρ : π1(M) → C
∗ given by γj �→ tj = exp(2π iλj)

for any meridian loop γj about the hyperplane Hj of A, and a corresponding
rank one local system L on M . Note that the representation ρ factors through
the first homology H1(M ; Z), which is generated by the classes [γj ]. Since these
classes also generate H1(T ; Z) = π1(T ), the local system L extends to a local
system on T , which we continue to denote by L.

2.3. The Morse theoretic complex. For any complex local system L on
the complement of an arrangement A, in [C1] we used stratified Morse theory
to construct a complex (K•(A),∆•), the cohomology of which is naturally iso-
morphic to H∗(M ;L), the cohomology of M with coefficients in L. We give a
brief description of this complex (for a rank one local system) and record some
relevant results from [C1].

An edge of A is a nonempty intersection of hyperplanes. The arrangement
A determines a Whitney stratification of S = C

�, with a stratum, SX = X \⋃
Y �X Y , of codimension p associated to each codimension p edge X of A. (The

stratum SX is given by M(AX), see [OT1].) Let ∅ = F−1 ⊂ F0 ⊂ F1 ⊂ F2 ⊂
· · · ⊂ F� = S be a flag in S which is transverse to the stratification determined
by A, so that dimFq ∩ SX = q − codim SX for each stratum, where a negative
dimension indicates that Fq ∩ SX = ∅. Such a flag may be constructed using
a Morse function on S that is weakly self-indexing with respect to the above
stratification, see [C1, Section 1].
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The sets Mq = Fq ∩ M form a filtration, ∅ = M−1 ⊂ M0 ⊂ M1 ⊂ · · · ⊂
M� = M . By construction, for each q, the closure of Mq intersects all strata of
codimension at most q, and intersects no stratum of codimension greater than q.
This filtration is well-suited for the study of local system cohomology in the
sense of the following.

Proposition 2.4. For each q, 0 ≤ q ≤ �, we have Hi(Mq, Mq−1;L) = 0 if
i 	= q, and dimHq(Mq, Mq−1;L) = bq(A).

This Proposition may be proved using stratified Morse theory [GM]. For
details, the reader is referred to [C1, Sections 2, 3, and 5].

For each q, let Kq(A) = Hq(Mq, Mq−1;L) and then denote by ∆q the
boundary homomorphism Hq(Mq, Mq−1;L) → Hq+1(Mq+1, Mq;L) of the triple
(Mq+1, Mq, Mq−1). It is readily checked that the composition ∆q+1 ◦ ∆q = 0.
Thus the system of complex vector spaces and linear maps (K•(A),∆•) is a
complex. The following is a special case of [C1, Theorem 2.4].

Theorem 2.5. The cohomology of the complex (K•(A), ∆•) is naturally iso-
morphic to H∗(M ;L), the cohomology of M with coefficients in the local sys-
tem L.

Remark 2.6. As shown in [C2], the inequalities dimHq(M ;L) ≤ dimHq(M ; C)
noted in the Introduction follow immediately from this result. See also [Ma].

Example 2.7. We discuss first the important special case of the torus. Recall
that B denotes the Boolean arrangement, consisting of the coordinate hyper-
planes in C

n, and that a rank one local system L on the complement of any
arrangement of n hyperplanes extends naturally to a local system on the torus
T = (C∗)n, the complement of B. For this arrangement (and more generally
any general position arrangement), the Morse theoretic complex constructed
above admits a complete description, see [C1, Section 7] for details. Denote this
complex by (K•(B), D•).

By Proposition 2.4 above, the terms of this complex are vector spaces of
dimension dimKq(B) = dimHq(T ; C) = bq(B) =

(
n
q

)
. Thus, as a graded group,

the complex K•(B) may be identified with the cohomology of T , which in turn
is isomorphic to the exterior algebra E =

∧
E1, where E1 = ⊕n

j=1Cej .
The local system L is induced by the representation ρ : π1(T ) → C

∗ defined
by γj �→ tj , where γj is a meridian loop about the hyperplane Hj and then
tj = exp(2π iλj). Under the identification K•(B) = E above, the boundary
map Dq : Kq(B) → Kq+1(B) is given by

Dq(eJ) = et ∧ eJ =
(
(t1 − 1)e1 + · · · + (tn − 1)en

) ∧ eJ ,

where eJ = ej1 ∧ · · · ∧ ejq if J = {j1, . . . , jq}.
2.8. Approximation. We now return to an arbitrary arrangement A of n hy-
perplanes and show that the Morse theoretic complex described above is approx-
imated by the Orlik-Solomon algebra complex. Let λ = (λ1, . . . , λn) be a weight
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vector in C
n, t = (t1, . . . , tn) the associated point in the complex torus (C∗)n,

and L the corresponding local system on M(A). It is important to note that if
m = (m1, . . . , mn) is a tuple of integers, then λ + m = (λ1 + m1, . . . , λn + mn)
determines the same t and L.

As evidenced by Proposition 2.4, the dimensions of the terms of the complex
(K•(A),∆•) are independent of t (resp., λ, L). To indicate the dependence
of the complex on t, we write L = Lt, ∆• = ∆•(t), and view these boundary
maps as functions of t. These observations may be formalized as follows. Let Λ =
C[x±1

1 , . . . , x±1
n ] denote the ring of complex Laurent polynomials in n commuting

variables, and for each q, let Kq
Λ(A) = Λ ⊗C Kq(A).

Theorem 2.9. Given an arrangement A of n hyperplanes with complement M ,
there exists a universal complex (K•

Λ(A),∆(x)) with the following properties:
1. The terms are free Λ-modules, whose ranks are given by the Betti numbers

of M , Kq
Λ(A) � Λbq(A).

2. The boundary maps, ∆q(x) : Kq
Λ(A) → Kq+1

Λ (A) are Λ-linear.
3. For each t ∈ (C∗)n, the specialization x �→ t yields the complex

(K•(A),∆•(t)), the cohomology of which is isomorphic to H∗(M ;Lt),
the cohomology of M with coefficients in the local system associated to t.

Remark 2.10. For the Boolean arrangement B of n hyperplanes, the universal
complex (K•

Λ(B), D•(x)) is dual to the standard free Λ � ZZ
n-resolution of the

integers. This follows from the description of the complex (K•(B), D•(t)) given
in Example 2.7.

Proposition 2.11. Let A be an arrangement of n hyperplanes in C
�. Then

there exists a chain map Ψ•(x) : K•
Λ(B) → K•

Λ(A) from the universal complex
of the Boolean arrangement B to the universal complex of A.

Proof. Recall from Proposition 2.2 that we realize the complement of A as an
�-dimensional linear section, M = S ∩ T , of the complement of B, and that any
rank one local system L on M extends to a local system on T .

For such a local system, the complexes K•(A) and K•(B) are constructed
using flags ∅ = F−1 ⊂ F0 ⊂ F1 ⊂ · · · ⊂ F� = S and ∅ = F ′

−1 ⊂ F ′
0 ⊂ F ′

1 ⊂
· · · ⊂ F ′

n = C
n respectively. Since the affine subspace S is transverse to the

hyperplanes of B, we may assume that F ′
q = Fq for q ≤ 1. Thus the inclusion

M ∩ Fq ⊆ T ∩ Fq induces canonical isomorphisms ψq : Kq(B) ∼−→ Kq(A) for
q ≤ 1, and for every t ∈ (C∗)n we have ∆0(t) = D0(t). This yields isomorphisms
Ψq = id⊗ψq : Kq

Λ(B) ∼−→ Kq
Λ(A) for q ≤ 1, and we have ∆0(x) = D0(x).

Now, as noted in Remark 2.10, the complex (K•
Λ(B), D•(x)) is dual to the

standard Λ-resolution of Z, which is of course acyclic. Thus it follows from the
acyclic models theorem that there is a chain map Ψ•(x) : K•

Λ(B) → K•
Λ(A)

covering Ψq (q ≤ 1).

As is the case for the local system cohomology of the complement, there is
a universal complex for the cohomology, H∗(A•(A), aλ∧), of the Orlik-Solomon
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algebra. Let R = C[y1, . . . , yn] be the polynomial ring. The Aomoto complex
(A•

R(A), ay∧) has terms Aq
R(A) = R ⊗C Aq(A), and boundary maps given by

p(y)⊗η �→ ∑
yjp(y)⊗aj∧η. For λ ∈ C

n, the specialization y �→ λ of the Aomoto
complex (A•

R(A), ay∧) yields the Orlik-Solomon algebra complex (A•(A), aλ∧).
Fix a basis for the Orlik-Solomon algebra of A. Evidently, this yields a basis

for each term Aq
R(A) of the Aomoto complex. Let µq(y) denote the matrix of

ay∧ : Aq
R(A) → Aq+1

R (A) with respect to this basis.

Lemma 2.12. For each q, the entries of µq(y) are integral linear forms in
y1, . . . , yn.

Proof. First note that this holds in the case where A = B is the Boolean ar-
rangement. In this case, the Orlik-Solomon algebra is the exterior algebra E,
and the boundary maps of the Aomoto complex are given by eJ �→ ey ∧ eJ =∑n

j=1 yj ⊗ ej ∧ eJ on generators.
For an arbitrary arrangement A, the Aomoto complex (A•

R(A), ay∧) may be
realized as the quotient of the Aomoto complex (A•

R(B), ey∧) of the Boolean
arrangement by the subcomplex (I•R(A), ey∧), where I•R(A) denotes the tensor
product of R with the Orlik-Solomon ideal I(A). Since the ideal I(A) is defined
by integral linear combinations of the generators of the exterior algebra, the
result follows.

The main result of this section is the following.

Theorem 2.13. For any arrangement A, the Aomoto complex (A•
R(A), ay∧) is

chain equivalent to the linearization of the universal complex (K•
Λ(A),∆•(x))

Proof. For each q, fix a basis for Kq
Λ(A). Since rankΛ Kq

Λ(A) = dimC Aq(A) =
bq(A), the basis for K•

Λ(A) may be chosen in one-to-one correspondence with
that of A(A). We shall not distinguish between the boundary map, ∆q(x) :
Kq

Λ(A) → Kq+1
Λ (A), of the universal complex and its matrix with respect to the

chosen basis.
The entries of ∆q(x) are elements of the Laurent polynomial ring Λ, the

coordinate ring of the complex algebraic n-torus. Via the specialization x �→ t ∈
(C∗)n, we shall view them as holomorphic functions (C∗)n → C. Similarly, for
each q, we view ∆q as a holomorphic map ∆q : (C∗)n → Mat(C) by t �→ ∆q(t).

Let 1 = (1, . . . , 1) denote the identity element of (C∗)n. The holomorphic
tangent space of the complex n-torus at 1 is T1 (C∗)n = C

n. Identify the
coordinates y = (y1, . . . , yn) of this tangent space with the variables appearing
in the Aomoto complex. The exponential map T1 (C∗)n → (C∗)n is induced by
exp : C → C

∗, yj �→ eyj = xj .
The specialization x �→ 1 corresponding to the trivial local system yields a

complex (K•(A),∆•(1)) with trivial boundary maps, ∆q(1) = 0 for each q.
This follows from Proposition 2.4. See [GM, III.3] for a detailed discussion of
this phenomenon in homology.

If f ∈ Λ is an entry of ∆q(x), then the map f : (C∗)n → C satisfies f(1) = 0.
For such a Laurent polynomial (resp., map), the derivative at the identity, f∗ :
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T1 (C∗)n = C
n → C = T0 C, is given by

f∗(y) =
d

ds
f(esy1 , . . . , esyn)

∣∣
s=0

.

Similarly, for F ∈ Mat(Λ) satisfying F (1) = 0, we have F∗ : T1 (C∗)n →
T0 Mat(C) = Mat(C). For two Laurent polynomials f and g, the product rule
yields (fg)∗(y) = f∗(y)g(1) + f(1)g∗(y). More generally, for F ∈ Matp×q(Λ)
and G ∈ Matq×r(Λ), using matrix multiplication and the differentiation rules
we have

(FG)∗(y) = F∗(y) · G(1) + F (1) · G∗(y).(1)

Now recall the chain map Ψ•(x) : K•
Λ(B) → K•

Λ(A) from the universal com-
plex of the Boolean arrangement B to that of A described in Proposition 2.11.
As is the case for the boundary maps Dq(x) and ∆q(x) of the two complexes,
we view Ψq(x) as a holomorphic map (C∗)n → Mat(C), and we do not distin-
guish between this map and its matrix. Since Ψ•(x) is a chain map, we have
Dq(x) · Ψq+1(x) = Ψq(x) · ∆q(x) for each q. We differentiate at 1 using the
product rule (1) above to obtain

Dq
∗(y) · Ψq+1(1) + Dq(1) · Ψq+1

∗ (y) = Ψq
∗(y) · ∆q(1) + Ψq(1) · ∆q

∗(y).

Since Dq(1) = 0 and ∆q(1) = 0 for all q, we thus have

Dq
∗(y) · Ψq+1(1) = Ψq(1) · ∆q

∗(y).

Recall that R = C[y1, . . . , yn] denotes the polynomial ring. For F ∈ Mat(Λ),
view the derivative F∗(y) as a linear map between free R-modules in the obvious
way. Consider the systems of free R-modules and R-linear maps

(K•
R(A),∆•

∗(y)) and (K•
R(B), D•

∗(y)),

where Kq
R(A) = R⊗CKq(A) and Kq

R(B) = R⊗CKq(B). From the description of
the universal complex of the Boolean arrangement stemming from Example 2.7
and the fact that (xj)∗ = yj for each j, it is clear that the system (K•

R(B), D•
∗(y))

is a complex, and coincides with the Aomoto complex of the arrangement B.
We assert that the system (K•

R(A),∆•
∗(y)) is also a complex, and is chain

equivalent to the Aomoto complex of A. For this, consider again the specializa-
tion x �→ 1 corresponding to the trivial local system L = C. In this instance, as
noted above, the boundary maps of K•(A) and K•(B) are all trivial. Thus, for L
trivial, these complexes simply record the cohomology H∗(M ; C) and H∗(T ; C).
As is well known, both algebras are generated in dimension one, and the in-
clusion M ⊂ T induces an epimorphism in cohomology. Now recall from the
proof of Proposition 2.11 that for q ≤ 1, Ψq = id⊗ψq is constant, and that
ψq : Hq(T ; C) → Hq(M ; C) is induced by inclusion. So by the naturality of cup
products and the continuity of Ψ•(x), we have Ψq(1) = id⊗ψq for all q, where
ψq : Hq(T ; C) → Hq(M ; C) is induced by ψ1.

Identifying the cohomology of T with the exterior algebra, H∗(T ; C) = E,
and the cohomology of M with the Orlik-Solomon algebra, H∗(M ; C) = A(A),
we realize the map Ψ•(1) as the map on R-modules induced by a choice of
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projection ψ : E → A from the exterior algebra to the Orlik-Solomon algebra.
Consequently, the system of R-modules and R-linear maps (K•

R(A),∆•
∗(y)) is a

complex, and is chain equivalent to the Aomoto complex of A.

3. Some consequences

We discuss some immediate applications of Theorem 2.13.

3.1. Lower bounds. We first show that the Orlik-Solomon algebra cohomol-
ogy provides a lower bound for the local system cohomology of the complement,
recovering a result of Libgober-Yuzvinsky, see [LY, Proposition 4.2, Corollary
4.3]. Fix an arrangement A of n hyperplanes, with complement M = M(A) and
Orlik-Solomon algebra A = A(A). Recall that each weight vector λ ∈ C

n gives
rise to an associated rank one local system L = Lλ on M .

Proposition 3.2. For each λ ∈ C
n and each q, we have

sup
m∈Zn

dimHq(A•, aλ+m∧) ≤ dimHq(M ;L).(2)

Proof. First note that this result clearly holds for λ = 0. In general, given
λ = (λ1, . . . , λn) ∈ C

n, the cohomology, H∗(A•, aλ∧), of the Orlik-Solomon
algebra is given by that of the specialization, y �→ λ, of the Aomoto complex
(A•

R(A), ay∧). Recall that we denote the matrix of ay∧ by µq(y). Similarly, the
local system cohomology, H∗(M ;L), may be computed from the specialization,
x �→ t, of the universal complex (K•

Λ(A),∆•(x)), where t = (t1, . . . , tn) ∈ (C∗)n

satisfies tj = exp(2π iλj), and L is induced by the representation π1(M) → C
∗,

γj �→ tj for any meridian loop γj about Hj ∈ A.
By Theorem 2.13, the Aomoto complex is chain equivalent to (K•

R(A),∆•
∗(y)),

the linearization of the universal complex. Furthermore, it is well-known that
the cohomology, H∗(A•, aλ∧), of the Orlik-Solomon algebra is invariant under
(non-zero) rescaling. Thus for λ sufficiently small, the Inverse Function Theorem
implies that

rankµq(λ) = rank ∆q
∗(λ) = rank ∆q

∗(2π iλ) = rank ∆q(t)

for each q. Thus, dimHq(A•, aλ∧) = dimHq(M ;L) for λ sufficiently small.
Hence, using invariance under rescaling for the cohomology of the Orlik-Solomon
algebra and upper semicontinuity for the local system cohomology of the com-
plement, we have dimHq(A•, aλ∧) ≤ dimHq(M ;L) for arbitrary λ.

Now let m = (m1, . . . , mn) ∈ Z
n, and recall that the local system associated

to λ + m coincides with that associated to λ. Thus, by applying the above
considerations to the weight vector λ + m, we see that dim Hq(A•, aλ+m∧) ≤
dimHq(M ;L) for each q and all m ∈ Z

n, which completes the proof.

Remark 3.3. In the case q = 1, Libgober-Yuzvinsky show that equality holds in
(2) for almost all λ, see [LY, Theorem 5.3].
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There are local systems L (resp., weight vectors λ) for which the inequal-
ity (2) is strict, as illustrated by the following examples. Both involve central
arrangements, where all local system cohomology groups vanish for non-resonant
weights. Thus a weight vector which produces cohomology is a priori resonant.

Example 3.4. Let A = {H1, . . . , H7} be the central arrangement in C
3 with

defining polynomial Q(A) = x(x + y + z)(x + y − z)y(x − y − z)(x − y + z)z.
(The ordering of the hyperplanes corresponds to that of the factors of Q(A).)
Consider the weight vector λ = 1

2 (1, 0, 0, 1, 1, 0, 1) ∈ C
7, the associated point

t = (−1, 1, 1,−1,−1, 1,−1) ∈ (C∗)7, and the corresponding local system L on
the complement M of A.

An exercise in the Orlik-Solomon algebra reveals that, for all m ∈ Z
7, we

have dimH1(A•(A), aλ+m∧) ≤ 1. On the other hand, it is known that the
point t ∈ Σ1

2(M) is in the second cohomology support locus of (the first coho-
mology of) M , see [CS4, Example 4.4] and Section 3.6 below. It follows that
dimH1(M(A),L) = 2, and the inequality (2) is strict for this local system
(resp., system of weights).

Example 3.5. A similar example is provided by the Ceva(3) arrangement A
(the monomial arrangement A = A3,3,3), defined by Q(A) = (x3 − y3)(x3 −
z3)(y3 − z3). For the weight vector λ = 1

3 (1, 1, 1, 1, 1, 1,−2,−2,−2) ∈ C
9 and

the corresponding local system L on the complement M of A, it is known that
dimH1(A•(A), aλ+m∧) ≤ 1 for all m ∈ Z

9, in particular dimH1(A•(A), aλ∧) =
1, and that dimH1(M(A),L) = 2.

3.6. Cohomology support loci and resonance varieties. As another ap-
plication of Theorem 2.13, we establish the relationship between the cohomology
support loci of the complement of an essential arrangement A in C

� and the res-
onance varieties of its Orlik-Solomon algebra.

Recall that each point t ∈ (C∗)n gives rise to a local system L = Lt on
the complement M = M(A). For non-resonant t, the cohomology Hq(M,Lt)
vanishes for q < �, see Theorem 1.1. Those t for which Hq(M ;Lt) does not
vanish comprise the cohomology support loci

Σq
m(M) = {t ∈ (C∗)n | dimHq(M ;Lt) ≥ m}.

These loci are algebraic subvarieties of (C∗)n, which are invariants of the ho-
motopy type of M . See Arapura [Ar] and Libgober [L1] for detailed discussions
of these varieties in the contexts of quasiprojective varieties and plane algebraic
curves.

Similarly, each point λ ∈ C
n gives rise to an element aλ ∈ A1 of the Orlik-

Solomon algebra A = A(A). For q < �, the cohomology Hq(A•, aλ∧) vanishes
for sufficiently generic λ, see [Yu, Fa]. Those λ for which Hq(A•, aλ∧) does not
vanish comprise the resonance varieties

Rq
m(A) = {λ ∈ C

n | dimHq(A•, aλ∧) ≥ m}.
These subvarieties of C

n are invariants of the Orlik-Solomon algebra A. See Falk
[Fa] and Libgober-Yuzvinsky [LY] for detailed discussions of these varieties.



ARRANGEMENTS AND LOCAL SYTEMS 309

Recall that 1 = (1, . . . , 1) denotes the identity element of (C∗)n.

Theorem 3.7. Let A be an arrangement in C
� with complement M and Orlik-

Solomon algebra A. Then for each q and m, the resonance variety Rq
m(A) co-

incides with the tangent cone of the cohomology support locus Σq
m(M) at the

point 1.

Proof. For each t ∈ (C∗)n, the cohomology of M with coefficients in the local
system Lt is isomorphic to that of the Morse theoretic complex (K•(A),∆•(t)),
the specialization at t of the universal complex (K•

Λ(A), ∆•(x)) of Theorem 2.9.
So t ∈ Σq

m(M) if and only if dimHq(K•(A),∆•(t)) ≥ m. An exercise in linear
algebra shows that

Σq
m(M) = {t ∈ (C∗)n | rank ∆q−1(t) + rank ∆q(t) ≤ dimKq(A) − m}.

Results of Arapura [Ar] show that Σq
m(M) may be realized as the transverse

intersection of smooth subvarieties of (C∗)n. So the tangent cone at 1 is given
by

C1 Σq
m(M) = {λ ∈ C

n | rank ∆q−1
∗ (λ) + rank ∆q

∗(λ) ≤ dimKq(A) − m}.
For λ ∈ C

n, we have λ ∈ Rq
m if dimHq(A•, aλ∧) ≥ m. Denote the matrix of

aλ∧ : Aq(A) → Aq+1(A) by µq(λ). Then, as above,

Rq
m(A) = {λ ∈ C

n | rankµq−1(λ) + rankµq(λ) ≤ dimAq(A) − m}.
Now dimAq(A) = dimKq(A) = bq(A) and for each q, by Theorem 2.13, we have
rankµq(λ) = rank ∆q

∗(λ). Thus,

Rq
m(A) = {λ ∈ C

n | rank ∆q−1
∗ (λ) + rank ∆q

∗(λ) ≤ bq(A) − m},
and the result follows.

The cohomology support loci are known to be unions of torsion-translated
subtori of (C∗)n, see [Ar, Corollary V.1.2]. In particular, all irreducible com-
ponents of Σq

m(M) passing through 1 are subtori of (C∗)n. Consequently, all
irreducible components of the tangent cone are linear subspaces of C

n. So we
have the following.

Corollary 3.8. For each q and m, the resonance variety Rq
m(A) is the union

of an arrangement of subspaces in C
n.

Remark 3.9. Several special cases of Theorem 3.7 and Corollary 3.8 were previ-
ously known. For q = 1, these results were established by Cohen-Suciu [CS4],
see also Libgober-Yuzvinsky [L1, LY]. For the discriminantal arrangements of
Schechtman-Varchenko [SV], they were established in [C3]. In particular, as
conjectured by Falk [Fa, Conjecture 4.7], the resonance varieties Rq

m(A) were
known to be unions of linear subspaces in these instances. Corollary 3.8 above
resolves this conjecture positively for all arrangements in all dimensions.

Remark 3.10. Theorem 3.7 and Corollary 3.8 have been obtained recently by
Libgober in a more general situation, see [L2].
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4. Rational local systems

Let A = {H1, . . . , Hn} be an arrangement of complex hyperplanes, and let
λ = (λ1, . . . , λn) be a system of rational weights, λj = kj/N , where kj ∈ Z

and N ∈ N. The representation ρ : π1(M) → C
∗, γj �→ tj = exp(2π iλj),

is unitary, and we call the associated local system L on M rational. Since
our primary interest is in this local system, we may assume without loss that
the greatest common divisor of the integers kj is relatively prime to N . In this
section, we obtain combinatorial upper bounds on the local system Betti numbers
dimC Hq(M ;L). We then use these bounds to study non-resonant local systems.

4.1. Combinatorial cohomology mod N . Let AQ(A) be the Orlik-Solomon
algebra of A, with rational coefficients, and generated by {a1, . . . , an}. If the
underlying arrangement is clear, we write AQ = AQ(A). Left-multiplication
by the element aλ =

∑
λjaj ∈ A1

Q induces a differential on the Orlik-Solomon
algebra, and we denote the resulting complex by (A•

Q, aλ∧). Similarly, associated
to the element ak = Naλ =

∑
kjaj , we have the complex (A•

Q, ak∧).

Lemma 4.2. The complexes (A•
Q, aλ∧) and (A•

Q, ak∧) are chain equivalent.

Proof. Define η : A•
Q → A•

Q by η(a) = Nqa for a ∈ Aq
Q. Since η is clearly an

isomorphism, it is enough to show that η is a chain map. For a as above, we
have

η(aλ ∧ a) = Nq+1
∑ kj

N
aj ∧ a = Nqak ∧ a = ak ∧ η(a),

and η is a chain map.

Denote the matrix of aλ∧ : Aq
Q → Aq+1

Q by µq(λ), and that of ak∧ : Aq
Q →

Aq+1
Q by µq(k). The entries of the latter are integers, so we consider the Orlik-

Solomon algebra with integer coefficients, the associated complex (A•
Z, ak∧),

and the reduction of this complex mod N . Let (A•
N , āk∧) be the reduction of

(A•
Z, ak∧) mod N , where AN = AZN

denotes the Orlik-Solomon algebra with
coefficients in the ring ZN and āk = ak mod N . Denote the matrix of āk∧ :
Aq

N → Aq+1
N by µ̄q(k).

4.3. Upper bounds. We now obtain combinatorial upper bounds on the Betti
numbers, dimC Hq(M ;L), for a rational local system L. We shall make use of
the following elementary fact.

Lemma 4.4. Let ζ = exp(2π i /N) be a primitive N -th root of unity, and let
f(z) ∈ C[z±1] be a Laurent polynomial which satisfies f(1) = 0, f(ζ) = 0, and
f ′(1) ∈ Z. Then [f ′(1)] is a zero-divisor in ZN .

Proof. Write f(z) = z−mp(z), where p(z) ∈ C[z] is a polynomial. Since p(ζ) =
f(ζ) = 0, we have p(z) = ΦN (z) · q(z), where ΦN (z) is the N -th cyclotomic
polynomial and q(z) ∈ C[z]. Since p(1) = f(1) = 0 and ΦN (1) 	= 0, we also
have q(1) = 0. These considerations, and a brief calculation, reveal that f ′(1) =
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p′(1) = ΦN (1) ·q′(1). Since ΦN (1) divides N , we see that [f ′(1)] is a zero-divisor
in ZN .

The main result of this section is the following.

Theorem 4.5. Let λ = k/N be a system of rational weights, and let L be the
associated rational local system on the complement M of A. Then, for each q,

dimC Hq(M ;L) ≤ rankZN
Hq(A•

N , āk∧).(3)

Proof. For any system of rational weights λ = 1
N (k1, . . . , kn), the rational local

system L is determined by the unitary representation ρ : π1(M) → C
∗ defined

by γj �→ ζkj , where ζ = exp(2π i /N). This representation factors through the
integers Z = 〈z〉 as follows. Define ξ : π1(M) → Z by ξ(γj) = zkj and define
χ : Z → C

∗ by χ(z) = ζ. We then have ρ = χ ◦ ξ.
The cohomology of M with coefficients in L is isomorphic to that of the com-

plex (K•(A),∆•(t)), the specialization of the universal complex (K•
Λ(A),∆•(x))

at the point t = (t1, . . . , tn) ∈ (C∗)n, where tj = exp(2π i kj/N) = ζkj . Thus
for a rational local system, via the map Λ → C[z±1] defined by tj �→ zkj , the
specialization map Λ → C factors through the ring of Laurent polynomials in
the single variable z. To emphasize the dependence of the boundary maps of
K•(A) on ζ, we shall write ∆•(t) = ∆•(ζ). By virtue of the above factorization,
for each q, the matrix ∆q(ζ) may be realized as the specialization, z �→ ζ, of a
matrix ∆q(z) with entries in C[z±1].

By Theorem 2.13, the Aomoto complex (A•
R(A), ay∧) is chain equivalent to

the linearization, (K•
R(A),∆•

∗(y)), of the universal complex (K•
Λ(A), ∆•(x)).

Both this chain equivalence and the construction of the Aomoto complex in-
volve choosing a basis for the Orlik-Solomon algebra of A. Making these choices
in a consistent manner, we may assume without loss that the two complexes
coincide, (K•

R(A),∆•
∗(y)) = (A•

R(A), ay∧). Specializing, y �→ k, yields the com-
plex (AC, ak∧) = (K•(A),∆•

∗(k)). Recall that we denote the matrix of ak∧ :
Aq → Aq+1 by µq(k). Since for each j, we have tj = χ ◦ ξ(xj) = χ(zkj ) = ζkj ,
these boundary maps may be realized as the derivatives at z = 1 of the maps
∆q(z) noted above: µq(k) = ∆q

∗(k) = d
dz ∆q(z)

∣∣
z=1

.
Recall from Lemma 2.12 that the boundary maps of the Aomoto complex

consist of integral linear combinations of the indeterminates yj . Thus the entries
of the matrices µq(k) = ∆q

∗(k) above are integers, and, as in Section 4.1 above, we
may consider the complex (A•

Z, ak∧). The reduction, (A•
N , āk∧), of this complex

mod N has boundary maps given by the matrices µ̄q(k), the reductions mod N
of µq(k) = ∆q

∗(k). By Lemma 4.4, if a minor of µ̄q(k) is a unit in ZN , then the
corresponding minor of ∆q(ζ) is non-zero. Thus, rankC ∆q(ζ) ≥ rankZN

µ̄q(k),
and the result follows.

There are rational local systems L (resp., weight vectors λ) for which the
inequality (3) is strict, as illustrated by the following example.
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Example 4.6. Let A = {H1, . . . , H8} be a realization of the MacLane (83)
configuration, with defining polynomial

Q(A) = xy(y − x)z(z − x − ω2y)(z + ωy)(z − x)(z + ω2x + ωy),

where ω is a primitive third root of unity and the ordering of the hyperplanes
of A corresponds to that of the factors of Q(A). Consider the rational weights

λ(u, v) =
u

3
(1, 0, 2, 1, 2, 2, 1, 0) +

v

3
(2, 2, 2, 1, 1, 0, 0, 1),

where u, v ∈ {0, 1, 2}, the associated points t(u, v) = exp(2π iλ(u, v)) in the
complex torus (C∗)8, and the corresponding rational local systems L = L(u, v)
on the complement M of A.

As observed by Matei-Suciu [MS, Example 5.9], the mod 3 resonance vari-
ety, R1

1(A, Z3), of the Orlik-Solomon algebra of A contains a two-dimensional
component. In our notation, this component may be described by the equations{

k̄ = (k1, . . . , k8) ∈ (Z3)8
∣∣∣∣∣ k1 + k5 = k2 + k8 = k3 + k4 = k6 + k7 = 0

k3 + k5 + k6 = k3 + k7 + k8 = 0

}
.

The (nine) points of C may be realized as the reductions mod 3 of the integral
weight vectors k(u, v) = 3λ(u, v) for u, v ∈ {0, 1, 2}. Thus for k = k(u, v) with
(u, v) 	= (0, 0), we have rankZ3 H1(A3, āk∧) = 1, as may be readily checked by
direct calculation in the Orlik-Solomon algebra.

On the other hand, for each of the non-trivial rational local systems L =
L(u, v), we have H1(M ;L) = 0. Using the braided wiring diagram for this
arrangement recorded in [CS3, Example 8.6], one may compute the braid mon-
odromy of A, and the ensuing braid monodromy presentation of the fundamental
group of M , see [CS2]. Then an exercise with this presentation and the Fox calcu-
lus reveals that the first local system cohomology of M is trivial, H1(M ;L) = 0,
for each of the local systems L = L(u, v). Thus, for each of the weight vectors
λ(u, v), the inequality (3) is strict.

Note that, since H1(M ;L) = 0 for L = L(u, v), we have H1(A•
C; aλ+m∧) = 0

for every integral translate m ∈ Z
8 of each of the weight vectors λ = λ(u, v).

Example 4.7. Using the previous examples, one can construct arrangements
and weight vectors for which both inequalities (2) and (3) are simultaneously
strict.

Let A′ be a generic section in C
2 of the Ceva(3) arrangement from Exam-

ple 3.5, and let A′′ be a generic section in C
2 of the Maclane arrangement above.

Consider the weight vectors λ′ = 1
3k′ for A′ and λ′′ = 1

3k′′ for A′′, where

k′ = (1, 1, 1, 1, 1, 1,−2,−2,−2) ∈ Z
9 and k′′ = (1, 0,−1, 1,−1,−1, 1, 0) ∈ Z

8.

Note that λ′′ is an integral translate of the weight vector λ(1, 0) from the previous
example and that k′′ ≡ k(1, 0) mod 3. Let L′ and L′′ denote the local systems
on M(A′) and M(A′′) corresponding to λ′ and λ′′. Since these arrangements
are generic sections, our previous calculations and Euler characteristic arguments
yield the Orlik-Solomon algebra cohomology and local system cohomology.
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We record this information using Poincaré polynomials. Write

P (A•
C(A), λ, t) =

∑
dimC Hi(A•

C(A), aλ∧)ti,

P (M(A),L, t) =
∑

dimC Hi(M(A),L)ti, and

P (A•
N (A), k, t) =

∑
rankZN

Hi(A•
N (A), āk∧)ti.

Then, for A′, we have

P (A•
C(A′), λ′, t) = t + 17t2 and P (M(A′),L′, t) = 2t + 18t2.

Furthermore, a computation in the Orlik-Solomon algebra reveals that

P (A•
3(A′), k′, t) = P (M(A′),L′, t).

For A′′, we have

P (A•
C(A′′), λ′′, t) = P (M(A′′),L′′, t) = 13t2 and P (A•

3(A′′), k′′, t) = t + 14t2.

Now let A = A′×A′′ be the product arrangement in C
4, and let k = (k′, k′′) ∈

Z
17. Consider the weight vector λ = 1

3k = (λ′, λ′′) = 1
3 (k′, k′′) ∈ C

17, and
the associated local system L on M(A). By construction, L is the product
local system on M(A) ∼= M(A′) × M(A′′). Similarly, the boundary map of
the Orlik-Solomon algebra complex is compatible with the product structure
A(A) � A(A′) × A(A′′). Consequently, we may use the Künneth formula to
obtain

P (A•
C(A), λ, t) = P (A•

C(A′), λ′, t) · P (A•
C(A′′), λ′′, t) = 13t3 + 221t4,

P (M(A),L, t) = P (M(A′),L′, t) · P (M(A′′),L′′, t) = 26t3 + 234t4, and

P (A•
3(A), k, t) = P (A•

3(A′), k′, t) · P (A•
3(A′′), k′′, t) = 2t2 + 46t3 + 252t4.

Thus,

dimC Hi(A•
C(A), aλ∧) < dimC Hi(M(A),L) < rankZ3 Hi(A•

3(A), āk∧)

for i = 3, 4, and both inequalities (2) and (3) are strict.

4.8. Resonance. We use the results obtained above to study resonance phe-
nomena. Let A be an essential arrangement of n hyperplanes in C

�, with comple-
ment M . We call a system of weights λ ∈ C

n non-resonant if the Betti numbers
of M with coefficients in the associated local system L are minimal. Since the
boundary maps ∆q(t) of the complex K•(A) computing the local system coho-
mology generically take on their maximal ranks, the set of non-resonant weights
is open and dense in C

n. We denote this set by U = U(A). It may be described
as the set of all λ ∈ C

n for which the sum, Σ(A) =
∑�

q=0 dimHq(M ;L), of the
local system Betti numbers is minimal.

Recall that an edge is a nonempty intersection of hyperplanes. An edge is
called dense if the subarrangement of hyperplanes containing it is irreducible:
the hyperplanes cannot be partitioned into nonempty sets so that after a change
of coordinates hyperplanes in different sets are in different coordinates. This
is a combinatorially determined condition, see [STV]. For each edge X, define
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λX =
∑

X⊆Hj
λj . Let A∞ = A ∪ H∞ denote the projective closure of A, the

union of A and the hyperplane at infinity in CP
�, see [OT2]. Consider the

following sets:

V = V(A) = {λ ∈ C
n | λX /∈ Z>0 for every dense edge X of A∞},

W = W(A) = {λ ∈ C
n | λX /∈ Z≥0 for every dense edge X of A∞}.

Theorem 4.9. If λ ∈ W, then Hq(M ;L) = 0 for q 	= � and dimH�(M ;L) =
|e(M)|.

Since dimKq(A) = bq(A) = dimC Hq(M ; C), we see that this theorem mini-
mizes Σ(A). It follows that W ⊂ U, proving Theorem 1.1 of the Introduction.
There is an important difference between these statements, however. Theorem
1.1 is an existence result which does not reveal the structure of U, while Theorem
4.9 identifies a large subset of U. Here we state the two ingredients of the proof
of Theorem 4.9 more precisely. Choose a degree one polynomial αj with kernel
Hj ∈ A for 1 ≤ j ≤ n. The Brieskorn algebra, B(A), is the graded C-algebra
generated by 1 and the holomorphic 1-forms ωj = dαj/αj . Let ωλ =

∑n
j=1 λjωj .

Then (B•(A), ωλ∧) is a subcomplex of the twisted de Rham complex used to
calculate H∗(M ;L). The results establishing Theorem 4.9 are:

1. If λ ∈ V, then H∗(M ;L) � H∗(B•(A), ωλ∧). This is a result of Esnault-
Schechtman-Viehweg [ESV], obtained by using Deligne’s work [De], and
refined by Schechtman-Terao-Varchenko [STV]. The condition λ ∈ V is a
monodromy condition, imposed on a normal crossing divisor obtained by
resolution of singularities.

2. The cohomology, H∗(B•(A), ωλ∧), of the Brieskorn algebra is isomorphic
to that of the Orlik-Solomon algebra, H∗(A•(A), aλ∧), [OT2]. The lat-
ter was studied by Yuzvinsky [Yu], who showed that if λ ∈ W, then
Hq(A•(A), aλ∧) = 0 for q 	= �, from which it follows that

dimH�(A•(A), aλ∧) = |e(M)|.
We give a proof of Theorem 1.1 which uses only Theorem 4.5 and Yuzvinsky’s

result stated above, and thus avoids use of resolution of singularities.

Proof of Theorem 1.1. The alternating sum of the dimensions of the cochain
groups Kq(A) is the Euler characteristic, so it suffices to prove that there exists a
system of weights with cohomology groups as stated in the theorem. Yuzvinsky’s
argument may be applied with weights in an arbitrary field, and requires only
that λX be an invertible element for all dense edges.

Choose a prime p > n and let λ = k/p, where kj = 1 for every j. Then
for every (dense) edge X, kX = |X| ≤ n < p. Thus kX is a unit in Zp, and
Hq(A•

p(A), āk∧) = 0 for q 	= �. So by Theorem 4.5, for the rational local system
L corresponding to λ, we have Hq(M,L) = 0 for q 	= �, and we are done.

Remark 4.10. There are in general many non-resonant weights which do not lie
in the set W. For instance, we have λ(1, 0) ∈ U \ W in Example 4.6. Turning
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to resonant weights, the arrangement of three lines through the origin in C
2

with weights λ = (λ1, λ2, λ3) ∈ V satisfying λ1 + λ2 + λ3 = 0 shows that
V 	⊆ U. Examples 3.4 and 3.5 show that there are resonant weights λ for which
λ+m 	∈ V for any m ∈ Z

n. The following summarizes our current understanding
of resonant weights:

1. If λ + m ∈ V for some m ∈ Z
n, then H∗(M ;L) � H∗(A•

C, aλ+m∧) and we
have an effective algorithm.

2. Otherwise, we have only the inequalities

dimC Hq(A•
C, aλ∧) ≤ dimC Hq(M ;L) ≤ dimC Hq(M ; C)

for arbitrary weights, and

dimC Hq(A•
C, aλ∧) ≤ dimC Hq(M ;L) ≤ rankZN

Hq(A•
N , āk∧)

for rational weights.
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