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EXPONENTIAL BOUNDS OF THE RESOLVENT FOR A
CLASS OF NONCOMPACTLY SUPPORTED PERTURBATIONS

OF THE LAPLACIAN

Georgi Vodev

1. Introduction and statement of results

Let O ⊂ R
n, n ≥ 2, be a bounded domain with C∞ boundary Γ and connected

complement Ω = R
n \ O. Consider in Ω the operator

∆g := c(x)2
n∑

i,j=1

∂xi(gij(x)∂xj ),

where c(x), gij(x) ∈ C∞(Ω), c(x) ≥ c0 > 0 and
n∑

i,j=1

gij(x)ξiξj ≥ C|ξ|2, ∀(x, ξ) ∈ T ∗Ω, C > 0.

We suppose that for all multi-indices α such that |α| ≤ 1, we have

(1.1) |∂α
x (c(x) − 1)| +

n∑
i,j=1

|∂α
x (gij(x) − δij)| ≤ C1e

−C2〈x〉p

, ∀x ∈ Ω,

where 〈x〉 = (1 + |x|2)1/2, C1, C2 > 0 and p > 2. Here δij denotes Kronecker’s
symbol. We also suppose that for all multi-indices α,

(1.2) |∂α
x c(x)| +

n∑
i,j=1

|∂α
x gij(x)| ≤ Cα < ∞, ∀x ∈ Ω.

Denote by G the selfadjoint realization of ∆g in the Hilbert space

H = L2(Ω; c(x)−2dx)

with a domain of definition D(G) = {u ∈ H2(Ω), Bu|Γ = 0}, where either B =
Id ( Dirichlet boundary conditions) or B = ∂ν (Neumann boundary conditions).
Consider the resolvent R(λ) := (G + λ2)−1 : H → H defined for Imλ < 0. It is
well known that for any b > 0 the modified resolvent e−b〈x〉R(λ)e−b〈x〉 : H → H
extends meromorphically to Imλ < Cb with poles (which do not depend on b)
called resonances. In what follows ‖ · ‖ will denote the norm in L(H, H). The
purpose of this work is to prove the following
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Theorem 1.1. Under the assumptions (1.1) and (1.2), there exist positive con-
stants C1, C2 and λ0 so that

(1.3) ‖e−〈x〉R(λ)e−〈x〉‖ ≤ C1e
C2|λ| for λ ∈ R, |λ| ≥ λ0.

Note that for compactly supported perturbations, Burq [1] has proved a sim-
ilar result using the Carleman estimates proved by Lebeau-Robbiano [2], [3].
Another proof (much simpler and shorter) of Burq’s result is presented in [5].
In the same way as in the case of compactly supported perturbations one can
derive from (1.3) the following

Corollary 1.2. Under the assumptions (1.1) and (1.2), there exist positive con-
stants C̃1, C̃2 and C̃3 so that there are no resonances of G in the region

{λ ∈ C : Im λ ≤ C̃1e
−C̃2|λ|, |Re λ| ≥ C̃3}.

To prove (1.3) we follow the approach developed in [5] and based on some
estimates due to Lebeau-Robbiano [2], [3] (see the appendix in the present pa-
per). We first show that (1.3) is equivalent to a similar bound of the resolvent of
another operator, depending on λ, which is a compactly supported (in a ball of
radius a = O(λq) with 0 < q < 1

p < 1
2 ) perturbation of the free Laplacian. Then

we paste the estimates of Lebeau-Robbiano [2], [3] mentioned above (applied in
Ωa0 := {x ∈ Ω : |x| ≤ a0}, a0 � 1 being independent of λ (see (4.1))) with
Carleman estimates in a0 ≤ |x| ≤ a. When a does not depend on λ these latter
estimates follow from [2]. Here we modify the original proof in order to have es-
timates uniform in both λ and a. Finally, we combine these estimates with some
properties of the Neumann operator on the sphere Sa := {x ∈ R

n : |x| = a} (see
Lemma 3.1) to get the desired result.

2. Reduction of the problem

Clearly, it suffices to prove (1.3) for real λ � 1. Let χ̃ ∈ C∞
0 (Rn), 0 ≤ χ̃ ≤ 1,

χ̃ = 1 for |x| ≤ 1/3, χ̃ = 0 for |x| ≥ 1/2. Given any a > 0, set χa(x) = χ̃(x/a).

Lemma 2.1. For any 0 < δ � 1, we have∑
|α|≤2

‖e−〈x〉∂α
x R(λ)e−〈x〉‖ ≤ C + C

∑
|α|≤2

‖χλδ∂α
x R(λ)χλδ‖,(2.1)

with a constant C > 0 independent of λ.

Proof. Denote by G0 the selfadjoint realization of the Laplacian ∆ in R
n on

the Hilbert space L2(Rn), and set R0(λ) = (G0 + λ2)−1. Denote by ‖ · ‖0 the
norm in L(L2(Rn)). Take a ρ0 � 1, independent of λ, so that χρ0 = 1 in a
neighbourhood of O. We have

(1 − χρ0)R(z) = R0(z)(1 − χρ0) + R0(z) ([χρ0 ,∆] + (1 − χρ0)(∆g − ∆)) R(z)
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for Im z < 0, and hence

e−〈x〉(1 − χλδ)∂α
x R(λ)e−〈x〉 = e−〈x〉(1 − χλδ)∂α

x R0(λ)(1 − χρ0)e
−〈x〉

+ e−〈x〉(1 − χλδ)∂α
x R0(λ) ([χρ0 ,∆] + (1 − χρ0)(∆g − ∆)) R(λ)e−〈x〉.

This implies

‖e−〈x〉(1 − χλδ)∂α
x R(λ)e−〈x〉‖

≤ O(λ−∞)‖e− 1
2 〈x〉∂α

x R0(λ)e−〈x〉‖0

+ O(λ−∞)‖e− 1
2 〈x〉∂α

x R0(λ)e−〈x〉‖0

∑
|β|≤2

‖e−〈x〉∂β
xR(λ)e−〈x〉‖

≤ O(λ−∞)

1 +
∑
|β|≤2

‖e−〈x〉∂β
xR(λ)e−〈x〉‖

 .

Clearly, similar estimate holds for ‖e−〈x〉∂α
x R(λ)(1−χλδ)e−〈x〉‖, and (2.1) follows

easily from the above estimates.

Given a � 1, denote

∆a
g := c(x)2

n∑
i,j=1

∂xi
(χagij(x)∂xj

) +
n∑

i,j=1

∂xi
((1 − χa)δij∂xj

).

Denote by Ga the selfadjoint realization of ∆a
g on H, and set

Ra(z) := (Ga + z2)−1.

Lemma 2.2. For a � λδ, 0 < δ � 1, we have

(2.2)

1 − O(e−Cap

)
∑
|α|≤2

‖χλδ∂α
x Ra(λ)χλδ‖

 ∑
|α|≤2

‖χλδ∂α
x R(λ)χλδ‖

≤
∑
|α|≤2

‖χλδ∂α
x Ra(λ)χλδ‖,

with a constant C > 0 independent of a and λ.

Proof. We have

χλδ∂α
x R(λ)χλδ = χλδ∂α

x Ra(λ)χλδ + χλδ∂α
x Ra(λ)(Ga − G)R(λ)χλδ ,

and hence, in view of (1.1),

‖χλδ∂α
x R(λ)χλδ‖ ≤ ‖χλδ∂α

x Ra(λ)χλδ‖
+ O(e−Cap

)‖χλδ∂α
x Ra(λ)e−〈x〉‖

∑
|β|≤2

‖e−〈x〉(1 − χλδ)∂β
xR(λ)χλδ‖.
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On the other hand, in the same way as in the proof of Lemma 2.1, we have∑
|α|≤2

‖χλδ∂α
x Ra(λ)e−〈x〉‖ ≤ C + C

∑
|α|≤2

‖χλδ∂α
x Ra(λ)χλδ‖,

∑
|β|≤2

‖e−〈x〉(1 − χλδ)∂β
xR(λ)χλδ‖ ≤ C + C

∑
|β|≤2

‖χλδ∂β
xR(λ)χλδ‖.

Clearly, (2.2) follows from the above esimates.

In the next sections we will prove the following

Proposition 2.3. If a = λq with δ < q < 1/2, we have

(2.3) ‖χλδ∂α
x Ra(λ)χλδ‖ ≤ eCλ, ∀α, 0 ≤ |α| ≤ 2,

with a constant C > 0 independent of λ.

Clearly, taking 1
p < q < 1

2 , (1.3) follows from (2.3) combinned with Lemmas
2.1 and 2.2.

3. Proof of Proposition 2.3

In what follows a = λq, λ � 1, with 0 < q < 1/2. Consider the problem
(∆a

g + λ2)u = v in Ω,

Bu = 0 on Γ,

u − λ − outgoing,

where v ∈ C∞(Ω), supp v ⊂ Ωλδ := {x ∈ Ω : |x| < λδ}. Clearly, (2.3) is
equivalent to the estimate

(3.1) ‖u‖H2(Ω
λδ ) ≤ eCλ‖v‖L2(Ω),

with a constant C > 0 independent of λ. Denote Sa = {x ∈ R
n : |x| = a}. Define

the Neumann operator N(λ) : H1(Sa) → L2(Sa) by N(λ)g := λ−1∂ν′w|Sa
,

where w solves the equation
(∆ + λ2)w = 0 in |x| > a,

w = g on S,

w − λ − outgoing.

Here ν′ denotes the outer unit normal to Sa. Throughout this paper, given a
domain K, Hs(K) will denote the Sobolev space equipped with the semiclassical
norm ‖f‖Hs(K) := ‖Λsf‖L2(K), where Λs is a λ − ΨDO on K with principal
symbol (|ξ|2 + 1)s/2.

Clearly, u and v satisfy the equation
(∆a

g + λ2)u = v in Ωa,

Bu = 0 on Γ,

λ−1∂νu|Sa
+ N(λ)f = 0,
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where f = u|Sa
and ν = −ν′ denotes the inner unit normal to Sa. By Green’s

formula we have

−Im 〈N(λ)f, f〉L2(Sa) = −Im 〈u, c−2v〉L2(Ω
λδ )(3.2)

≤ e−βλ‖u‖2
L2(Ω

λδ ) + eβλ‖v‖2
L2(Ω),

∀β. Choose a real-valued function ρ̃(t) ∈ C∞
0 (R), 0 ≤ ρ̃(t) ≤ 1, ρ̃(t) = 1 for

t ≤ 1, ρ̃(t) = 0 for t ≥ 2, and given a γ > 0, set ργ(t) = ρ̃(λγ(t− 1)). Denote by
∆Sa the Laplace-Beltrami operator on Sa, and set L = λ−1

√−∆Sa .

Lemma 3.1. There exist positive constants c0 and C, independent of λ, so that
we have

[N(λ), L] = 0,(3.3)

−Im 〈N(λ)f, f〉L2(Sa) ≥ e−c0λ‖ρq(L)f‖2
L2(Sa),(3.4)

‖N(λ)f‖L2(Sa) ≤ C‖(L + 1)f‖L2(Sa),(3.5)

aRe 〈N(λ)f, f〉L2(Sa) ≤ Cλ− 1
3 (1−2q)‖f‖2

L2(Sa).(3.6)

Proof. Let {µj} be the eigenvalues of
√−∆S1 repeated according to multiplicity.

Then (aλ)−1µj are the eigenvalues of L, and let {ej} be the corresponding
eigenfunctions, i.e. Lej = (aλ)−1µjej . If f ∈ L2(Sa), we write f =

∑
αjej ,

where {αj} are such that
‖f‖2

L2(Sa) =
∑

α2
j .

It is well known that N(λ)f is given by the formula

(3.7) N(λ)f = − 1
2a

(n − 2 + λ−1)f +
∑ h′

ν(aλ)
hν(aλ)

αjej ,

where hν(z) = z1/2H
(2)
ν (z), ν =

√
µ2

j + (n
2 − 1)2, H

(2)
ν (z) being the Hankel func-

tion of second type. For real z > 0, set ψν(z) = −Im h′
ν(z)

hν(z) , ην(z) = −Re h′
ν(z)

hν(z) .
Clearly, (3.7) implies (3.3). Moreover, we have

−Im 〈N(λ)f, f〉L2(Sa) =
∑

ψν(aλ)α2
j ,(3.8)

Re 〈N(λ)f, f〉L2(Sa) ≤ −
∑

ην(aλ)α2
j ,(3.9)

‖N(λ)f‖2
L2(Sa) ≤ C ′‖f‖2

L2(Sa) +
∑ ∣∣∣∣h′

ν(aλ)
hν(aλ)

∣∣∣∣2 α2
j ,(3.10)

where C ′ > 0 is independent of λ.
Since hν(z) satisfies the equation

h′′
ν(z) =

(
ν2 − 1/4

z2
− 1

)
hν(z),

we have

ψ′
ν(z) = Im

((
h′

ν(z)
hν(z)

)2

− h′′
ν(z)

hν(z)

)
= 2ηνψν .
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This implies

(3.11) ψν(νz) = ψν(νz0) exp
(

2ν

∫ z

z0

ην(νy)dy

)
.

Set z = aλ/ν. On supp ρq we have z ≥ 1 − O(λ−q). Take z0 = 1 + ν−γ with
γ = q

q+1 < 1
3 . By Olver’s expansions (see [4])

ψν(νz0) =

√
z2
0 − 1
z0

+ O(ν−1/3) = ν−γ/2(
√

2 + o(1)),

and ην(νy) = O(1) for 1 − O(λ−q) ≤ y ≤ 1 + ν−γ . By (3.11),

ψν(νz) ≥ ν−γ/2 exp
(−νO(λ−q + ν−γ)

)
.

On the other hand, we have ν ≤ 2aλ on suppρq, and hence ∃ν0 � 1 so that for
ν ≥ ν0 we have

(3.12) ψν(νz) ≥ (aλ)−γ/2 exp
(
−νO(λ) − O(λ(1−γ)(1+q))

)
≥ exp(−c0λ),

with c0 > 0 independent of λ. Moreover, it is clear from (3.11) that

(3.13) ψν(z) > 0, ∀z > 0, ∀ν ≥ ν0.

Let now 1/2 < ν ≤ ν0. Using the well known asymptotics of the Hankel
functions as z → +∞, ν > 1/2 fixed, we get

(3.14) ψν(z) = 1 + O(z−1), 1/2 < ν ≤ ν0.

Clearly, (3.4) follows from (3.8) combined with (3.12)-(3.14).
It is clear from (3.10) that (3.5) would follow from the bound

(3.15)
∣∣∣∣h′

ν(νz)
hν(νz)

∣∣∣∣ ≤ C(1 + z−1), ∀z > 0,

while (3.6) would follow from (3.9) and the inequality

(3.16) −ην(z) ≤ Cz−1/3, ∀z ≥ 1,

where C > 0 is independent of z and ν. By Olver’s expansions ([4]), uniformly
for 0 < z ≤ 1/2, ν ≥ ν0 � 1, we have

z
h′

ν(νz)
hν(νz)

= −
√

1 − z2 + O(ν−1),

while for z ≥ 2,
h′

ν(νz)
hν(νz)

= −i

√
z2 − 1

z
+ O(ν−1).

On the other hand,

h′
ν(νz)

hν(νz)
= O(1) for 1/2 ≤ z ≤ 2,
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and (3.15) follows when ν ≥ ν0 � 1. If 1/2 < ν ≤ ν0, (3.15) follows from the
well known asymptotics:

lim
z→0+

z

∣∣∣∣h′
ν(z)

hν(z)

∣∣∣∣ = 1, lim
z→+∞

∣∣∣∣h′
ν(z)

hν(z)

∣∣∣∣ = 1.

Moreover, ην(z) = O(z−1) as z → +∞, which proves (3.16) when 1/2 < ν ≤ ν0.
If ν ≥ ν0 � 1, (3.16) would follow from

(3.17) −z1/3ην(νz) ≤ Cν−1/3, ∀z ≥ ν−1.

We have −ην(νz) = O(ν−1) uniformly in z ≥ 2. If ν−1 ≤ z ≤ 1/2,

−zην(νz) = −
√

1 − z2 + O(ν−1) ≤ O(ν−1),

which clearly implies (3.17) in this case. Let now 1/2 ≤ z ≤ 2. By Olver’s expan-
sions ([4]), we have −ην(νz) = k(z) + O(ν−1/3) with a function k(z) satisfying
Re k(z) ≤ 0, which implies (3.17) in this case, too.

It is easy to see that (3.1) would follow from (3.2), (3.4) and the following

Proposition 3.2. There exist positive constants C and λ0 so that for λ ≥ λ0

we have

(3.18) e−Cλ‖u‖H2(Ω
λδ ) ≤ ‖v‖L2(Ω) + ‖ρq(L)f‖L2(Sa).

Note that, in view of the coercivity of the boundary value problem, we have

‖u‖H2(Ω
λδ ) ≤ O(1)‖u‖L2(Ω

λδ ) + O(1)‖∆a
gu‖L2(Ω

λδ )

≤ O(1)‖u‖L2(Ω
λδ ) + O(1)‖v‖L2(Ω),

so it suffices to prove (3.18) for ‖u‖L2(Ω
λδ ) only.

4. Proof of Proposition 3.2

Let χ ∈ C∞
0 (Rn), χ = 1 for |x| ≤ a0 +2, χ = 0 for |x| ≥ a0 +3, where a0 � 1

does not depend on λ and will be fixed later on. Applying Theorem A.2 to the
function χu (with M = Ωa0+4) leads to the estimate

(4.1)
∫

Ωa0+2

(|u|2 + |λ−1∇u|2) dx

≤ e2γ1λ

∫
a0+2≤|x|≤a0+3

(|u|2 + |λ−1∇u|2) dx + e2γ1λ‖v‖2
L2(Ω),

with some γ1 > 0.
Set P = −λ−2∆a

g − 1. If ϕ ∈ C∞(Ωa), then Pϕ := eλϕPe−λϕ is a λ − ΨDO
with principal symbol pϕ(x, ξ) = p(x, ξ + i∇a

gϕ), p being the principal symbol of
P considered as a λ − ΨDO, and ∇a

gϕ is a vector-valued function defined by

(∇a
gϕ)j =

n∑
i=1

(c2χagij + (1 − χa)δij)∂xiϕ, j = 1, ..., n.
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Fix an ε such that 0 < ε < (2q)−1 − 1. Denote r = |x| and for a0 ≤ r ≤ a, set

ϕ(r) = −1 − C̃(r−ε − a−ε
0 ),

where C̃ > 0 is independent of r. Clearly, taking C̃ = C̃(a0, γ1) large enough we
can arrange ϕ(a0 +2) ≥ γ1 +1 and hence ϕ(r) ≥ γ1 +1 for a0 +2 ≤ r ≤ a. Since
ϕ(a0) = −1, there exist a0 < a1 < a2 < a0 + 1 so that ϕ(r) < 0 for a1 ≤ r ≤ a2.
Choose a function η ∈ C∞(Rn), η = 0 for |x| ≤ a1, η = 1 for |x| ≥ a2. Set
w = eλϕηu. In what follows ‖ · ‖ and 〈·, ·〉 will denote the norm and the scalar
product in L2(a0 ≤ |x| ≤ a), ‖ · ‖1 will denote the norm in H1(a0 ≤ |x| ≤ a),
while ‖ · ‖0 and 〈·, ·〉0 will denote the norm and the scalar product in L2(Sa). It
is easy to see that Proposition 3.2 would follow from (4.1) and the following

Proposition 4.1. There exist positive constants C and λ0 so that for λ ≥ λ0

we have

(4.2) ‖w‖1 + λq/2‖(L + 1)w|Sa‖0

≤ Cλ1/2+q(1+ε)‖Pϕw‖ + Cλq/2‖ρq(L)w|Sa
‖0.

Proof. We will first prove the following

Lemma 4.2. There exist positive constants C and λ0 so that for λ ≥ λ0 we
have

(4.3) ‖w‖1 ≤ Cλ1/2+q(1+ε)‖Pϕw‖ + Cλq/2‖(L + 1)w|Sa‖0.

Proof. When q = 0 the lemma follows from the Carleman estimates of Lebeau-
Robbiano [2]. We will modify their proof in a way allowing to get estimates
uniform in both λ and a. Set f1 := w|Sa and denote ϕ′(r) = dϕ(r)/dr, ϕ′′(r) =
d2ϕ(r)/dr2. Then the boundary conditions on Sa become

λ−1∂νw|Sa = −(N(λ) + ϕ′(a))f1.

Let P ∗
ϕ be the formal adjoint to Pϕ and denote Q1 = Pϕ+P∗

ϕ

2 , Q2 = Pϕ−P∗
ϕ

2i

and Q = iλ[Q1, Q2] with principal symbols Re pϕ, Im pϕ and {Re pϕ, Im pϕ},
respectively. We are going to take advantage of the identity (see (16)–(18) of [2])

(4.4) λ‖Pϕw‖2 = λ‖Q1w‖2 + λ‖Q2w‖2 + 〈Qw, w〉 + B(w),

where

(4.5) B(w) = 〈Q2w|Sa
, (iλ)−1∂νw|Sa

〉0 +

〈(iλ)−1∂νQ2w|Sa + 2ϕ′(a)Q1w|Sa , f1〉0.
Using that ∆a

g = ∆ near Sa, one can rewrite (4.5) in the form

B(w) = −2ϕ′(a)
(‖λ−1∂νw|Sa‖2

0 − 〈(L2 + O(1))f1, f1〉0
)

+ O((aλ)−1)
∣∣〈λ−1∂νw|Sa , f1〉0

∣∣ ,

and hence, in view of (3.5),

(4.6) |B(w)| ≤ C1ϕ
′(a)

(‖N(λ)f1‖2
0 + ‖(L + 1)f1‖2

0

) ≤ C2a
−1−ε‖(L + 1)f1‖2

0,
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with C2 > 0 independent of λ.
Introduce the polar coordinates r = |x|, a0 ≤ r ≤ a, θ = x

|x| ∈ S1, and denote
by (ρ, σ) the dual variables of (r, θ). Set Dr = (iλ)−1∂r, Dθ = (iλ)−1∂θ. In view
of (1.1), it is easy to see that the principal symbols of P , Q1 and Q2 can be
written in these coordinates as follows:

p(r, θ, ρ, σ) = (1 + b1(r, θ))ρ2 +
|σ|2
r2

(1 + b2(r, θ)) − 1,

Re pϕ(r, θ, ρ, σ) = (1 + b1(r, θ))ρ2 +
|σ|2
r2

(1 + b2(r, θ)) − 1 − ϕ′(r)2,

Im pϕ(r, θ, ρ, σ) = 2(1 + b1(r, θ))ϕ′(r)ρ,

where bj ∈ C∞, bj = 0 for 2
3a ≤ r ≤ a, bj = O(r−∞) with all its first derivatives.

Furthermore, an easy computation gives

{Re pϕ, Im pϕ} = 4(1 + O(r−∞))
(

ϕ′′ρ2 +
ϕ′|σ|2

r3
+ ϕ′2ϕ′′

)
.

More precisely, the operator Q can be written in the form

(4.7) Q = b̃1Q1 + b̃2Q2 + Dr (̃b3Dr) + Q0,

where b̃j ∈ C∞, b̃j = O(ϕ′′) = O(r−2−ε), b̃3 real-valued. Q0 is a second order
differential operator with coefficients, cβ(r, θ;λ), which in view of (1.2) satisfy

|∂k
r cβ(r, θ;λ)| + |(r−1∂θ)αcβ(r, θ;λ)| ≤ Ck,α < ∞,

for all multi-indeces (k, α) with constants Ck,α independent of λ, whose principal
symbol is of the form q0(r, θ, σ) and satisfies, for a0 ≤ r ≤ a,

q0(r, θ, σ) ≥ Cr−2−ε

( |σ|2
r2

+ 1
)

≥ Ca−2−ε

( |σ|2
r2

+ 1
)

, C > 0.

Hence, by Gärding’s inequality

(4.8) Re 〈Q0w, w〉 ≥ Ca−2−ε

∫ a

a0

‖(1 − λ−2∆Sr )
1/2w‖2

L2(Sr)dr − O(λ−1)‖w‖2
1.

Integrating by parts we get

〈Qw, w〉 = Re 〈Q0w, w〉 + Re 〈̃b1Q1w, w〉 + Re 〈̃b2Q2w, w〉(4.9)

+ Re 〈̃b3Drw,Drw〉 + b̃3(a)Re 〈λ−1∂νw|Sa
, f1〉0

≥ Re 〈Q0w, w〉 − O(a−2−ε
0 )

(
λ‖Q1w‖2 + λ‖Q2w‖2 + ‖Drw‖2

)
− O(λ−1)‖w‖2 − O(a−2−ε)‖(L + 1)f1‖2

0.
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Combining (4.4), (4.6), (4.8) and (4.9) and taking a0 � 1 large enough, inde-
pendent of λ, lead to

λ‖Pϕw‖2 ≥ C1λϕ′(a)2‖Drw‖2 + C1a
−2−ε

∫ a

a0

‖(1 − λ−2∆Sr )
1/2w‖2

L2(Sr)dr

− O(λ−1)‖w‖2
1 − O(a−1−ε)‖(L + 1)f1‖2

0

≥ (
C2a

−2−ε − O(λ−1)
) ‖w‖2

1 − O(a−1−ε)‖(L + 1)f1‖2
0

≥ C3a
−2−ε‖w‖2

1 − O(a−1−ε)‖(L + 1)f1‖2
0,

with a constant C3 > 0, independent of λ, which clearly implies (4.3).

Set ζq(t) = (1 − ρq(t))(1 + t). Clearly, Proposition 4.1 would follow from
Lemma 4.2 and the following

Lemma 4.3. There exist positive constants C and λ0 so that for λ ≥ λ0 we
have

(4.10) ‖ζq(L)f1‖0 ≤ Cλ1/2+q‖Pϕw‖ + Cλ−1/2‖w‖1.

Proof. Let φ(t) ∈ C∞
0 (R), φ(t) = 1 for |t| ≤ 1/5, φ(t) = 0 for |t| ≥ 1/4, and set

φa(r) = φ(1−r/a), w1 = φa(r)ζq(L)w. Clearly, ∆a
g = ∆ on suppw1. Integrating

by parts one gets

Im 〈Q2w1, w1〉 = O(λ−1ϕ′(a))‖ζq(L)f1‖2
0,(4.11)

Re 〈(Q1 −D2
r)w1, w1〉 + ‖Drw1‖2 = Re 〈Pϕw1, w1〉(4.12)

+ λ−1Re 〈N(λ)ζq(L)f1, ζq(L)f1〉0
+ O(λ−1ϕ′(a))‖ζq(L)f1‖2

0.

On the other hand, we have

Re 〈(Q1 −D2
r)w1, w1〉 =

〈((a

r

)2

L2 − 1 − ϕ′(r)2
)

w1, w1

〉
(4.13)

+ O(λ−1)〈Drw1, w1〉
≥ 〈(

L2 − 1 − (ϕ′(a/2))2
)
w1, w1

〉
− O(λ−1)

(‖Drw1‖2 + ‖w1‖2
)
.

Since (
t − 1 − (ϕ′(a/2))2

)
ζq(t) ≥ Cλ−q(t + 1)ζq(t), C > 0,

we have that the scalar product in the RHS of (4.13) is estimated from below by

Cλ−q‖(L + 1)w1‖2.

Thus, by (4.12) and (4.13) together with (3.6), ∀ε0 > 0,

λ−q‖(L + 1)w1‖2 + ‖Drw1‖2 ≤ Oε0(λ
q)‖(L + 1)−1Pϕw1‖2

+ ε0λ
−q‖(L + 1)w1‖2 + λ−1−qO

(
λ− 1

3 (1−2q)
)
‖ζq(L)f1‖2

0,
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and hence

(4.14) λ‖(L + 1)w1‖2 + λ‖Drw1‖2

≤ O(λ1+2q)‖(L + 1)−1Pϕw1‖2 + O
(
λ− 1

3 (1−2q)
)
‖ζq(L)f1‖2

0.

On the other hand,

(4.15) ‖ζq(L)f1‖2
0 ≤ λ‖w1‖2 + λ‖Drw1‖2.

By (4.14) and (4.15),

‖ζq(L)f1‖0 ≤ O(λ1/2+q)‖(L + 1)−1Pϕw1‖
≤ O(λ1/2+q)‖Pϕ(φaw)‖
≤ O(λ1/2+q)‖Pϕw‖ + O(λ1/2+q)‖[Pϕ, φa]w‖
≤ O(λ1/2+q)‖Pϕw‖ + O(λ−1/2)‖w‖1,

since φ′
a = O(a−1), φ′′

a = O(a−2).

Appendix

Let (M, g) be a compact, connected Riemannien manifold with a C∞-smooth
boundary ∂M , and denote by ∆ the Laplace-Beltrami operator on (M, g). Let
U ⊂ M be an arbitrary open domain such that ∂M ∩ ∂U = ∅. Set X =
(−1, 1) × M , Y = (− 1

2 , 1
2 ) × M , Z = (−1, 1) × U , and denote Q = ∂2

t + ∆. The
following estimates are due to Lebeau-Robbiano [2], [3]:

Theorem A.1. Let v(t, x) ∈ C∞(X) satisfy either the Dirichlet or Neumann
boundary conditions on ∂M for every t ∈ (−1, 1). Then there exist positive
constants C and µ, 0 < µ < 1, such that

‖v‖H1(Y ) ≤ C
(‖v‖H1(X)

)1−µ (‖Qv‖L2(X) + ‖v‖H1(Z)

)µ
.(A.1)

In the case of Dirichlet boundary conditions this theorem is proved in Section
3 of [2]. The main idea is to prove (A.1) locally (which in turn is done by
obtaining local Carleman estimates) and then to propagate this estimate up to
an arbitrary open domain in M . In the case of Neumann boundary conditions
the proof goes in the same way except that in this case the Carleman estimates
are harder to prove. Such Carleman estiamtes are established in Section 5 of [3].

Let us apply the above theorem to the function v(t, x) = etλu(x), where λ ∈ R

and u ∈ C∞(M). Denote P = ∆ + λ2 and observe that Qv = etλPu. We have
the following

Theorem A.2. Let u(x) ∈ C∞(M) satisfy either Dirichlet or Neumann bound-
ary conditions on ∂M . Then there exist positive constants C and γ, independent
of λ, such that

(A.2) ‖u‖H1(M) ≤ Ceγ|λ| (‖Pu‖L2(M) + ‖u‖H1(U)

)
.
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