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A MAXIMAL OPERATOR AND A COVERING LEMMA ON
NON-COMPACT SYMMETRIC SPACES

Alexandru D. Ionescu

Abstract. The purpose of this paper is to investigate Lp boundedness properties
of a maximal operator on non-compact symmetric spaces and prove a related
covering lemma.

1. Introduction

Let G be a non-compact connected semisimple Lie group with finite center,
K a maximal compact subgroup and X = G/K a non-compact symmetric space.
The group G acts by left translations on the space X and induces a G-invariant
measure dz on X. One also has a distance function d : X × X → R+ induced by
the Killing form on the Lie algebra g of the Lie group G. For each z ∈ X and
r > 0 let B(z, r) = {z′ ∈ X : d(z, z′) < r} be the ball centered at z of radius r
and let F be the set of all balls B(z, r), z ∈ X, r > 0. For any locally integrable
function f on X let

MFF(z) = sup
z∈B∈F

1
|B|

∫
B

|f(z′)|dz′,(1.1)

where |B| denotes the measure of the set B ⊂ X. In this paper we will study
the question of Lp boundedness of the maximal operator MF and prove the
following theorem:

Theorem 1a. The maximal operator MF is bounded from Lp(X) to Lp(X) in
the sharp range of exponents p ∈ (2,∞].

We recall that the centered maximal operator

Mf(z) = sup
r>0

1
|B(z, r)|

∫
B(z,r)

|f(z′)|dz′,

is bounded from L1(X) to L1,∞(X) and from Lp(X) to Lp(X) for all p > 1 as
shown in [7] and [1]. However, unlike in Euclidean spaces, balls on symmetric
spaces do not have the doubling property (i.e., |B(z, 2r)| is not proportional
to |B(z, r)| if r is large) thus the two maximal operators MF and M are not
comparable.
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A simple connection between boundedness of maximal operators and covering
lemmata is explained in [2]. In our setting we have the following equivalent
formulation of Theorem 1a:

Theorem 1b. If a collection of balls Bi ∈ F , i ∈ I has the property that |∪Bi| <
∞ then one can select a finite subset J ⊂ I such that

(i) c

∣∣∣∣ ∪i∈I
Bi

∣∣∣∣ ≤
∣∣∣∣ ∪
j∈J

Bj

∣∣∣∣ ;

(ii)

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
j∈J

χBj

∣∣∣∣∣∣
∣∣∣∣∣∣
Lq(X)

≤ Cq

∣∣∣∣ ∪i∈I
Bi

∣∣∣∣
1/q

, q ∈ [1, 2).
(1.2)

In the terminology of [2] the family F of balls on X has the covering prop-
erty Vq, 1 ≤ q < 2. The inequality (ii) in (1.1) is the natural analog of the
requirement that the selected balls are disjoint: if Bi, i ∈ I are standard balls in
some Euclidean space, then one can select disjoint balls Bj , j ∈ J that satisfy
inequality (i) in (1.1). Notice that the disjointness property of the balls Bj is
equivalent to ∣∣∣∣∣∣

∣∣∣∣∣∣
∑
j∈J

χBj

∣∣∣∣∣∣
∣∣∣∣∣∣
L∞

≤ ||χ∪Bi ||L∞ .

Since balls on symmetric spaces do not have the basic doubling property the
disjointness property of the selected balls has to be replaced by (1.1)(ii).

We will prove in the last section of this paper that the maximal operator
MF is not bounded from the Lorentz space L2,α(X) to L2,∞(X) if α > 1. As
a consequence the ranges of p ∈ (2,∞] for which MF is bounded on Lp and
q ∈ [1, 2) for which the family F has the covering property Vq are best possible.
On the other hand, it is proved by a different method in [4] that the maximal
operator MF is bounded from L2,1(X) to L2,∞(X) if, in addition, the group G

has real rank one. The author does not know however whether this endpoint
estimate holds in the general case.

This work was originally started in collaboration with Jean-Philippe Anker.
I would like to thank to him for a number of most clarifying discussions on the
structure of semisimple Lie groups and symmetric spaces of high real rank and
for explaining to me some of the related methods. I would also like to thank to
Elias M. Stein for pointing out to me the papers [2] and [5] that play an essential
role in the proofs.

2. Preliminaries

In this section we summarize some of the standard notation related to non-
compact semisimple Lie groups and state two propositions that will be needed in
the proof of Theorem 1b in the next section. We start by rewriting Proposition 1
in [2] in a setting suitable for our purposes. Let X be a manifold with a measure
dν such that open sets are measurable, ν(K) < ∞ for any compact set K ⊂ X
and ν(O) = sup ν(K) for any measurable set O where the supremum is taken
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over all compact subsets K ⊂ O. Let F be a family of open subsets of X of
finite measure and assume that r, s ∈ (1,∞) are such that 1/r + 1/s = 1.

Proposition 2. The following statements are equivalent:
(1) The maximal operator

MF f(x) = sup
x∈D∈F

1
ν(D)

∫
D

|f(y)|dν(y),

is bounded from Lr(X, dν) to Lr,∞(X, dν).
(2) Given a finite collection of sets Di ∈ F , i ∈ I, I finite, one can select a

subset J ⊂ I such that

(i) cν

(
∪

i∈I
Di

)
≤ ν

(
∪

j∈J
Dj

)
;

(ii)

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
j∈J

χDj

∣∣∣∣∣∣
∣∣∣∣∣∣
Ls(X,dν)

≤ Cν

(
∪

i∈I
Di

)1/s

.

As in [2], we will say that the family F has the covering property Vs if it satis-
fies part (2) of the proposition. In addition, assuming that the maximal operator
MF is bounded from Lr(X, dν) to Lr,∞(X, dν) then the selection algorithm given
in [2] guarantees that for all i ∈ I∣∣∣∣Di ∩

(
∪

j∈J
Dj

)∣∣∣∣ ≥ |Di|/2.(2.1)

We now turn to the structure of the group G. Most of our notation is standard
and can be found, for example, in [3]. Let g be the Lie algebra of G, θ a Cartan
involution of g and let g = k⊕ p be the associated Cartan decomposition. Let a

be a maximal abelian subspace of p, # = dimRa the real rank of the group G, Σ
the restricted root system of the pair (g, a) and W the associated Weyl group.
We fix once and for all a positive Weyl chamber a+ and let Σ+, respectively Σ+

0 ,
denote the corresponding set of positive, respectively simple positive, roots. For
any root α ∈ Σ let gα be the root space associated to α and let n be the direct
sum of positive root spaces gα, α ∈ Σ+. Let n = θ(n), N = exp n and N = exp n.

The group G has an Iwasawa decomposition G = K(exp a)N and a Cartan
decomposition G = K(exp a+)K. For each g ∈ G denote by H(g) ∈ a and
g+ ∈ a+ the middle components of g in these decompositions. It is well known
that the functions g → H(g), respectively g → g+, are continuous functions
from G to a, respectively to a+.

The Iwasawa decomposition G = NAK shows that we can identify the sym-
metric space G/K with N× a using the map (n, H) → n(expH) · 0. The change
of measure is dz = Ce2ρ(H)dndH where dn is a Haar measure on N and ρ =
1
2

∑
α∈Σ+

dim(gα)α. For any H ∈ a and n ∈ N let δH(n) = (expH)n(exp(−H)).

It is well known that δH(n) ∈ N and the map n1 → n2 = δH(n1) is a dilation of
N with dn2 = e−2ρ(H)dn1. Let P (n) = e−2ρ(H(n)) be the Poisson kernel on N.
Most of our analysis on the group N will be based on the following proposition:
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Proposition 3. The maximal operator

Mεφ(n) = sup
H∈a

∫
N

|φ(n(δH(m)))| (P (m) + P (m−1)
)(1+ε)/2

dm,(2.2)

is bounded on Lr(N) for all ε > 0 and r > 1.

Proposition 3 is essentially proved in [5]. Proposition 5.1 in [5] guarantees the
fact that the maximal operator

M ′
εφ(n) = sup

H∈aZ

∫
N

φ(n(δH(m))) (P (m))(1+ε)/2
dm,

is bounded on Lr(N) for any ε > 0 and r > 1 where aZ is the lattice of points
H ∈ a with the property that α(H) ∈ Z for any simple positive root α (the
notation in [5] differs from our notation in the sense that P (n) = e−2ρ(H(n−1)) in
[5]). One can repeat the argument in [5] to show that the factor (P (m))(1+ε)/2

in the definition of the operator M ′
ε can be replaced by

(
P (m−1)

)(1+ε)/2 and
the resulting maximal operator is also bounded on Lr(N) for any r > 1. Finally,
in order to be able to take the supremum over all H ∈ a in (2.2) one only needs
to notice that

P (m) ≈ P (δH(m)),(2.3)

if H ∈ a has the property that α(H) ∈ [−1, 1] for any α ∈ Σ+
0 (the nota-

tion u ≈ v means that there exists an absolute constant C depending only
on the group G such that C−1u ≤ v ≤ Cu). To prove (2.3) notice that if
m = k(m)(expH(m))n(m) then H(δH(m)) = H(m) − H + H((expH)k(m)) so
|ρ(H(δH(m)) − H(m))| ≤ C. Along this line one can also prove that if D is a
small, open, relatively compact set in N then

P (n) ≈ P (m · n),(2.4)

for all m ∈ D and n ∈ N.

3. Proof of Theorem 1b

It is more convenient to prove directly Theorem 1b and obtain Theorem 1a
as a consequence. We divide the proof of the theorem into four steps. First, we
identify naturally the symmetric space X with N × a and describe the balls Bi

after this identification in (3.1). The basic idea of our approach is to associate to
any ball Bi = B(zi, ri) ∈ F a certain subset Ei = E(ni, Hi, ri) defined in (3.2)
(called the “end” of the ball) that carries a positive proportion of the volume of
the ball Bi. In addition, the sets E(ni, Hi, ri) are product subsets of N×a and it
turns out that the family of sets of the form E(n, H, r) has the covering property
Vs for all s < ∞. This enables us to select a suitable finite subset J ⊂ I for
which we prove that the two inequalities in (1.1) hold.

Step 1. Main construction: “ends” of balls.
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The Killing form B on g induces a positive definite scalar product on a given
by 〈G, H〉 = B(G, H). For any H ∈ a let |H| = 〈H, H〉1/2, |ρ| = sup

|H|=1

ρ(H)

and Hρ the element of the sphere |H| = 1 with the property that |ρ| = ρ(Hρ);
one clearly has ρ(H) = |ρ|〈H, Hρ〉 for any H ∈ a. Let Pρ be the hyperplane (of
dimension # − 1) in a defined by the equation ρ(H ′) = 0 (i.e., the vector Hρ is
perpendicular to the hyperplane Pρ) and let H = (xHρ, H

′), x ∈ R, H ′ ∈ Pρ be
the coordinates of H in the natural identification a = RHρ×Pρ. It is well known
that Hρ ∈ a+. We will assume from now on that #, the dimension of the Lie
algebra a, is ≥ 2 i.e., the hyperplane Pρ is not degenerate (only straightforward
modifications are needed in the easier case # = 1).

Notice that we can assume that all the balls in the statement of Theorem 1b
have large radius, say ≥ 2. This is simply because small balls satisfy the usual
doubling property B(z, r) ≈ B(z, 2r) and thus the family of balls of radius ≤ 2
has the simple covering property V∞. We can also assume that the set I is finite.
Let B(r) = {H ∈ a : |H| < r} and we fix a small constant c0 with the property
that the set E(r) = {H = xHρ + H ′ : x ∈ (r − 3/2, r − 1/2), H ′ ∈ Pρ, |H ′| <

c0r
1/2} is included in B(r − 1/4) for any r ≥ 2.
Using the map (n, H) → n(expH) we identify the symmetric space X with

N × a and the relevant measure on N × a corresponding to this identification is
dµ = e2ρ(H)dndH. The letters G, H, possibly with subscripts and superscripts,
will be used to denote various elements of a and m, n will denote elements of
N . For any H ∈ a and r > 0 let D(r, H) = {n ∈ N : [n(expH)]+ ∈ B(r)}.
By Konstant’s convexity theorem, the set D(r, H) is non-empty if and only if
H ∈ B(r). If 0 = {K} is the origin of the space X then B(0, r) = {k(expH+)·0 :
k ∈ K, H+ ∈ B(r)∩a+} = {n(expH)·0 : H ∈ B(r), n ∈ D(r, H)}. For any i ∈ I
let (ni, Hi) be the unique element of N × a with the property the ni(expHi) · 0
is the center of the ball Bi and let ri ≥ 2 be the radius of the ball. The ball
Bi = B(ni(expHi) · 0, ri) can be naturally identified with a set in N × a:

(3.1) Bi ≡ B(ni, Hi, ri) =

{(niδHi(n), Hi + H) ∈ N × a : H ∈ B(ri), n ∈ D(ri, H)}.

Let D ⊂ N be a small, relatively compact open neighborhood of the origin of
N with the property that |n+| < 1/4 for any n ∈ D. Since

∣∣[n(expH)]+
∣∣ = d(n(expH) · 0,0) ≤

d(n(expH) · 0, n · 0) + d(n · 0,0) = |H| + |n+|

it follows that for any n ∈ D and H ∈ E(r) one has [n(expH)]+ ∈ B(r).
Therefore the set

Ei = E(ni, Hi, ri) = {(niδHi(n), Hi + H) ∈ N × a : H ∈ E(ri), n ∈ D}(3.2)
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is a subset of B(ni, Hi, ri); in addition, since e2ρ(H) ≈ e2|ρ|ri if H ∈ E(ri) one
has

µ(E(ni, Hi, ri)) ≈ e2|ρ|rir
(�−1)/2
i ≈ |Bi|,(3.3)

(it is shown in [7] that the volume of a ball of radius r ≥ 2 in X is proportional
to e2|ρ|rr(�−1)/2) therefore the set E(ni, Hi, ri) is product subset of N × a that
captures a positive fraction of the volume of the ball B(ni, Hi, ri).
Step 2. Selection of the subset J .

We will now show the family F1 of subsets of N × a of the form E(n, H, r) =
{(nδH(m), H + G) : G ∈ E(r),m ∈ D} parametrized over n ∈ N, H ∈ a and
r ≥ 2 has the covering property Vs for all s < ∞. The proof of this fact and
the rest of the proof of the theorem will be based on working with a family of
maximal operators on (N × a, dµ). For any ε ∈ (0, 1] and any locally integrable
function f let

Mεf(n, H) = sup
G∈a

∫
N

|f(n(δG(m)), H)| (P (m) + P (m−1)
)(1+ε)/2

dm,(3.4)

and for any ε, δ ∈ (0, 1] let

(3.5) Aε,δf(n, H) =∫
y≤2

(
sup
R>0

∫
|G′|<1,G′∈Pρ

Mεf(n, H + yHρ + RG′)dG′
)

e2|ρ|δydy.

Lemma 4. The operator Aε,δ is bounded on Lr(N × a, dµ) if r > 1/δ:

||Aε,δf ||Lr(N×a,dµ) ≤ Cr,ε,δ||f ||Lr(N×a,dµ) if r > 1/δ.

Proof of Lemma 4. Notice that we can identify the measure space (N × a, dµ)
with (N×RHρ×Pρ, e

2|ρ|xdndxdH ′) and the maximal operator Aε,δ is the compo-
sition of the operator Mε acting on the n variable, the usual (Euclidean) maximal
operator acting on H ′ ∈ Pρ and the operator Tφ(x) =

∫
y≤2

φ(x+y)e2|ρ|δydy. By
Proposition 3, the first two maximal operators are bounded on Lr(N × RHρ ×
Pρ, e

2|ρ|xdndxdH ′) for any r > 1; also, by Minkowski’s inequality for integrals(∫
R

|Tφ(x)|re2|ρ|xdx

)1/r

≤
∫

(−∞,2]

(∫
R

|f(x + y)|re2|ρ|δyre2|ρ|xdx

)1/r

dy

≤ Cδr||f ||Lr((R.e2|ρ|xdx))

if δr > 1 and this completes the proof of the lemma.

By Proposition 2, in order to prove that the family of sets F1 has the covering
property Vs for all s < ∞ it suffices to show that the maximal operator

MF1(n, H) = sup
(n.H)∈E∈F1

1
µ(E)

∫
E

f(m, G)dµ(m, G),

is bounded on Lr((N × a, dµ)) for all r > 1. If E = E(n0, H0, r0) and (n, H) ∈
E(n0, H0, r0) then n = n0δH0(m0) and H = H0 + G0 for some m0 ∈ D and



MAXIMAL OPERATOR AND COVERING LEMMA 89

G0 ∈ E(r0). Clearly P (m) ≥ c if m ∈ D · D and e2ρ(G) ≈ e2|ρ|r0
if G ∈ E(r0).

Therefore, using (3.3) and taking R = 2c0(r0)1/2 in (3.5) and G = H0 in (3.4)
we have

1
µ(E(n0, H0, r0))

∫
E(n0,H0,r0)

f(m, G)e2ρ(G)dmdG

≤ Ce−2|ρ|r0
(r0)−(�−1)/2

∫
E(r0)

∫
D

f(n0δH0(m), H0 + G)e2ρ(G)dmdG

≤ C(r0)−(�−1)/2

∫
E(r0)

M1f(n, H + G − G0)dG ≤ CA1,1f(n, H).

By Lemma 4 the maximal operator MF1 is bounded on Lr((N× a, dµ)) for any
r > 1. By Proposition 2 and (2.1), one can select a subset J ⊂ I such that for
any s < ∞ ∣∣∣∣∣∣

∣∣∣∣∣∣
∑
j∈J

χEj

∣∣∣∣∣∣
∣∣∣∣∣∣
Ls((N×a,dµ))

≤ Csµ

(
∪

i∈I
Bi

)1/s

,(3.6)

and for any i ∈ I

µ

(
Ei ∩

(
∪

j∈J
Ej

))
≥ µ(Ei)/2.(3.7)

Step 3. Proof of (1.1)(ii).
We will now prove that the inequalities in (1.1) hold for the set J selected

above. We start with (1.1)(ii) and notice that it suffices to prove that if 1 ≤ q < 2
then ∣∣∣∣∣∣

∣∣∣∣∣∣
∑
j∈J

χBj

∣∣∣∣∣∣
∣∣∣∣∣∣
Lq((N×a,dµ))

≤ Cqµ

(
∪

i∈I
Bi

)1/q

,(3.8)

where Bi are the sets defined in (3.1). This will follow easily once we prove that
for any ball Bj = B(nj , Hj , rj) and any ε > 0 one has∫

B(nj ,Hj ,rj)

fdµ ≤ Cε

∫
E(nj ,Hj ,rj)

Aε,1/2−εfdµ,(3.9)

for any locally integrable function f . In particular, it suffices to prove that for
any point in E(nj , Hj , rj) i.e., of the form (njδHj (n

0), Hj + x0Hρ + H0′) with
n0 ∈ D, x0 ∈ (rj − 3/2, rj − 1/2), H0′ ∈ Pρ and |H0′| < c0rj

1/2 one has

(3.10)
∫

B(nj ,Hj ,rj)

f(n, H)dµ(n, H) ≤

Cεe
2|ρ|rj rj

(�−1)/2Aε, 1
2−εf(njδHj (n

0), Hj + x0Hρ + H0′).

To prove (3.10) observe first that if n ∈ D(rj , H) then

P (n) ≥ e2(ρ(H)−|ρ|rj).(3.11)
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Indeed, if n(expH) = k1(expH+)k2, k1, k2 ∈ K, H+ ∈ B(rj) then H(n) + H =
H[(expH+)k2] and (3.11) follows from Konstant’s convexity theorem. It follows
from (3.11) and (2.4) that∫

D(rj ,H)

f(njδHj (n), Hj + H)dn ≤ CMεf(njδHj (n
0), Hj + H)e(1+ε)(|ρ|rj−ρ(H))

therefore∫
B(nj ,Hj ,rj)

f(n, H)dµ(n, H) ≤

C

∫
B(rj)

Mεf(njδHj (n
0), Hj + H)e(1+ε)|ρ|rj+(1−ε)ρ(H)dH.

Let H = ((x0 +y)Hρ)+(H0′+H ′) where y ∈ R, H ′ ∈ Pρ have the property that
(x0 + y)2 + |H0′ + H ′|2 ≤ r2

j . Notice that this region is included in the region
y ≤ 2, |H ′| ≤ Crj

1/2(1 + |y|)1/2. If one lets R = Crj
1/2(1 + |y|)1/2 in (3.5) and

notices that e(1−ε)|ρ|y(1 + |y|)(�−1)/2 ≤ Cεe
(1−2ε)|ρ|y if y ≤ 2, (3.10) follows and

(3.9) follows from (3.3) and (3.10).
Let p be such that 1/p + 1/q = 1. Using (3.6) and (3.9) one has∣∣∣∣∣∣

∣∣∣∣∣∣
∑
j∈J

χBj

∣∣∣∣∣∣
∣∣∣∣∣∣
Lq((N×a,dµ))

= sup
||f ||p=1

∫
N×a

f


∑

j∈J

χBj


 dµ

≤ Cε sup
||f ||p=1

∫
N×a

Aε,1/2−εf


∑

j∈J

χEj


 dµ

≤ Cε,q sup
||f ||p=1

||Aε,1/2−εf ||pµ
(

∪
i∈I

Bi

)1/q

.

Clearly (3.8) now follows from Lemma 4 if one chooses ε such that p(1/2−ε) > 1
which is equivalent to ε < 1/q − 1/2.

Step 4. Proof of (1.1)(i).
Notice that it suffices to prove that

µ

(
∪

i∈I
Bi

)
≤ Cµ

(
∪

j∈J
Ej

)
,(3.12)

where Bi, respectively Ei, are the sets defined in (3.1), respectively (3.2). For
each k ∈ {0, 1, . . . } let

Bk
i =

{
(niδHi(n), Hi + H) ∈ N × a : H = xHρ + H ′, x ∈ [ri − k − 1, ri − k],

H ′ ∈ Pρ, |H ′| ≤ 2r
1/2
i (k + 1)1/2, P (n) ≥ e−2|ρ|(k+1)

}
.
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Using (3.11) and the definition (3.1) of the balls Bi, it follows easily that
Bi ⊂

∞∪
k=0

Bk
i . Let U0 = ∪

j∈J
Ej and for any positive integer k let Uk = U0−kHρ =

{(n, H) : (n, H + kHρ) ∈ U0}. Let fk be the characteristic function of the set
Uk. Using (3.7) we will prove that for any point (n0, H0) ∈ ∪

i∈I
Bk

i

Aε,1fk(n0, H0) ≥ ce−(1+ε)|ρ|k(k + 1)−(�−1)/2.(3.13)

Assuming this for a moment, it follows from Lemma 4 that for any r > 1

µ

(
∪

i∈I
Bk

i

)
≤ Crµ(Uk)er(1+ε)|ρ|k(k + 1)r(�−1)/2 =

Crµ(U0)e(r(1+ε)−2)|ρ|k(k + 1)r(�−1)/2,

therefore, if one chooses r > 1 and ε > 0 with the property that r(1 + ε) < 2

µ

(
∪

i∈I
Bi

)
≤

∞∑
k=0

µ

(
∪

i∈I
Bk

i

)
≤ Cµ(U0),

which proves (3.12).
It remains therefore to prove (3.13). The point (n0, H0) belongs to the set

Bk
i for some i ∈ I therefore n0 = niδHi

(m0), H0 = Hi + y0Hρ + G0′ where


P (m0) ≥ e−2|ρ|(k+1);
y0 ∈ [ri − k − 1, ri − k];
|G0′| ≤ 2r

1/2
i (k + 1)1/2, G0′ ∈ Pρ.

(3.14)

Using the first inequality in (3.14) and (2.4) one has for any H ∈ a

Mεfk(n0, H) ≥
∫

N

fk(niδHi(m
0m), H)P (m−1)(1+ε)/2dm

≥
∫
D

fk(niδHi
(n), H)P (n−1m0)dn

≥ ce−(1+ε)|ρ|k
∫
D

fk(niδHi(n), H)dn.

If one takes R = 3r
1/2
i (k + 1)1/2 and restricts y to [−2, 2] in (3.5) it follows that

Aε,1fk(n0, H0)

≥ ce−(1+ε)|ρ|k(k + 1)−(�−1)/2r
−(�−1)/2
i∫ ri−1/2

ri−3/2

∫
|H′|≤c0r

1/2
i

∫
D

fk(niδHi(n), Hi + (x − k)Hρ + H ′)dndH ′dx

≥ ce−(1+ε)|ρ|k(k + 1)−(�−1)/2r
−(�−1)/2
i e2|ρ|(k−ri)

∫
Ei−kHρ

fk(m, G)dµ(m, G).

It follows from (3.7) that∫
Ei−kHρ

fk(m, G)dµ(m, G) ≥ µ(Ei − kHρ)/2 ≈ r
(�−1)/2
i e2|ρ|(ri−k),
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and (3.13) follows from the last two inequalities.

4. Sharpness of the Theorems

We will now prove that the maximal operator MF is not bounded from the
Lorentz space L2,α(X) to L2,∞(X) if α > 1. The definition and some simple
properties of Lorentz spaces may be found, for example, in [6, Chapter V]. It is
natural to look for counterexamples gβ : X → R+ of the form

gβ(z) = e−|ρ|d(0,z) (1 + d(0, z))−β
,

for certain suitable exponents β. Since

|B(0, N + 1) \ B(0, N)| ≈ e2|ρ|N (N + 1)(�−1)/2,

if N ≥ 0, it follows that the nonincreasing rearrangement gβ
∗ : (0,∞) → R+ of

the function gβ has the property that{
gβ

∗(t) ≈ 1 if t ∈ (0, 1];
gβ

∗(e2|ρ|x(x + 1)(�−1)/2) ≈ e−|ρ|x(x + 1)−β if x ≥ 0.

Therefore gβ ∈ L2,α(X) if

β >
# − 1

4
+

1
α

.(4.1)

We will now show that if N ≥ 1 is a large integer, k ∈ K and H ∈ E(N)
(same notation as in the previous section) then

MFgβ(k(expH) · 0) ≥ ce−|ρ|NN−β+1.(4.2)

Since the functions gβ are K-invariant, it suffices to prove (4.2) for k = e –the
identity element of the group G. Notice that (expH) · 0 ∈ B((exp(NHρ/2)) ·
0, N/2 + 2) if H ∈ E(N) therefore

MFgβ((expH) · 0) ≥ 1
|BN |

∫
BN

gβ(z′)dz′,(4.3)

where BN = B((exp(NHρ/2)) · 0, N/2 + 2). Let

R(N) = {G = yHρ + G′ ∈ a : y ∈ [N/3, 2N/3], G′ ∈ Pρ, |G′| ≤ c1N
1/2},

where c1 is a small constant. If G ∈ R(N) and m ∈ δG/2(D) then

d(m(expG) · 0, (exp(NHρ/2)) · 0)

≤ |G|/2 + d(m(exp(G/2)) · 0, (exp(NHρ/2)) · 0)

≤ |G|/2 + |NHρ − G|/2 + d((exp(−G/2))m(exp(G/2)) · 0,0) < N/2 + 2.
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The last of the inequalities in the sequence above holds if c1 is small enough.
Thus

(4.4)
1

|BN |
∫

BN

gβ(z′)dz′ ≥

ce−|ρ|NN−(�−1)/2

∫
R(N)

∫
δG/2(D)

gβ(m(expG) · 0)dme2ρ(G)dG.

On the other hand if m = δG/2(n), n ∈ D then

d(m(expG) · 0,0) = d((exp(G/2))n(exp(G/2)) · 0,0) ≤ |G| + 1/4

therefore

gβ(m(expG) · 0) ≥ ce−|ρ|G|G|−β .(4.5)

One clearly has
∫

δG/2(D)
1dm ≈ e−ρ(G) and

∫
R(N)

1dG ≈ N (�−1)/2+1. The main
estimate (4.2) now follows from (4.3), (4.4), (4.5) and the observation that
e|ρ||G| ≈ eρ(G) if G ∈ R(N). Since the volume of the set of points in X of
the form k(expH) · 0, k ∈ K, H ∈ E(N) is proportional to e2|ρ|NN (�−1)/2 it
follows from (4.2) that

||MFgβ ||L2,∞(X) ≥ cN (�−1)/4+1−β .

Therefore MFgβ /∈ L2,∞(X) if β < (# − 1)/4 + 1 which is compatible with (4.1)
if α > 1.
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