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VARIETIES WITHOUT EXTRA AUTOMORPHISMS I:
CURVES

Bjorn Poonen

Abstract. For any field k and integer g ≥ 3, we exhibit a curve X over k of
genus g such that X has no non-trivial automorphisms over k.

1. Statement of the result

Let k be a field, and let p be its characteristic, which may be zero. All our
curves are smooth, projective, and geometrically integral over k. If X is a curve
over k, let AutX denote the group of automorphisms of X over k.

Hurwitz stated that for any g ≥ 3, there exists a curve of genus g over C such
that AutX = {1}, and a rigorous proof was provided by Baily [Ba]. The result
was generalized to algebraically closed fields of arbitrary characteristic by Mon-
sky [Mo], and a simpler proof of this generalization was given later in [Popp]. The
literature also contains some explicit constructions of curves with AutX = {1}.
Accola at the end of [Ac] observes that there exist triple branched covers X of
P1

C
of genus g ≥ 5 with AutX = {1}. Mednyh [Me] constructs some other exam-

ples analytically, as quotients of the complex unit disk. Turbek [Tu] constructs
explicit families of examples of X with AutX = {1}, over algebraically closed
fields k of characteristic p �= 2, and g = (m− 1)(n− 1)/2 for some integers m, n
with (m, n) = 1, n > m + 1 > 3, and p not dividing (m − 1)mn. He uses gap
sequences at Weierstrass points to control automorphisms.

Fix g ≥ 3, and let Mg,3K over Z denote the moduli space of curves equipped
with a basis of the global sections of the third tensor power of the canonical
bundle. Katz and Sarnak [KS, Lemma 10.6.13] show that there is a open subset
Ug of Mg,3K corresponding to the curves with trivial automorphism group. The
result proved by Monsky and Popp above implies that Ug meets every geometric
fiber of Mg,3K → Spec Z. This, together with the Lang-Weil method, can be
used to show that there exists Ng > 0 such that for any field k with #k > Ng

(in particular, any infinite field), there exists a curve X of genus g over k with
AutX = {1} [KS, Remark 10.6.24]. Our main result is that such curves exist
even over small finite fields:
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Case Equation of curve

I
p = 3,

g ≡ 0 or 1 (mod 3) y3 + y2 = xg+1 − x3 + 1

II
p = 3,

g ≡ 2 (mod 3) y3 + y2 = x2(x − 1)2(xg−1 − x3 + 1)

III
p �= 3, g �≡ 2 (mod 3),

g �≡ 0,−1 (mod p) y3 − 3y = gxg+1 − (g + 1)xg + 1

IV
p �= 3, g �≡ 2 (mod 3),
g ≡ 0 or − 1 (mod p) y3 − 3y = xg+1 + xg + 1

V
p �= 3, g ≡ 2 (mod 3),

g �≡ 0, 1 (mod p) y3 − 3y = 2g−1xg−1 + (4 − 4g−1)x−1 − 2

VI
p �= 3, g ≡ 2 (mod 3),
g ≡ 0 or 1 (mod p) y3 − 3y = xg−1 − x−1 + 1

Table 1. Curves X of genus g ≥ 3 with AutX = {1}.

Theorem 1. For any field k and integer g ≥ 3, there exists a curve X over k
of genus g such that AutX = {1}.
Remark. Our result gives an independent proof that Ug meets every geometric
fiber of Mg,3K → Spec Z.

We cannot hope to prove Theorem 1 by writing down for each g a single
equation with coefficients independent of p, because a curve over Q of positive
genus must have bad reduction at some prime; this follows from the title result
of [Fo]. Therefore subdivision into cases seems unavoidable.

The curves we construct are the smooth projective models of the curves given
by the equations in Table 1. They are all triple branched covers of P1. Of
course, we could not use double covers of P1, because these automatically have
a non-trivial involution.

Each of these curves is totally ramified above ∞ on the x-line, and separable
over the x-line, so each is geometrically integral. We let h(y) denote the cubic
in y on the left in each equation, and we let f(x) denote the rational function in
x on the right.

2. Computing the genus

The following lemma will let us verify that the curves in Table 1 have genus
g in each case.

Lemma 2. Let h(y) be a cubic polynomial over a field k, and let f(x) be a
rational function of degree d over k. Assume that h′(y) is not identically zero,
that all poles of f are of order prime to 3, and that f has a pole at x = ∞. Let
m denote the number of distinct poles of f . Let X be the curve h(y) = f(x)
over k. Assume that all affine singularities of X are nodes, and let n denote the
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number of such nodes. Then the genus g of X is given by the formula

g = d + m − n − 2.

Proof. It would be tempting to apply the Hurwitz formula to the 3-to-1 map
from x : X → P1, but this would require special arguments in characteristic 2
and 3 to handle the wild ramification. Instead we will compute the degree of
the divisor of the differential

ω :=
dx

h′(y)
=

dy

f ′(x)
(1)

directly. We will still need to be careful in characteristic 3, however.
At an affine node, x and y are both uniformizers at the two corresponding

points P1, P2 on the nonsingular model, and f ′(x) and h′(y) each vanish with
multiplicity one, so vP1(ω) = vP2(ω) = −1. By assumption, every other affine
point P on X is nonsingular already, so either f ′(x) or h′(y) is nonvanishing at
P . Thus ω is regular at P . Moreover, if f ′(x) is nonvanishing at P , then y is a
uniformizer at P , so ω has no zero or pole at P . Similarly if h′(y) is nonvanishing
at P , then again ω has no zero or pole at P .

For each pole t of f(x), let ct denote the order of the pole, which by assumption
is prime to 3. Let vt be the valuation on X corresponding to the point Pt above
t. We have v∞(x) = −3 and v∞(y) = −c∞. In characteristic not 3, we have

v∞(ω) = v∞(dx)−v∞(h′(y)) = v∞(x)−1−2v∞(y) = −3−1−2(−c∞) = 2c∞−4.

In characteristic 3, we have

v∞(ω) = v∞(dy) − v∞(f ′(x)) = v∞(y) − 1 − (c∞ − 1)v∞(x) =

− c∞ − 1 − (c∞ − 1)(−3) = 2c∞ − 4

again.
At any other pole t of f(x), we have vt(x − t) = 3, vt(y) = −ct,

vt(f(x)) = −3ct, so in characteristic not 3, we have

vt(ω) = vt(dx) − vt(h′(y)) = vt(x − t) − 1 − 2vt(y) = 3 − 1 − 2(−ct) = 2ct + 2.

In characteristic 3, we have

vt(ω) = vt(dy)−vt(f ′(x)) = vt(y)−1−3(−ct−1) = −ct−1−3(−ct−1) = 2ct+2

again.
Thus

2g − 2 = deg ω

= −2n + (2c∞ − 4) +
∑

poles t �= ∞
(2ct + 2)

= −2n − 6 +
∑

all poles t

(2ct + 2)

= −2n − 6 + 2d + 2m,
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and we obtain
g = d + m − n − 2.

Lemma 3. The curves in Table 1 have no affine singularities except for the
nodes at (0, 0) and (1, 0) in Case II.

Proof. In general, we find an affine singularity only when h(y) and −f(x) have
a common critical value.

In Cases I and II, 0 is the only critical value of h(y), so it suffices to show
that f(x) has no multiple zeros, except for 0 and 1 in Case II. In Case I, f ′(x) =
(g + 1)xg vanishes only at x = 0, which is not a zero of f . In Case II, the
polynomial xg−1 − x3 + 1 does not vanish at 0 or 1, and its derivative is xg−2,
which vanishes only at 0.

In Cases III through VI, the critical values of h(y) are ±2, so it suffices to
show that f(x) does not have 2 or −2 as a critical value. In Case III, f ′(x) =
g(g + 1)xg−1(x − 1) vanishes only at 0 or 1, but f(0) = 1 and f(1) = 0 do not
equal ±2, since p �= 2, 3.

In Case IV, f ′(x) = xg if g ≡ 0 (mod p), and f ′(x) = −xg−1 if g ≡ −1
(mod p). In either case, f ′(x) vanishes only at 0, but f(0) = 1 �= ±2.

In Case V, first note that p �= 2, 3. If the derivative

f ′(x) =
2(g − 1)

g
xg−2 − 4(g − 1)

g
x−2

vanishes at t, then we find tg = 2, so that

f(t) = 2g−1(2t−1) + (4 − 4g−1)t−1 − 2 = 4t−1 − 2.

If moreover f(t) = ±2, then t = 1 (t may not be infinite), but this contradicts
tg = 2.

In Case VI, let us first suppose g ≡ 0 (mod p). If f ′(x) = −xg−2 + x−2

vanishes at t, then tg = 1, and

f(t) = 1 · t−1 − t−1 + 1 = 1 �= ±2.

If instead g ≡ 1 (mod p), then f ′(x) = x−2, which does not vanish at all away
from the poles of f .

Proposition 4. In each case of Table 1, the curve X has genus g.

Proof. We apply Lemma 2. In Cases I, III, and IV, we have

d = g + 1, m = 1, n = 0.

In Case II, we have
d = g + 3, m = 1, n = 2.

In Cases V and VI, we have

d = g, m = 2, n = 0.

Thus we always have d+m−n−2 = g, and the result follows from Lemma 2.
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3. Computing the automorphism group: genus at least 4

The following lemma is classical, but its proof is short, so we will give it.

Lemma 5. If X is a curve of genus g ≥ 5, and σ1, σ2 are two maps from X to
P1 of degree 3, then σ2 = α ◦ σ1 for some automorphism α of P1.

Proof. Let D be the image of X
(σ1,σ2)−→ P1 × P1. Let s denote the degree of

X → D, and let r1, r2 denote the degrees of the two projection maps D → P1.
We have r1s = r2s = 3, so either s = 1 and r1 = r2 = 3, or s = 3 and
r1 = r2 = 1. In the first case, D is a divisor of type (3, 3) on P1 × P1, and the
adjunction formula yields pa(D) = 4. Then the normalization of D has genus at
most 4, which contradicts the fact that D is birational to X. Thus s = 3 and
r1 = r2 = 1. This means that D is the graph of an automorphism α : P1 → P1,
and we obtain the desired result.

The result of Lemma 5 is not true in general for g < 5, but it is true for
certain curves of genus 4, and we have chosen our genus 4 curves in Table 1 to
be of this type, as we now show.

Lemma 6. Let X be a curve of genus 4 given by an equation h(y) = f(x) where
h and f are polynomials of degree 3 and 5 respectively. Let σ1 denote the map
x : X → P1. If σ2 is any other map from X to P1 of degree 3, then σ2 = α ◦ σ1

for some automorphism α of P1.

Proof. By Lemma 2, X necessarily has no affine singularities. Hence the func-
tions f ′(x) and h′(y) cannot simultaneously vanish at an affine point P on X.
Let ω denote the differential

ω :=
dx

h′(y)
=

dy

f ′(x)

on X. One of the two definitions shows that ω is regular at P . If ω had a zero
at P , then dx and dy would both have a zero at P , contradicting the fact that
P is nonsingular. Thus ω has no affine zeros or poles. Since div(ω) is of degree
2g − 2 = 6, we have div(ω) = 6P∞, where P∞ denotes the point at infinity on
X. We have v∞(x) = −3 and v∞(y) = −5. Hence ω, xω, x2ω, and yω are
all regular differentials, and they form a basis for H0(X, Ω1

X). The canonical
embedding of X is

X → P3

(x, y) �→ (1 : x : x2 : y).

and its image lies on the singular quadric t0t2 = t21, where t0, t1, t2, t3 are the
homogeneous coordinates on P3. Hence, by [Ha, Example IV.5.5.2], X has a
unique g1

3 , which is to say that X has a unique map to P1 of degree 3, up to
composition with an automorphism of P1.
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The importance of Lemmas 5 and 6 for our purposes is that they imply that
any automorphism of X induces an automorphism of the underlying P1, the
x-line.

Proposition 7. If g ≥ 4, then AutX is trivial.

Proof. Suppose γ ∈ AutX. Let α be the automorphism of P1 induced by γ.
If we knew that α were the identity, then we would be done, since the map
X → P1 has ramification points of index 2 as well as 3, in each case. We may
exploit the fact that α preserves the projection R of the ramification divisor in
P1. In particular, α fixes ∞ in Cases I through IV, and α preserves {0,∞} in
Cases V and VI, because these are the points that occur in R with multiplicity
greater than one.

Cases I and II.
The points in R of multiplicity one are the zeros of j(x) := xn −x3 +1 where

n = g+1 in Case I and n = g−1 in Case II. Hence α is a linear map x �→ λx+µ
with λ �= 0 such that j(λx + µ) is a multiple of j(x). In this case, comparing
leading coefficients yields

j(λx + µ) = λnj(x),

so
(λx + µ)n − λ3x3 − µ3 + 1 = λn(xn − x3 + 1).

Comparing coefficients of x1 and noting that n �≡ 0 (mod 3), we find µ = 0.
Comparing coefficients of x3 and x0, we see λn−3 = λn = 1, but gcd(n−3, n) = 1,
so λ = 1.

Case III.
The points in R of multiplicity one are the zeros of j(x) := (f(x)+2)(f(x)−2),

and again α is a linear map x �→ λx + µ with λ �= 0 such that j(λx + µ) =
λdeg jj(x). It follows that j′(λx + µ) = λ(deg j)−1j′(x), but

j′(x) = 2f(x)
[
g(g + 1)(xg − xg−1)

]
,

which, by the computation in the proof of Lemma 3, has distinct zeros except
for the zero of multiplicity g − 1 at x = 0. Thus α must preserve 0; i.e., µ = 0.
Since j(x) has terms of degree 2g + 2 as well as 2g + 1, j(λx) can be a multiple
of j(x) only if λ = 1.

Case IV.
Just as in Case III, α must be a linear map of the form x �→ λx + µ, and µ

must be 0. The coefficients of x2g+2 and x2g+1 in

j(x) := (f(x) + 2)(f(x) − 2) = (xg+1 + xg)2 + 2(xg+1 + xg) − 3

are nonzero if p �= 2, so that j(λx) can be a multiple of j(x) only if λ = 1. If
p = 2, then the coefficients of x2g+2 and x2g are nonzero, so we obtain only
λ2 = 1, but in characteristic 2, this implies λ = 1 again.
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Case Equation of curve

I p = 3 Y 3Z + Y 2Z2 − X4 + X3Z − Z4 = 0
III p �= 2, 3 Y 3Z − 3Y Z3 − 3X4 + 4X3Z − Z4 = 0
IV p = 2 Y 3Z + Y Z3 + X4 + X3Z + Z4 = 0

Table 2. Homogeneous equations for the curves X in the case
g = 3.

Case V.
Since α preserves {0,∞}, it is of the form λx or λx−1 for some λ �= 0. The

points occurring in R with multiplicity one are the zeros of the polynomial

j(x) := x2(f(x) + 2)(f(x) − 2) =

(4g−2)x2g − (8g−1)xg+1 + (16g−1 − 16g−2)xg

− (16 − 16g−1)x + (4 − 4g−1)2,

and each of the five coefficients is nonzero, by definition of Case V. If α(x) =
λx−1, then x2gj(λx−1) would be a multiple of j(x), which is impossible, since
the exponents occurring in j(x) are not symmetric. If α(x) = λx, then j(λx)
is a multiple of j(x), which implies λ = 1, since the coefficients of x1 and x0 in
j(x) are nonzero.

Case VI.
Again α is λx or λx−1 for some λ �= 0. The points occurring in R with

multiplicity one are the zeros of the polynomial

j(x) := x2(f(x) + 2)(f(x) − 2) = x2g + 2xg+1 − 2xg − 3x2 − 2x + 1.

If α(x) = λx−1, then x2gj(λx−1) would be a multiple of j(x), which is impossible,
since the exponents occurring in j(x) are not symmetric (even when p = 2). If
α(x) = λx, then j(λx) is a multiple of j(x). The coefficients of x1 and x0 are
nonzero if p �= 2, so λ = 1. If p = 2, then the coefficients of x2 and x0 are
nonzero, so λ2 = 1, and we again have λ = 1.

4. Computing the automorphism group: genus 3

From now on, we assume g = 3. It will be convenient to rewrite the equations
of our curves as the zero set of a homogeneous polynomial F (X, Y, Z). These are
given in Table 2. Note that we are in Case I, III, or IV, respectively, depending
on the value of p. We trust that the use of X as a homogeneous coordinate as
well as for the curve will not create confusion.

Proposition 8. If g = 3, then AutX is trivial.

Proof. We can no longer say that automorphisms of X induce automorphisms
of the x-line. Instead, we know that X is a smooth plane quartic, so X equals
its canonical embedding in P2, and any possible automorphism γ is induced
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by an automorphism of P2. We represent such an automorphism of P2 by a
matrix L = {(ij}1≤i,j≤3. By scaling L, we may assume F ◦L = F , where we are
identifying L with the corresponding linear change of coordinates. Let A denote
the Hessian matrix of F , i.e., the 3×3 matrix of second partial derivatives of F .

As usual, it will suffice to show that γ induces the identity of the x-line, since
we know in each case that the 3-to-1 map X/Z : X → P1 has ramification
points of index 2 and 3. But we stress that a priori, it is not clear that γ induces
an automorphism of P1 at all; in other words the x-coordinate of γ(P ) is not
obviously a function of the x-coordinate of P only.

Case I: p = 3.
We compute

A =




0 0 0
0 −Z2 Y Z
0 Y Z −Y 2


 .

In particular, ∂F/∂X is killed by all the first order differential operators ∂/∂X,
∂/∂Y , ∂/∂Z, so the same is true for

∂(F ◦ L)
∂X

= (11
∂F

∂X
◦ L + (21

∂F

∂Y
◦ L + (31

∂F

∂Z
◦ L.

But the only k-linear combinations of the columns of A that are zero are the
multiples of the first column, so (21 = (31 = 0. In other words, X occurs only
in the first coordinate of L(X, Y, Z). Without loss of generality we may also
assume (11 = 1. Hence the coefficient of X1 in F ◦ L equals that in

−(X + (12Y + (13Z)4 + (X + (12Y + (13Z)3((32Y + (33Z),

which is −(312Y
3 − (313Z

3. On the other hand, this must equal the coefficient of
X1 in F , which is zero, so (12 = (13 = 0. Equating coefficients of X3 in F and
in F ◦ L, we obtain

Z = (32Y + (33Z,

so (32 = 0 and (33 = 1.
We now know that L is of the form (X, Y, Z) �→ (X, (22Y + (23Z, Z). In

particular, γ must induce the identity on P1, as desired.

Case III: p �= 2, 3
We compute

A =



−36X2 + 24XZ 0 12X2

0 6Y Z 3Y 2 − 9Z2

12X2 3Y 2 − 9Z2 −18Y Z − 12Z2


 .

The entries of the first column are k-linearly dependent, because of the 0. The
same is true for the second column. But using the fact that the six distinct
nonzero entries of A are linearly independent over k, we see that the only k-
linear combinations of the columns whose entries are k-linearly dependent are
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multiples of the first column or multiples of the second column. This implies
that L has one of the following two shapes:


∗ 0 ∗
0 ∗ ∗
0 0 ∗


 or




0 ∗ ∗
∗ 0 ∗
0 0 ∗


 ,

and we may assume (33 = 1. In other words, γ gives an affine linear automor-
phism of the curve

y3 − 3y = 3x4 − 4x3 + 1,

which we are writing in inhomogenous form again, and is of the form (x, y) �→
((11x+(13, (22y+(23) or (x, y) �→ ((12y+(13, (21x+(23). The second is impossible,
since the defining equation is cubic in y but quartic in x. The first implies that
γ induces an automorphism of the x-line, and

(2) ((22y + (23)3 − 3((22y + (23) − 3((11x + (13)4 + 4((11x + (13)3 − 1 =

µ(y3 − 3y − 3x4 + 4x3 − 1)

for some µ ∈ k
∗
. Equating coefficients of x2 and x1 in (2) yields

−18(211(
2
13 + 12(211(13 = 0,(3)

−12(11(
3
13 + 12(11(

2
13 = 0.(4)

Multiplying (3) and (4) by (13 and (11, respectively, and subtracting, we obtain

−6(211(
3
13 = 0.

But (11 �= 0, since L must be invertible. Therefore (13 = 0. Equating coefficients
of x4 in (2) shows that µ = (411. Equating coefficients of x3 in (2) shows that

4(311 = (411 · 4,

so (11 = 1. Thus γ induces the identity on P1.

Case IV: p = 2.
We compute

A =




0 0 X2

0 0 Y 2 + Z2

X2 Y 2 + Z2 0


 .

The k-linear combinations of the columns that give a column vector whose entries
span a k-linear space of dimension at most one are the combinations of the first
two columns. It follows that L has the shape


∗ ∗ ∗
∗ ∗ ∗
0 0 ∗


 ,

and we may assume (33 = 1. In other words, γ gives an affine linear automor-
phism (x, y) �→ ((11x + (12y + (13, (21x + (22y + (23) of the curve

y3 + y = x4 + x3 + 1,
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which we are writing in inhomogenous form again. By looking at the terms
of highest degree, we see that (12 = 0, so that γ induces an automorphism
x �→ (11x + (13 of the x-line. Moreover,

((11x + (13)4 + ((11x + (13)3 + 1 = µ(x4 + x3 + 1),

for some µ ∈ k
∗
, since the branch points of x : X → P1 are located at the zeros

of x4 + x3 + 1. Equating coefficients of x1 shows 3(11(
2
13 = 0, but (11 �= 0, so

(13 = 0. Equating coefficients of x4 shows µ = (411. Then equating coefficients of
x3 shows (311 = (411, so (11 = 1. Thus γ again induces the identity on the x-line,
as desired.

This completes the proof of Theorem 1. In the second paper [Po2] of this
series, we will prove the existence of hyperelliptic curves X of any genus g ≥ 2
over any field k, such that AutX = {1, ι}, where ι denotes the hyperelliptic
involution. In the third paper [Po3], we will prove the existence of smooth
hypersurfaces X ⊂ Pn+1 of degree d with AutX = {1}, for prescribed n and d
(satisfying minor constraints).
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