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A SHARP ESTIMATE ON THE NORM OF THE
MARTINGALE TRANSFORM

Janine Wittwer

1. Introduction

The boundedness of singular integral operators in L2(w) for w ∈ A2 has been
known for a long time, by the Hunt-Muckenhaupt-Wheeden Theorem. What
is as of yet unknown is the sharp bound of these operators in terms of the A2

norm of w. In his thesis, S. Buckley proved that the Hardy-Littlewood maximal
operator is bounded linearly in ‖w‖A2

, the square function operator bound is

no more than ‖w‖3/2
A2

and that the Hilbert transform norm is no worse than
quadratic. It is easily seen that each of these operators can not have a better
bound than linear in ‖w‖A2

(just look at power weights). In this paper, following
the methods of [6], we show that the bound for the martingale transform, which
is a dyadic analog of singular integral operators, is linear. We also give a simple
proof that the dyadic square function is bounded linearly.

2. Notation

In what follows, hI will denote the normalized Haar function for the dyadic
interval I, i.e., hI = χIl

−χIr√
|I| , where Il, Ir denote the left and right children of I

respectively. The weight w and its inverse w−1 will be dyadic A2 weights on [0, 1].
w will be normalized to have

∫
[0,1]

w(x) = 1. Let (f)I denote 1
|I|

∫
I
f(x)dx for I

a dyadic interval. Sometimes the parentheses are omitted when it is clear which
function we are averaging. w−1

I will denote 1
|I|

∫
I

1
w(x)dx. Let µ(I) = wIw

−1
I and

‖w‖A2
= supI∈D µ(I).

We will write w in the form w(x) =
∏

(1 + cIhI) where cI = wIl
−wIr

2wI

√|I|.
Similarly, we define dI =

w−1
Il

−w−1
Ir

2w−1
I

√|I|.
〈 , 〉µ will denote the inner product in L2(dµ). If the subscript is omitted, the

measure is dx.
The family of operators which we are concerned with are the martingale

transforms
Trf =

∑
I∈D[0,1]

r(I)〈f, hI〉hI

where r(I) assumes the values +1 and −1 only.
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3. The main theorem

Theorem 3.1.

‖Trf‖L2(w) ≤ c ‖w‖A2
‖f‖L2(w) ,

for w ∈ A2 and f ∈ L2(w).

We will prove this Theorem in section 5.

4. Useful lemmas and theorems

The following theorem can be found in [6], Section 2.

Theorem 4.1. Let αI ≥ 0. Then∑
I∈D[0,1]

(fw1/2)2IαI ≤ 4c ‖f‖2
2

for all f ∈ L2(dx) iff
1
|J |

∑
I⊂J

(wI)2αI ≤ cwJ

for all J ∈ D[0, 1].

Theorem 4.2. Let αI ≥ 0. If
1
|J |

∫
J

(
∑
I⊂J

αIwIχI(x))2w−1dx ≤ c1wJ

for all J ∈ D and
1
|J |

∫
J

(
∑
I⊂J

αIw
−1
I χI(x))2wdx ≤ c1w

−1
J

for all J ∈ D, then∑
I∈D

αI(fw1/2)I(gw−1/2)I |I| ≤ c2 ‖f‖L2 ‖g‖L2 ,

for all f, g ∈ L2(dx), where c2 ≤ c
√

c1 and c is an absolute constant.

Proof. From [6], section 4, we know that if
1
|J |

∫
J

(
∑
I⊂J

αIwIχI(x))2v(x)dx ≤ wJ

for all J ∈ D, then∑
I∈D1

αI(fw1/2)I(gv1/2)I |I| ≤ c(‖f‖2
L2 + ‖g‖2

L2),

where D1 = {I ∈ D : (fw1/2)2I
wI

≥ (gv1/2)2I
vI

}.
To prove Theorem 4.2, we use this theorem with v = w−1

c1
. Then, since in

the conclusion v appears with a square root only, the bound for the conclusion
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would be of the order
√

c1. Furthermore, imposing that the condition be fulfilled
for both w and w−1 , we can sum over all dyadic intervals, since for all of them
either

(fw1/2)2I
wI

≥ (g(w−1)1/2)2I
w−1

I

,

or
(fw1/2)2I

wI
≤ (g(w−1)1/2)2I

w−1
I

is true. Finally, letting g∗ = ( ‖g‖L2

‖f‖L2
)1/2g and f∗ = ( ‖g‖L2

‖f‖L2
)−1/2f , we get∑

I∈D1

αI(f∗w1/2)I(g∗(w−1)1/2)I |I| ≤ 2c(‖f∗‖L2 ‖g∗‖L2),

since this normalization does not change the right hand side at all.

The following estimate is not used in the proof of the main theorem, but may
be interesting in its own right. It gives the (unweighted) carleson norm of the
sequence {cI}. See [7], theorem 4.1 .

Lemma 4.3. For w ∈ A2 where w(x) = C
∏

(1 + cIhI), the following is true:∑
I⊂J

c2
I ≤ 2 log(‖w‖A2

)|J |,

and this estimate is sharp.

Proof. By the definition of w,

(1 − c2
I/|I|) = 1 − (

wIl
− wIr

2wI
)2 =

4(1/2(wIl
+ wIr ))

2 − (wIl
− wIr )

2

(2wI)2
=

wIl
wIr

(wI)2
,

and therefore
wIl

wIr

(wI)2
≤ e−c2

I/|I|.

Taking square roots, this becomes wI ≥ ec2
I/2|I|(wIl

wIr )
1/2.

Since (w−1
I )2 ≥ (w−1

Il
w−1

Ir
), we can multiply these two equations to get

µ(I) ≥ ec2
I/2|I|(µ(Il)µ(Ir))1/2.

Now use the same inequality to replace µ(Il) and µ(Ir), and repeat this process.
After n steps we get

µ(I) ≥ exp


 ∑

K⊂I,|K|≥2−n|I|

c2
K |K|

2|K||I|





 ∏

|K|=2−n|I|
µ(K)




2−n

.
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(The |K|/|I| in the exp comes from the repeated square roots that we took.)
Realizing that µ(K) ≥ 1 always, we get

µ(I) ≥ exp


 ∑

K⊂I,|K|≥2−n|I|

c2
K

2|I|


 .

Taking the limit as n → ∞, and taking logarithms, we get the lemma.
To see that the bound is indeed sharp, consider w = exp

(∑
i∈N

biΦi

)
where Φi

are Rademacher functions. Then
∑

I⊂J c2
I =

∑
i≥j tanh2(bi)|J |, while ‖w‖A2

=∏
i∈N

(1 + sinh2(bi)).

Theorem 4.4. Let Sf be the dyadic square function of f . Then

‖Sf‖L2(w) ≤ c ‖w‖A2
‖f‖L2(w) ,

and this estimate is sharp.

Note. This estimate has also been proven, using a different method, in [5].

Proof. Let

fI =
hI

(wI)1/2
,

and

gI = hI(wI)1/2w−1.

Then 〈fI , gJ〉w = 1 if I = J and 0 otherwise. Let f ∈ L2(w).

‖Sf‖L2(w) =

(∑
I∈D

〈f, hI〉2wI

)1/2

=

(∑
I∈D

〈f, gI〉2w
)1/2

.

In that notation, the theorem to prove becomes

∑
I∈D

〈f, gI〉2w ≤ ‖w‖2
A2

‖f‖2
L2(w) .

We will bound this by first showing that∑
I∈D

〈f, fI〉2w ≤ ‖w‖A2
‖f‖2

L2(w) ,

from which the desired inequality can be extracted by algebraic manipulations.
By the theorem on the lower bound of the square function in [3] we know the

following:

‖f‖L2(w) ≤ c‖w‖A2

1/2

(∑
I∈D

〈f, gI〉2w
)1/2

.
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This allows us to compute the norm of the sequence valued operator (Jg)I =
〈g, fI〉w from L2(w) to l2:

sup
‖g‖L2(w)=1

sup
‖{kI}‖l2=1

∑
I∈D

kI

∫
gfIw =

sup
‖g‖L2(w)=1

sup
‖{kI}‖l2=1

∫
g

∑
I∈D

kIfIw ≤

by Cauchy-Schwarz, and the above inequality,

sup
‖{kI}‖l2=1

sup
‖g‖L2(w)=1

∥∥∥∥∥
∑
I∈D

kIfI(x)

∥∥∥∥∥
L2(w)

‖g‖L2(w) ≤

‖w‖A2

1/2 sup
‖{kI}‖l2=1

[∑
J∈D

〈
(∑

I∈D

kIfI

)
, gJ〉2w

]1/2

=

‖w‖A2

1/2 sup
‖{kI}‖l2=1

(∑
I∈D

kI
2

)1/2

= ‖w‖A2

1/2
.

This means that ∑
I∈D

〈g, fI〉2w ≤ ‖w‖A2
‖g‖2

L2(w) ,

for every weight in A2. In particular, this is true for the weight w−1:∑
I∈D

〈g,
hI

(w−1
I )1/2

〉2w−1 ≤ ‖w‖A2
‖g‖2

L2(w−1) .

Let g∗ = gw−1. Then this becomes∑
I∈D

〈g∗, hI

(w−1
I )1/2

〉2dx ≤ ‖w‖A2
‖g∗‖2

L2(w) .

The left hand side can be rewritten as∑
I∈D

〈g∗, hI(wI)1/2ww−1〉2dx

1
µ(I)

.

So finally, we have the inequality∑
I∈D

〈g∗, gI〉2w ≤ ‖w‖2
A2

‖g∗‖2
L2(w) ,

which is what we needed to prove.

Remark 4.5. We have the following inequality:
1
|J |

∑
I⊂J

(w−1
I )2d2

IwI ≤ c ‖w‖2
A2

w−1
J .

This inequality follows by realizing that the left hand side is bounded by∥∥S(w−1χJ)
∥∥2

L2(w)
, which by Theorem 4.4 is bounded by c ‖w‖2

A2

∥∥w−1χJ

∥∥2

L2(w)
.
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Lemma 4.6. ∑
I⊂J

(
cI√|I| )

2wI |I| ≤ c ‖w‖A2
wJ |J |,

and this estimate is sharp.

Proof. By [1], 2.2 we have the following two estimates:

∑
I⊂J

(wI)p

(
wIl

− wIr

wI

)2

|I| ≤ c

p(p − 1)
‖w‖p

Bp
(wJ)p|J |,

for w ∈ Bp, p > 1, and

∑
I⊂J

(wI)q

(
wIl

− wIr

wI

)2

|I| ≤ c

q(1 − q)
(wJ)q|J |,

for 0 < q < 1. (c in both estimates is an absolute constant.)
Using Hölder’s inequality on (wI)(1+ε)/2 and (wI)(1−ε)/2 we get

∑
I⊂J

(
cI√|I| )

2wI |I| ≤
(∑

I⊂J

(
cI√|I| )

2(wI)1+ε|I|
)1/2 (∑

I⊂J

(
cI√|I| )

2(wI)1−ε|I|
)1/2

,

where we choose ε to be c/ ‖w‖A2
for c a small constant.

If c is chosen smaller than a dimensional constant, this ε is one for which the
reverse Hölder inequality holds for w, i.e., ( 1

|I|
∫

I
w1+ε)

1
1+ε ≤ 2 1

|I|
∫

I
w as can

be seen by carefully reading the proof of the reverse Hölder inequality in [2].
Therefore w is in B1+ε with norm 2.

Letting p = 1+ε and q = 1−ε in the above estimates, and writing wIl
−wIr

2wI

√|I|
as cI we get(∑

I⊂J

(
cI√|I| )

2(wI)1+ε|I|
)1/2

≤ (
c

ε(1 + ε)
)1/22

1+ε
2 (wJ)

1+ε
2 |J |1/2

and (∑
I⊂J

(
cI√|I| )

2(wI)1−ε|I|
)1/2

≤ (
c

ε(1 − ε)
)1/2(wJ)

1−ε
2 |J |1/2,

which, when combined, yields the required estimate. (Remember that ε =
c/ ‖w‖A2

.)
To see that this estimate is sharp, let w =

∏
i∈N

(1+a2−i/2hIi
) where hIi

is the
Haar function whose support is of the form [0, 2−i]. Then ‖w‖A2

is comparable
to 1

1−a , and
∑

I⊂J( cI√
|I| )

2wI |I| =
∑

i≥j a2( 1+a
2 )i.

Lemma 4.7.
∑

K⊂I
|cK |√
|K|

|dK |√
|K|µ(K)|K| ≤ C ‖w‖A2

|I|.
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Proof. By Lemma 5.3 from [6], we have

1
|J |

∑
I⊂J

vIwI

∣∣∣∣vIl
− vIr

vI

wIl
− wIr

wI

∣∣∣∣ |I| ≤ C
√

vJwJ ,

provided vIwI ≤ 1 for all I ⊂ J .

Letting vI = w−1
I

‖w‖A2
, and clearing the denominators, we get the above lemma.

Lemma 4.8. 1
|J|

∑
I⊂J

|cI |√
|I|

|dI |√
|I|wI |I| ≤ C ‖w‖A2

wJ .

Proof. This lemma will be proven by the method of Bellman functions.
Let B(x, y) = x(−4A

xy − xy
4A +4A+1). Then B(x, y) has the following properties,

which can be checked by elementary calculus:
1. 0 ≤ B(x, y) ≤ 5Ax on {x, y > 0; 1 ≤ xy ≤ A}
2.

( −Bxx −Bxy − 1
y

−Bxy − 1
y −Byy

)
is positive semidefinite on {x, y > 0; 1 ≤ xy ≤

2A}.
3.

( −Bxx −Bxy + 1
y

−Bxy + 1
y −Byy

)
is positive semidefinite on {x, y > 0; 1 ≤ xy ≤

2A}.
Let us show that these conditions imply the following discrete condition:

B(x, y) − B(x−, y−) + B(x+, y+)
2

≥ C

∣∣∣∣(x− − x+)(y− − y+)
1
y

∣∣∣∣ ,(∗)

where x = (x−+x+)
2 and y = (y−+y+)

2 , and (x, y), (x−, y−), (x+, y+) are in the
domain {x, y > 0; 1 ≤ xy ≤ A}. Let x(t) = x−(1+t)+x+(1−t)

2 and y(t) =
y−(1+t)+y+(1−t)

2 for t ∈ [−1, 1]. Note that y(t) ≤ 2y−+2y+
2 = 2y. Denote

by b(t) the function B(x(t), y(t)). Note that (x(t), y(t)) are in the domain
{x, y > 0; 1 ≤ xy ≤ 2A}. Then

−b′′(t) = (x′(t), y′(t))(−d2B)(x′(t), y′(t))t

≥ (x′(t), y′(t))
(

0 1/y(t)
1/y(t) 0

)
(x′(t), y′(t))t,

and

−b′′(t) = (x′(t), y′(t))(−d2B)(x′(t), y′(t))t

≥ (x′(t), y′(t))
(

0 −1/y(t)
−1/y(t) 0

)
(x′(t), y′(t))t.

Therefore, evaluating x′(t) and y′(t) we have

−b′′(t) ≥ 2
y(t)

∣∣∣∣ (x− − x+)
2

(y− − y+)
2

∣∣∣∣ ≥ 1
4y

|(x− − x+)(y− − y+)| .
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By the definition of b,

B(x, y) − B(x−, y−) + B(x+, y+)
2

= b(0) − b(1) + b(−1)
2

= −1/2
∫ 1

−1

b′′(t)(1 − |t|)dt ≥ C

∣∣∣∣(x− − x+)(y− − y+)
1
y

∣∣∣∣ .

Now we are ready to run the usual Bellman function argument to prove the
lemma.

Let x = wJ , y = w−1
J , x− = wJl

, x+ = wJr , y− = w−1
Jl

, y+ = w−1
Jr

and A =
‖w‖A2

. These x, y, x+, etc. satisfy the conditions for (∗). Therefore, we have

c|wJl
− wJr ||w−1

Jl
− w−1

Jr
| 1
w−1

J

+
B(wJl

, w−1
Jl

) + B(wJr , w
−1
Jr

)
2

≤ B(wJ , w−1
J ).

Now x−y− and x+y+ ≤ A = ‖w‖A2
again, so we can use estimate (∗) on the

Bellman functions on the left side, too. This process can be repeated as often
as we want. After n iterations, we have the following formula:

c
∑

I⊂J,|I|≥2−n|J|

|cI |√|I|
|dI |√|I|wI

|I|
|J | + positive terms ≤ B(wJ , w−1

J ) ≤ 5 ‖w‖A2
wJ .

So letting n go to ∞, we get the desired estimate.

5. Dividing the estimate up into 4 sums

To begin with, let us estimate the norm of the martingale transform by duality,

‖Trf‖L2(w) = sup
‖g‖L2(w−1)=1

∫
Trfg dx

= sup
‖g‖L2(w−1)=1

∫ ∑
I,J

r(I)〈f, hI〉hI〈g, hJ〉hJ dx.

Since the hI ’s are orthonormal in L2(dx) this becomes

sup
‖g‖L2(w−1)=1

∑
I

r(I)〈f, hI〉〈g, hI〉.

Replacing f by fw1/2, and g by gw−1/2 this becomes:

‖Tr‖L2(w)→L2(w) = sup
‖g‖L2(dx)=1

sup
‖f‖L2(dx)=1

∑
I

r(I)〈fw−1/2, hI〉〈gw1/2, hI〉.

In order to estimate this, it is convenient to express the Haar functions in terms
of a different family, which is more suited to working with weights.

The following “Haar functions” for L2(w) are normalized and orthogonal in
L2(w):

hw
I (x) =

hI(x) + γI
wχI

δI
w

,
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where γI
w = −cI

|I| and δI
w

2 = wI(1 − c2
I/|I|) = wIl

wIr

wI
are chosen to make these

functions an orthonormal family.
Of course, there is the equivalent family for w−1, with γI

w−1 = −dI

|I| and

δI
w−1

2 = w−1
I (1 − d2

I/|I|) =
w−1

Il
w−1

Ir

w−1
I

.

Substituting hI(x) = δI
whw

I (x) − γI
wχI (or the equivalent for w−1) into our

equation, and sorting the different types of terms, we can write what we are
trying to estimate as four sums I + II + III + IV

I :
∑

I∈D[0,1]

r(I)〈fw−1/2, hw−1

I 〉δI
w−1〈gw1/2, hw

I 〉δI
w,

II : −
∑

I∈D[0,1]

r(I)〈fw−1/2, χI〉γI
w−1〈gw1/2, hw

I 〉δI
w,

III : −
∑

I∈D[0,1]

r(I)〈fw−1/2, hw−1

I 〉δI
w−1〈gw1/2, χI〉γI

w,

IV :
∑

I∈D[0,1]

r(I)〈fw−1/2, χI〉γI
w−1〈gw1/2, χI〉γI

w.

We will estimate each sum separately in absolute value.

5.1. Sum I. Since r(I) could be any combination of signs, we will sum in
absolute value.

I :
∑ ∣∣∣〈fw−1/2, hw−1

I 〉〈gw1/2, hw
I 〉

∣∣∣
√

wIl
wIrw

−1
Il

w−1
Ir

wIw
−1
I

.

Since wIr
wIl

≤ (wI)2and w−1
Ir

w−1
Il

≤ (w−1
I )2 , this is bounded by

∑ ∣∣∣〈fw−1/2, hw−1

I 〉〈gw1/2, hw
I 〉

∣∣∣ √
µ(I)

≤ ‖w‖1/2
∑ ∣∣∣〈fw−1/2, hw−1

I 〉〈gw1/2, hw
I 〉

∣∣∣ .

Taking the inner product in L2(w) and L2(w−1) instead of in L2(dx), this be-
comes

‖w‖1/2
∑ ∣∣∣〈fw1/2, hw−1

I 〉w−1〈gw−1/2, hw
I 〉w

∣∣∣ .

Since hw and hw−1
are orthonormal in L2(w) and L2(w−1), Cauchy Schwarz and

the Bessel inequality allow us to estimate this by

‖w‖1/2
∥∥∥fw1/2

∥∥∥
L2(w−1)

∥∥∥gw−1/2
∥∥∥

L2(w)
= ‖w‖1/2 ‖f‖L2(dx) ‖g‖L2(dx) .
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5.2. Sum II and Sum III. Sums II and III are equivalent, so we will show
Sum II only.

∑
I∈D[0,1]

∣∣∣〈fw−1/2, χI〉γI
w−1〈gw1/2, hw

I 〉δI
w

∣∣∣
=

∑
I∈D[0,1]

∣∣∣∣(fw−1/2)I |I| |dI |
|I| 〈gw1/2, hw

I 〉
√

wI(1 − c2
I/|I|)

∣∣∣∣ .

Using the fact that (1−c2
I/|I|) ≤ 1 and applying the Cauchy-Schwarz inequality,

this becomes
 ∑

I∈D[0,1]

|(fw−1/2)2I | |dI |2wI




1/2 
 ∑

I∈D[0,1]

〈gw1/2, hw
I 〉2




1/2

.

The second of these terms can again be estimated as in Sum I, and is bounded
by ‖g‖L2(dx). To estimate the first term, we will use Theorem 4.1 with w−1 for
w, and αI = d2

IwI , and the inequality from Remark 4.5:

1
|J |

∑
I⊂J

(w−1
I )2d2

IwI ≤ c ‖w‖2
A2

w−1
J .

Theorem 4.1 gives us
 ∑

I∈D[0,1]

|(fw−1/2)2I | |dI |2wI




1/2

≤ c ‖w‖A2
‖f‖L2(dx) .

Therefore Sum II is bounded by c ‖w‖A2
‖f‖L2(dx) ‖g‖L2(dx).

5.3. Sum IV.

IV :
∑

I∈D[0,1]

∣∣∣∣(fw−1/2)I |I|(gw1/2)I |I| |cIdI |
|I|2

∣∣∣∣
In order to estimate this sum, we will make use of Theorem 4.2. with αI = |cIdI |

|I| .
Since w and w−1 have the same A2 norm, it is sufficient to calculate one of the
conditions for the theorem.

1
|J |

∫
J

(∑
I⊂J

αIwIχI(x)

)2

w−1 dx

=
1
|J |

∑
I,K⊂J

αIwIαKwK

∫
J

χI(x)χK(x)w−1(x) dx.
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We can break this sum into the case where I = K or I ⊂ K, since K ⊂ I is
equivalent to the latter. So we get

1
|J |


∑

I⊂J

α2
I(wI)2w−1

I |I| + 2
∑

I,KK⊂I⊂J

αIαKwKwIw
−1
K |K|


 .

The first sum is
1
|J |

∑
I⊂J

(
cI√|I| )

2(
dI√|I| )

2wI |I|µ(I).

Because w is an A∞ weight, | dI√
|I| | ≤ 1 (see [4]), and so we can estimate the

above by
1
|J |

∑
I⊂J

(
cI√|I| )

2wI |I|µ(I)

which is ≤ c ‖w‖2
A2

wJ by Remark 4.5.
This leaves us to estimate the second sum

2
|J |

∑
I,KK⊂I⊂J

|cI |√|I|
|dI |√|I|

|cK |√|K|
|dK |√|K|wI µ(K)|K|

=
2
|J |

∑
I⊂J

|cI |√|I|
|dI |√|I|wI

∑
K⊂I

|cK |√|K|
|dK |√|K|µ(K)|K|.

The inside sum, by lemma 4.7 is bounded by c ‖w‖A2
|I|. That leaves us to

estimate

‖w‖A2

2
|J |

∑
I⊂J

|cI |√|I|
|dI |√|I|wI |I|

which, by lemma 4.8 is bounded by c ‖w‖2
A2

wJ . Remembering that the final
estimate for sum IV will be the square root of the estimate for the above, we have
that sums I to IV are each individually bounded by c ‖w‖A2

‖f‖L2(dx) ‖g‖L2(dx),
which concludes the proof.
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