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A SHARP ESTIMATE ON THE NORM OF THE
MARTINGALE TRANSFORM

JANINE WITTWER

1. Introduction

The boundedness of singular integral operators in L?(w) for w € A, has been
known for a long time, by the Hunt-Muckenhaupt-Wheeden Theorem. What
is as of yet unknown is the sharp bound of these operators in terms of the Ao
norm of w. In his thesis, S. Buckley proved that the Hardy-Littlewood maximal
operator is bounded linearly in |lwl| 4 , the square function operator bound is

no more than ||U)H?4/2 * and that the Hilbert transform norm is no worse than
quadratic. It is easily seen that each of these operators can not have a better
bound than linear in [Jw][ 5, (just look at power weights). In this paper, following
the methods of [6], we show that the bound for the martingale transform, which
is a dyadic analog of singular integral operators, is linear. We also give a simple
proof that the dyadic square function is bounded linearly.

2. Notation

In what follows, h; will denote the normalized Haar function for the dyadic
interval I, i.e., hy = X" where I}, I, denote the left and right children of T

Vil

respectively. The weight w and its inverse w1 will be dyadic A, weights on [0, 1].
w will be normalized to have f[o,l} w(z) = 1. Let (f); denote ﬁ J; f(x)dx for T
a dyadic interval. Sometimes the parentheses are omitted when it is clear which
function we are averaging. wI_1 will denote ﬁ i) I ﬁdm. Let p(I) = w [wl_l and
wll o, = suprep n(D).

We will write w in the form w(z) = [[(1 + ¢;hy) where ¢; = 2L /]T].

2wy
-1 -1
Similarly, we define d; = M\/] |.

—T
2wy

(,), will denote the inner product in L?(dp). If the subscript is omitted, the
measure is dz.

The family of operators which we are concerned with are the martingale
transforms

T.f= Y r(D{fhi)hs

1€D[0,1]
where 7(I) assumes the values +1 and —1 only.
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3. The main theorem
Theorem 3.1.
1T £ 2wy < €llwllay 11 22w) »
for w € Ay and f € L*(w).

We will prove this Theorem in section 5.

4. Useful lemmas and theorems
The following theorem can be found in [6], Section 2.
Theorem 4.1. Let oy > 0. Then
> (fw'jar <de|lf;
1€D[0,1]
for all f € L?(dz) iff

1
m Z(’wl)zaf <cwy
IcJ

for all J € D[0,1].
Theorem 4.2. Let ay > 0. If

1
g | e (@)? e de < ey
Jrca
for all J € D and
1 - —
m (Z arw; (@) ?wdx < clel

Jrc
for all J € D, then

> ar(fw')r(gw V) I < ea || fll 2 gl 2
IeD

for all f,g € L?(dx), where cy < cy/c1 and c is an absolute constant.
Proof. From [6], section 4, we know that if

1 (Z arwrxr(z))*v(z)de < wy
EA Nt

for all J € D, then
> ar(fw?)(go ) 1] < e[l fI7= + llgl72),

16D1
1/2y2 1/242
where Dy = {I € D : Ut > (9,
-1
To prove Theorem 4.2, we use this theorem with v = “’C—l Then, since in

the conclusion v appears with a square root only, the bound for the conclusion
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would be of the order /c;. Furthermore, imposing that the condition be fulfilled
for both w and w™! , we can sum over all dyadic intervals, since for all of them
either

(Ful2) _ (glw)'/2)3
wy o w;

or

(fw'?)7 _ (g(w™H)2)7
< -
wr Wy

is true. Finally, letting g* = (%)1/29 and f* = (%)_1/2(}”, we get

> ar(f w2 (g (w )Y < 2e(1 |2 97N 2,
IeD,

since this normalization does not change the right hand side at all. O

The following estimate is not used in the proof of the main theorem, but may
be interesting in its own right. It gives the (unweighted) carleson norm of the
sequence {cr}. See [7], theorem 4.1 .

Lemma 4.3. For w € Ay where w(x) = C[[(1 + crhr), the following is true:
> ¢ < 2log(||wl]| 4,11,
IcJ

and this estimate is sharp.
Proof. By the definition of w,

(1=l =1 (FL )2 =

2w1
A(1/2(wr, +wp,))? — (wy, —wy,)® _ wrwr,
(2wr)? (wr)?’
and therefore
W, Wi, —c2/|1]
- < e I .
(wr)* —

Taking square roots, this becomes wy > eci/Q‘”(wllwIT)l/Q.
Since (wl_l)2 > (wl_llwzll), we can multiply these two equations to get

2
p(I) = e (D) () 2.
Now use the same inequality to replace p(I;) and p(I,.), and repeat this process.
After n steps we get
27'”4

kK|
uhzen| Y [ wx)

weryiez-na WKW e S
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(The |K|/|I| in the exp comes from the repeated square roots that we took.)
Realizing that p(K) > 1 always, we get

2
C
p(I) > exp > K

2|1
KCI,|K|>2-"|1]

Taking the limit as n — oo, and taking logarithms, we get the lemma.
To see that the bound is indeed sharp, consider w = exp (ZieN bi@i) where ®;
are Rademacher functions. Then Y~ ¢7 = D> tanh?(b;)|.J|, while w4, =

[Ticn (1 + sinh®(b;)). O
Theorem 4.4. Let Sf be the dyadic square function of f. Then

ISF1 22wy < llwllag 1122 ) »

and this estimate is sharp.
Note. This estimate has also been proven, using a different method, in [5].

Proof. Let
hr
f[ - (’U}I)I/Q’
and
gr = h[(w[)l/wal.

Then (fr,9s)w = 1 if I = J and 0 otherwise. Let f € L?(w).

1/2 1/2
1S f1l L2 (w) = (Z(fa h1>2w1> = (Z(f, gI)i) .

IeD IeD
In that notation, the theorem to prove becomes

ST g <l 11220 -

IeD
We will bound this by first showing that

ST < wlla, 11720 »
IeD

from which the desired inequality can be extracted by algebraic manipulations.
By the theorem on the lower bound of the square function in [3] we know the
following:

1/2
£l 22y < ellw]la, "2 (Z(f, gz>i) :

IeD
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This allows us to compute the norm of the sequence valued operator (Jg); =
(g, f1)w from L?(w) to 1%

sup sup Z kl/gflw =
l9ll L2 (wy=1 k1 2= 1 p

sup sup /g Z krfrw <

lgll L2y =1 I{k HI2=1 ~ fpp

by Cauchy-Schwarz, and the above inequality,

Z krfr(x)

IeD

sup sup
{kr}HI2=1llgll L2 () =1

IN

191l 22 w)
L2 (w)

1/2
lwls, ' su [Z<<ka)vw>i] -

I{Er}Hl2=1 JeD IeD

1/2
lw]l4,"*  sup <Zk12> = [lwll4,""*.

Ik} l2=1 \ feh

This means that

2
S0 1% < el N9l

IeD
for every weight in A,. In particular, this is true for the weight w=':

h[ 2 2
(90— hw < llwlla, l9llz2e-1y -
IGZD (w; Dy1/2 A L2(w—1)

Let g* = gw™!. Then this becomes

.k .
Z(g >W>flm <|[wll 4, llg ”iQ(w)'
I

IeD
The left hand side can be rewritten as
. 2 1
Z (g%, hy(wr)'Pww 1>dxﬂ-
IeD K

So finally, we have the inequality
" 2 (2
D Ag a0 < lwli, 197172 ) »
IeD
which is what we needed to prove. O

Remark 4.5. We have the following inequality:

1 _ 2 _
7] Z(wl DPdiwr < e Jwll, wy '
IcJ

This inequality follows by realizing that the left hand side is bounded by
HS(w_IXJ)HiQ(w), which by Theorem 4.4 is bounded by ¢ Hw||?42 Hw_IXJHiZ(w).
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Lemma 4.6.

cr
Y (=) will] < e llwll 4, wal ],

fer Vil

and this estimate is sharp.

Proof. By [1], 2.2 we have the following two estimates:

wr, —w 2 C
Sy (M) ) <l w1

w
I1CJ I

for w € By, p> 1, and

q wy, — Wy, 2 C w )l
S (wr) <—w1 ) 1< sl

1cJ

for 0 < ¢ < 1. (c in both estimates is an absolute constant.)
Using Holder’s inequality on (w;)+€/2 and (w;)1=9/2 we get

1/2 1/2
C—Igwll C_IgwI1+eI Cr 2w T ,
Izc;](\/m) !|§<2(m)() !I) (Z(\/m)() !)

IcJ I1CJ

where we choose € to be ¢/ ||wl| 5, for ¢ a small constant.

If ¢ is chosen smaller than a dimensional constant, this € is one for which the

1
reverse Holder inequality holds for w, i.e., (ﬁ I; wlte) e < 2% J;w as can
be seen by carefully reading the proof of the reverse Holder inequality in [2].
Therefore w is in By, with norm 2.
. . . o . wr, —Wr,.

Letting p = 14€ and ¢ = 1—¢ in the above estimates, and writing —Sa ||

as cy we get

1/2
€1 \2(00) e ¢ 1/29 55 (0 )50 g (1/2
(;@xm)( 1>+|I> < (qrrg) 2 F ) T

and

1/2
Cr 2 1—e ¢ 1/2 1o 111/2
(—=)"(wr) |I|> <( ) (wg) = I
(I;] VI e(l—e¢)

which, when combined, yields the required estimate. (Remember that ¢ =
¢/ [lwll 4,-)

To see that this estimate is sharp, let w = [, (1+a27"/2hy,) where hy, is the
Haar function whose support is of the form [0,27¢]. Then ||w|

A, 18 comparable

to =, and ZICJ(ﬁ)QwIM =25, a? (). O
c d
Lemma 4.7. Y ., \'/% \l/%p(K)|K| < Cw]] 4, 1.
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Proof. By Lemma 5.3 from [6], we have

— v w
Z'U[w[ d L Zh ’I| <C\/'UJ’LUJ,
IcJ
provided vywy < 1 for all I C J.
—1
Letting v; = ”Zﬁ , and clearing the denominators, we get the above lemma.
Az

O

ler| |di]

Lemma 4.8. ﬁZICJ\/\T\/ﬁwIM < Cllw|l 4, ws-

Proof. This lemma will be proven by the method of Bellman functions.
Let B(z,y) = z( 4yA T4 +4A+1). Then B(z,y) has the following properties,
which can be checked by elementary calculus:

1. 0 < B(x, y)<5Axon{x y>0;1<zy <A}

B _p. 1
2. ( B xj 1 _xé Y > is positive semidefinite on {z,y > 0;1 < zy <
Ty Ty vy
2A}.
~Byy  —Bg,+1
3. ( B 1 1 _gcé Y ) is positive semidefinite on {x,y > 0;1 < zy <
zy Ty vy
2A}.

Let us show that these conditions imply the following discrete condition:

() Bley) - DI B@ ) S ol gt
r = (I—;r+)

y )
y = (y—;‘y+)

>C

where and , and (x,y),(x_,y_), (z+,y+) are in the
domain {z,y > 0;1 < zy < A}. Let z(t) = w*(lﬂ);“(l_t) and y(t) =
M for t € [-1,1]. Note that y(t) < % = 2y. Denote
by b(t ) the function B(z(t), y(t)) Note that (x(t),y(t)) are in the domain
{z,y > 0;1 <xy <2A}. Then

(1) = (1), 9/ ()~ B)@ (0,5 D)
> @) e 0T ) @O0,

and
=V'(t) = (' (1), y' (1)) (~d*B) (2" (), 5/ (¢))’
> e oY )@
Therefore, evaluating z’(t) and 3/(t) we have

/! 2
= y(1)

1
= 1y

(- —x4) (Y- —y+)
2 2

(- =z )(y- —y4)l-
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By the definition of b,

B([E,y) _ B(vay*) —; B(‘TJr?er) _ b(O) - b(l) +2b(_1)
-1z [ V0= it = C |G =) - H

Now we are ready to run the usual Bellman function argument to prove the
lemma.

Let © = wy,y = wjl,a:_ =Wy, Ty = Wy, ,Y_ = w;ll,y+ = w}rl and A =
|wll 4,- These x,y, x4, etc. satisfy the conditions for (x). Therefore, we have

1‘ 1 B(szvw;ll)—i_B(er’w;Tl)

2 <B(’UJJ, 1).

clwy, —wy,[[wy —w;
J
Now z_y_ and 24y < A = [Jw| 4, again, so we can use estimate (x) on the
Bellman functions on the left side, too. This process can be repeated as often
as we want. After n iterations, we have the following formula:

ledl ddl 111
Z + positive terms < B(wy,w;') <5 w4, ws-
1cg|1z2-nJ| Vv 1] v |I ‘J|
So letting n go to oo, we get the desired estimate. O

5. Dividing the estimate up into 4 sums

To begin with, let us estimate the norm of the martingale transform by duality,

||Trf||L2(w) = sup /Tng dx

HQHL?(“,fl):l
/Z ){fshi)hilg, ha)hy dz.
HQHL?(w—l)—l

Since the h;’s are orthonormal in L?(dx) this becomes

sSup ZT(I)(f,h[)(Q,h[>.

||9HL2(w71):1 I

Replacing f by fw!/?, and ¢ by gw—1/? this becomes:

ITo | 2 () 1200y = SUD sup Y r(D)(fw™ hr){gw'/? hy).
HQHLZ(dw):l ||f||L2(dw):1 I

In order to estimate this, it is convenient to express the Haar functions in terms
of a different family, which is more suited to working with weights.

The following “Haar functions” for L?(w) are normalized and orthogonal in
L2 (w):
hr(@) + vaxi

h}u(x) - 6[ ’
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where v = \ICII and 5 =w(1—c2/|]) = % are chosen to make these
functions an orthonormal family.
Of course, there is the equivalent family for w=!, with 7{” 4 = _‘le’ and

-1, -1

2 .
=wpt (L= dj/|T]) = ==

I
6’[1}71

Substituting hr(z) = (5,{0h?’( ) — v x1 (or the equivalent for w=1) into our
equation, and sorting the different types of terms, we can write what we are
trying to estimate as four sums I + I1 + 111+ IV

I+ 3" r(D(fw™ V2 0y )00 (g2, hy)aL,

IeD[0,1]

IT: = Y r(D(fw™ 2 xn)vh - (gw' /2, by oL,

1€D[0,1]

Ir:— > r(D(fw ™2 )6 (g0 X,

IeD[0,1]

1V : Z fw 7XI>71{;—1<gw1/27XI>7'LIu'
1€D[0,1]

We will estimate each sum separately in absolute value.

5.1. Sum I. Since r(I) could be any combination of signs, we will sum in
absolute value.

—1
I- Z‘ fw~ 1/2 hw gw1/2 B ‘\/wllwz LW, wI

wIwI
Since w; wr, < (wr)?and wl_rlwl_l1 < (w;!)?, this is bounded by
S [(ru 2 mg T (gwtl 2, mg | /()
< ol 230 [ 2,y g2, ).

Taking the inner product in L?(w) and L?*(w™!) instead of in L?(dx), this be-
comes

holl* D2 [(F /2 m ™ s (g2 R

Since h* and h*" ' are orthonormal in L2(w) and L2(w~'), Cauchy Schwarz and
the Bessel inequality allow us to estimate this by

1/2

O e

||w||1/2 wa1/2‘ 11 22 (dwy 1911 L2 () -

—1/2’
L2(w-1)
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5.2. Sum IT and Sum III. Sums II and III are equivalent, so we will show
Sum II only.

> ‘<fw’1/2,xm&dgwl/g,h?)%‘

IeD[0,1]
- |d1 w
= 0 |Gw BT g k) e (1= )|

1€D[0,1]
Using the fact that (1—¢2/|I]) < 1 and applying the Cauchy-Schwarz inequality,
this becomes

1/2 1/2

> G A P Y (gw'/hp)?

I€DI0,1] 1€D[0,1]

The second of these terms can again be estimated as in Sum I, and is bounded
by [|gll12(az)- To estimate the first term, we will use Theorem 4.1 with w1 for

w, and ay = d?wy, and the inequality from Remark 4.5:

7] Z 2diwy < cflw]}, wy
1cJ
Theorem 4.1 gives us
1/2
Yo 1w Por | < ellwllag £z gar) -

IeD[0,1]

Therefore Sum IT is bounded by ¢ [[wl| 4, /[ 124z 191l L2 () -

5.3. Sum IV.
1/2 1/2 |erd|
v Yy (o) (gw! )| Tik
IeD[0,1]
In order to estimate this sum, we will make use of Theorem 4.2. with a; = ‘clf Id‘fl

Since w and w~! have the same A norm, it is sufficient to calculate one of the
conditions for the theorem.

2
|J|/ (Zafw]x[ > w b dx

I1CJ
1

-5 ¥ amaxur | e (@) do

ey
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We can break this sum into the case where I = K or I C K, since K C [ is
equivalent to the latter. So we get

1 _ _
7l Za?(w1)2w11|f|+2 Z aragwrgwiwe K|
IcJ ILKKCICJ

The first sum is

Z\/’TZ ]I )2wr|I|p(I).

IcJ

Because w is an A, weight, |-% see [4]), and so we can estimate the

vl =1

above by
Z 2wrlI|p(1)
ICJ

which is < ¢ ||sz12 wy by Remark 4.5.
This leaves us to estimate the second sum

2 ler| |dr| |ek] !dK\
p(K)| K|
11 K; VIV VI VIR
c |dr] c d
Z|I| 1l ler| ldx| |,

wr
S VIV g VKR

The inside sum, by lemma 4.7 is bounded by c|[w]| 4, [I|. That leaves us to
estimate

wll 4, 1]
! |J|I§ﬁﬁ

which, by lemma 4.8 is bounded by cHw||1242 wy. Remembering that the final
estimate for sum IV will be the square root of the estimate for the above, we have
that sums I to IV are each individually bounded by c||w|| 4, | £l 2 (42 19/l 22 ()
which concludes the proof.
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