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SOME REMARKS ON RATIONAL PERIODIC POINTS

Shu Kawaguchi

Abstract. Let M be a finitely generated field over Q and X a variety defined
over M . We study when the set {P ∈ X(K) | f◦n(P ) = P for some n ≥ 1} is
finite for any finite extension fields K of M and for any dominant K-morphisms
f : X → X with deg f ≥ 2.

Introduction

To define a variety, we infer an integral separated scheme of finite type over a
ground field. Let M be a finitely generated field over Q and X a variety defined
over M . Let K be a finite extension field of M and f : X → X a dominant
morphism defined over K. We say that a point P ∈ X(K) is periodic with
respect to f if there is a positive integer n with f◦n(P ) = P . Let X(K)per,f be
the set of periodic K-points with respect to f . We say that X is periodically
finite if X(K)per,f is a finite set for any finite extension fields K of M and any
dominant K-morphisms f : X → X with deg f ≥ 2.

In this paper, we study when X is periodically finite. In order to show the
finiteness of X(K)per,f , we introduce the set of backward K-orbits of f , denoted
by lim←− fX(K), which is defined by

lim←− fX(K) =

{
(xn)∞n=0 ∈

∞∏
n=0

X(K) | f(xn+1) = xn (n ≥ 0)

}
.

It is easy to see that if lim←− fX(K) is a finite set, then so is X(K)per,f and
# lim←− fX(K) = #X(K)per,f (cf. Lemma 2.2).

We obtain the following results.

Theorem A (cf., Corollary 2.5 and §6). Let X be a geometrically irreducible
normal projective variety defined over a finitely generated field over Q. As-
sume that the Picard number of X is 1 (for example, X is Pn or a geometrically
irreducible normal projective curve). Then X is periodically finite.

We prove this by using Northcott’s finiteness theorem of height functions.
More precisely, this result is a corollary of the fact that if there is an ample line
bundle L such that f∗(L) ⊗ L−1 is also ample, then lim←− fX(K) is a finite set
(Theorem 2.4).
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We also show the following theorems.

Theorem B (cf., Corollary 3.4 and §6). Let C be a curve defined over a finitely
generated field over Q. Then C is periodically finite.

Theorem C (cf., Theorem 4.4 and §6). Let A be an abelian variety defined over
a finitely generated field over Q. Then A is periodically finite if and only if A is
simple.

Theorem D (cf., Theorem 5.6 and §6). Let X be a smooth projective surface
with the non-negative Kodaira dimension such that X is defined over a finitely
generated field over Q. Then X is not periodically finite if and only if X is one
of the following types;

(i) X is an abelian surface which is not simple, or
(ii) X is a hyperelliptic surface.

In order to clarify the argument, M is assumed to be a number field before
§6, where in §6, we deal with a finitely generated field over Q in general.

The author would like to thank Prof. Yoshio Fujimoto for telling him his
results ([10], [11]). Also, the author would like to thank Prof. J.-L. Colliot-
Thélène and Prof. Najmuddin Fakhruddin for their helpful comments on the
first draft, and the referee for pointing out several inaccuracies in the paper.
While the author was preparing this paper, he was partially supported by JSPS
Research Fellowships for Young Scientists.

1. Quick review of height theory

In this section, we recall some properties of height functions. We refer to [13]
for details. Let h : Pn(Q) → R be the logarithmic height function. Namely, for
a point x ∈ Pn(Q), h(x) is defined by

h(x) =
1

[K : Q]

∑
v∈MK

log
(

max
1≤i≤n

{|xi|v}
)

,

where x = (x0, x1, . . . , xn) ∈ Pn(K) is its coordinate over a sufficiently large
number field K, and MK is the set of all places of K.

Now let X be a projective variety defined over Q, φ : X → Pn a morphism
over Q. For a point x ∈ X(Q), we define the height of x with respect to φ,
denoted by hφ(x), to be hφ(x) = h(φ(x)).

Then the following theorem holds.

Theorem 1.1 (Height Machine). For every line bundle L on a projective vari-
ety X defined over Q, there exists a unique function hL : X(Q) → R modulo
bounded functions with the following property;

(i) For any two line bundles L1, L2, hL1⊗L2 = hL1 + hL2 + O(1).
(ii) If f : X → Y is a morphism of projective varieties over Q, then hf∗(L) =

f∗(hL) + O(1).
(iii) If φ : X → Pn is a morphism over Q, then hφ∗(OPn (1)) = hφ + O(1).
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We also recall some properties of height functions.

Theorem 1.2.
(i) (positiveness) If we denote Supp

(
Coker(H0(X, L)⊗OX)→ L

)
by Bs(L),

then hL is bounded below on (X \ Bs(L)) (Q).
(ii) (Northcott) Assume L be ample. Then for any d ≥ 1 and M ≥ 0,

{x ∈ X(Q) | hL(x) ≤M, [Q(x) : Q] ≤ d}
is a finite set.

For Theorem 1.1, we refer to [13, Theorem 3.3]. For Theorem 1.2, we refer
to [13, Corollary 3.4 and Proposition 3.5]. Although in [13] Theorem 1.1 (ii)
is written for a morphism of smooth projective varieties, it also holds for not
necessarily smooth projective varieties.

2. Finiteness

Let X be a variety defined over a number field M . Let K be a finite extension
of M and f : X → X a dominant morphism defined over K.

We say that a point P ∈ X(K) is periodic with respect to f if there is a
positive integer n with f◦n(P ) = P . Let X(K)per,f be the set of periodic K-
points with respect to f .

We also define the set of backward K-orbits of f , denoted by lim←− fX(K), to
be

lim←− fX(K) = {(xn)∞n=0 ∈
∞∏

n=0

X(K) | f(xn+1) = xn (n ≥ 0)}.

We say that X is periodically finite if for any finite extension fields K of M
and for any dominant K-morphisms f : X → X with deg f ≥ 2, X(K)per,f is a
finite set. Note that if there is no morphism f : X → X with deg f ≥ 2, then X
is periodically finite. For example, a variety of general type is periodically finite.

In this paper, we would like to study what kind of X is periodically finite.
We first remark elementary properties of X(K)per,f and lim←− fX(K).

Lemma 2.1. Let S ⊂ X(K) be a finite set and (xn)∞n=0 ∈ lim←− fX(K). Assume
that there is a subsequence (xni)

∞
i=0 consisting of elements in S. Then (xn)∞n=0 is

periodic, i.e., there is a positive integer p with xn+p = xn for n ≥ 0. Moreover,
(xn)∞n=0 is uniquely determined by x0.

Proof. Since S is a finite set, there is an element s ∈ X(K) such that, for
infinitely many n, xn equals to s. Let (xnj

)∞j=0 be the subsequence of (xn)∞n=0

with xnj = s for j ≥ 0. Let us set p = n1 − n0. We show that n2 − n1 = p.
Indeed, since f◦q(xn2) = xn1 , if we set q = n2 − n1, then we have f◦q(s) = s.
If we assume q > p, then n2 > n2 − p > n1 and xn2 = xn2−p = xn1 = s. This
is a contradiction. If we assume p > q, then we similarly have a contradiction.
Thus n2 − n1 = n1 − n0 = p. In the same way, nj+1 − nj = p for any j ≥ 0.
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Now let us take any n ≥ 0. We fix an nj with nj > n and set r = nj − n. Then
nj + p = nj+1 and nj+1 − (n + p) = r. Therefore, we get

xn+p = f◦r(xnj+1) = f◦r(s) = f◦r(xnj ) = xn.

This shows that (xn)∞n=0 is periodic. Moreover if we divide n by p and write
n = qp + l with 0 ≤ l ≤ p− 1, then it is easy to see that xn = f◦(p−l)(x0). This
shows the latter assertion of the lemma. ✷

The next lemma gives the relationship between lim←− fX(K) and X(K)per,f .

Lemma 2.2.
(i) If P is a K-periodic point, then there is an element (xn)∞n=0 ∈ lim←− fX(K)

such that P = x0. By this correspondence, X(K)per,f can be seen as a
subset of lim←− fX(K). We say an element of lim←− fX(K) which lies in the
image of X(K)per,f is periodic.

(ii) If X(K)per,f � lim←− fX(K) in the above correspondence, then lim←− fX(K)
is an infinite set.

(iii) If lim←− fX(K) is a finite set, then X(K)per,f = lim←− fX(K) in the above
correspondence. In particular, X(K)per,f is also a finite set.

Proof. (i) Let f◦p(P ) = P . For any n ≥ 0, we divide n by p and write n = qp+ l
with 0 ≤ l ≤ p − 1. Then if we put xn = f◦(p−l)(P ), (xn)∞n=0 is an element of
lim←− fX(K).

(ii) Suppose (xn)∞n=0 ∈ lim←− fX(K) is not periodic. By lemma 2.1, for any
fixed m, there are only finitely many k with xk = xm. Then {(xn)∞n=m | m ≥
0} ⊂ lim←− fX(K) is an infinite set.

(iii) If lim←− fX(K) is a finite set, then every (xn)∞n=0 ∈ lim←− fX(K) is periodic by
(ii). In particular, x0 is periodic. Therefore, the correspondence of (i) becomes
bijective. ✷

Next lemma shows that finiteness still holds if we change f to some powers
of f .

Lemma 2.3. Let k be a positive integer.
(i) X(K)per,f◦k is a finite set if and only if X(K)per,f is a finite set.
(ii) lim←− f◦kX(K) is a finite set if and only if lim←− fX(K) is a finite set.

Proof. (i) Suppose P satisfies f◦m(P ) = P . Then P satisfies (f◦k)◦m(P ) = P .
This shows that X(K)per,f = X(K)per,f◦k .

(ii) We have only to prove the “only if”part. If lim←− f◦kX(K) is a finite set,
its elements are all periodic by Lemma 2.2(ii). Thus if we set

S = {x ∈ X(K) |
there is an (xn)∞n=0 ∈ lim←− f◦kX(K) and an m such that x = xm.},

then S is a finite set. Now the finiteness of lim←− fX(K) follows from Lemma 2.1.
✷
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Now we prove the following theorem.

Theorem 2.4. Let X be a projective variety defined over a number field K and
f : X → X a surjective morphism defined over K. Let d be a positive integer.
Assume that there is an ample line bundle L such that f∗(L) ⊗ L−1 is ample.
Then

⋃
[K′:K]≤d lim←− fX(K ′) is a finite set. In particular,

⋃
[K′:K]≤d X(K ′)per,f

is also a finite set and #
⋃

[K′:K]≤d lim←− fX(K ′) = #
⋃

[K′:K]≤d X(K ′)per,f .

Proof. If we take a positive rational number ε′ which is sufficiently small, then
f∗(L)⊗L−(1+ε′) is still ample as a Q-line bundle. Then by Theorem 1.2(i), and
by the fact that hf∗(L)(P )−hL(f(P )) is a bounded function, we have a constant
C such that

hL (f(P ))− (1 + ε′)hL(P ) ≥ C.

for all P ∈ X(K). Let us take an ε with 0 < ε < ε′. Then there is a constant M
such that if hL(P ) > M , then

hL (f(P ))− (1 + ε)hL(P ) > 0.

Now let us define a set S to be

S = {x ∈ X(K ′) | [K ′ : K] ≤ d and hL(x) ≤M}.
Since L is ample, S is a finite set by Northcott.

In the following we show that, if (xn)∞n=0 ∈ lim←− fX(K ′), then there is a sub-
sequence (xni

)∞i=0 consisting of elements in S. In fact, suppose on the contrary
that there is an m such that, for any n ≥ m, xn does not belong to S. Since
hL(xn) > M for n ≥ m, we have

· · · < (1 + ε)2hL(xm+2) < (1 + ε)hL(xm+1) < hL(xm).

This is a contradiction because

hL(xn) <
1

(1 + ε)n−m
hL(xm)→ 0 (n→∞).

Now by applying Lemma 2.1, we get that (xn)∞n=0 is periodic and uniquely
determined by x0. We also get that the number of

⋃
[K′:K]≤d lim←− fX(K ′) does

not exceed the number of S. This proves the first assertion. The second assertion
follows from Lemma 2.2. ✷

As a corollary, we obtain the finiteness for a certain class of varieties.

Corollary 2.5. Let X be a geometrically irreducible normal projective variety
defined over a number field M . Assume that the Picard number of X is 1 (for
example, X is Pn or a geometrically irreducible normal projective curve). Then
X is periodically finite.

Proof. Let K be a finite extension field of M and f : X → X be a surjective
K-morphism of deg f ≥ 2. We take an arbitrary ample line bundle L on X.
Then by our hypothesis, there is a integer d ≥ 2 such that f∗(L) is numerically
equivalent to L⊗d. In particular, f∗(L)⊗ L−1 is ample. ✷
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Let us keep the notation of Theorem 2.4. Assume here that f∗(L) is linearly
equivalent to L⊗d. In this case, due to Tate, there exists a unique height func-
tion hL,f such that hL,f = hL + O(1) and that hL,f (f(P )) = dhL(P ) (cf., [6,
Chap 4. Proposotion 1.9] or [2, Corollary 1.1.1]). Then for any periodic points
with respect to f , their height must be 0 with respect to hL,f . An example for
this is the following corollary.

Corollary 2.6. Let K be a number field, A an Abelian variety defined over K
and [m] : A → A the m-plication map with m ≥ 2. Then lim←− [m]A(K) is a
finite set and the number of lim←− [m]A(K) does not exceed the number of torsion
K-points.

Proof. Extending K if necessary, we may assume that there is an ample sym-
metric line bundle L on A. Then f∗(L) � L⊗m2

and we can apply the theorem.
In this case, if x is a periodic point, then x is a torsion point. ✷

We finish this section by giving examples such that X(K)per,f is infinite.

Example 2.7. We give an example such that X(K)per,f (and thus lim←− fX(K))
is infinite. Let E be an elliptic curve defined over a number field K such that
E(K) is an infinite set. Let X be E × E and f : X → X map (P, Q) to
(P, [2](Q)). Then f is finite of degree 4 and the points of the form (P, 0) are all
periodic points.

Example 2.8. We give an example such that X(K)per,f is finite but lim←− fX(K)
is infinite. Let E be an elliptic curve defined over a number field K for which
E(K) contains non-torsion points. Let P0 ∈ E(K) be a non-torsion point. Let
X be E ×E and f : X → X map (P, Q) to (P + P0, [2](Q)). Then f is finite of
degree 4 and contains a sequence (xn)∞n=0 ∈ lim←− fX(K) with xn = (−[n](P0), 0).
Thus by Lemma 2.2, lim←− fX(K) is not finite. On the other hand, there are no
periodic points.

We note that we can give examples similar to the above two examples by
using P1.

3. Curves

By a curve, we mean an integral separated scheme of finite type over a ground
field. In this section, we prove that a curve is periodically finite. Since there is
no surjective morphism f : C → C with deg f ≥ 2 if C is a smooth projective
curve of genus ≥ 2, we are mainly concerned with a curve C such that C ⊗ Q

is a reduced scheme consisting of rational curves and elliptic curves. First we
prove two lemmas.

Lemma 3.1. Let C be a curve defined over Q, and f : C → C a morphism over
Q. Then there is a completion C of C and a morphism f : C → C which is an
extension of f .
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Proof. Let us take an arbitrary complete curve C
′
which is a completion of C

and set T ′ = C
′ \ C(Q). If t ∈ T ′ is a singular point of C

′
, then we blow it

up. Iterating this procedure, we get a completion C such that every point in
T = C \C(Q) is a smooth point of C. Now f defines a rational map f : C ��� C.
Since it is defined over T and C, f is actually a morphism. ✷

Lemma 3.2. Let C be a curve defined over a number field M which is geomet-
rically irreducible. Then C is periodically finite.

Proof. Let K be a finite extension of M and f : X → X a surjective morphism
defined over K with deg f ≥ 2. By taking a finite extension of K if necessary,
Lemma 3.1 indicates that there is a completion C of C and a extension f of f
which are defined over K. Then lim←− fC(K) can be seen as a subset of lim←− fC(K).
For a general point P ∈ C(Q), let L = OC(P ). Then, since deg f ≥ 2, f∗(L)⊗
L−1 is ample. Thus, by Theorem 2.4, lim←− fC(K) is a finite set. This proves the
lemma. ✷

Now we prove the following proposition.

Proposition 3.3. Let C be a reduced scheme which is a chain of geometrically
irreducible curves over Q. Let f : C → C be a surjective morphism such that, for
every irreducible component Ci of C, f |Ci : Ci → f(Ci) has degree ≥ 2. Then
for a number field K ⊂ Q such that C and f are defined over K, lim←− fC(K) is
a finite set.

Proof. If K ′ is a extension field of K, then the finiteness of lim←− fC(K ′) implies
the finiteness of lim←− fC(K). Thus to prove the proposition, we may take a finite
extension of K if necessary. Let C1, C2, . . . , Cl be the irreducible components
of C. Since f is surjective, the dimension of f(Cα) is 1 for every α. Thus f is
seen to induce a transposition of the set C1, C2, . . . , Cl. Then f◦l! maps Cα to
Cα for 1 ≤ i ≤ l. Let us set S = (∪α
=βCα ∩ Cβ)red. By Lemma 2.3, we have
only to show that lim←− f◦l!C(K) is a finite set. We may take a sufficiently large
K, so that Cα’s and S are all defined over K. Now let (xn)∞n=0 ∈ lim←− f◦l!X(K).

Case 1 Suppose that there exists a subsequence (xni)
∞
i=0 consisting of ele-

ments in S. Then by Lemma 2.1, the number of (xn)∞n=0 in this case is finite.
Case 2 Suppose that there is no subsequence (xni)

∞
i=0 consisting of elements

in S. Then there is an α such that every xn belongs to Cα. By Lemma 3.1,
lim←− f◦l!Cα(K) is a finite set. Thus the number of (xn)∞n=0 in this case is also
finite. ✷

As a corollary, we get

Corollary 3.4. Let C be a curve defined over a number field M . Then C is
periodically finite.

Proof. Let K be a finite extension of M and f : C → C be a surjective K-
morphism with deg f ≥ 2. Let us consider CQ and let C1, C2, . . . , Cl be its
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irreducible components. By abbreviation, f also denotes the induced morphism
CQ → CQ. Since C1, C2, . . . , Cl are all conjugate to each other, the degree of
f |Cα is greater or equal to 2 for each 1 ≤ α ≤ l. Now the assertion follows from
Proposition 3.3. ✷

4. Abelian varieties

Let A be an abelian variety defined over a number field M . Recall that A
is said to be simple if End(A)Q is simple. In this section, we show that A is
periodically finite if and only if A is simple. First we show that if an abelian
variety is simple, then it is periodically finite.

Proposition 4.1. Let A be a simple abelian variety defined over a number field
M . Then A is periodically finite.

Proof. Let K be a finite extension field of M and f : X → X a finite K-
morphism with deg f ≥ 2. Let us set Bn = {P ∈ A(K) | f◦n(P ) = P}. We
prove the finiteness of A(K)per,f in two steps.

Step 1 We assume here that f is a homomorphism. Let us denote by A(K)tor

the set of K-valued torsion points on A. It is well known that A(K)tor is a finite
set (cf., Corollary 2.6). Since A is simple and f◦n �= 1, Bn = Ker(f◦n−1)(K) is a
finite abelian group. In particular, Bn ⊂ A(K)tor. Thus A(K)per,f = ∪∞n=1Bn ⊂
A(K)tor is a finite set.

Step 2 Here we treat a general f . If Bn = ∅ for n ≥ 1, then we have
nothing to prove. Thus we assume that there is an k with Bk �= ∅ and we shall
prove A(K)per,f is a finite set. Since A(K)per,f◦k = A(K)per,f by Lemma 2.3,
we may assume that B1 �= ∅. We take x0 ∈ B1, i.e., f(x0) = x0. We give A
another group structure such that the identity is x0. We denote this abelian
variety by A′. Since f maps x0 to itself, f is a homomorphism of A′. Therefore,
A′(K)per,f is a finite set by Step 1. Since A and A′ are identical as a set and
thus A(K)per,f = A′(K)per,f , we are done. ✷

Next we show that if A is not simple, then A is not periodically finite. First
we note the following lemma.

Lemma 4.2. Let A be an abelian variety defined over a finitely generated field
M over Q. Then there exists a finite extension field K of M such that A(K) is
an infinite set.

This is proven by many authors (cf., [12, Theorem 10.1], [8, Theorem 7.6]).
We note that this is an easy corollary of Raynaud’s theorem [9] (Manin-Mumford
conjecture). Indeed, by Bertini’s theorem, there is a curve C of genus ≥ 2 on
AM . By Raynaud’s theorem, C(M) ∩ A(M)tor is a finite set. Thus if we take
a sufficiently large extension field K of M , then there exists a point P ∈ C(K)
which is not torsion. This proves the lemma.

Proposition 4.3. Let A be an abelian variety defined over a number field M .
If A is not simple, then A is not periodically finite.
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Proof. Since A is not simple, there is an Q-isogeny g : B × C → X, where B
and C are positive-dimensional abelian varieties. Let us set D = Ker g, which is
a finite group of order d = #D.

We consider a morphism

[d + 1]× [1] : B × C −→ B × C.

Since, for a point (b, c) ∈ D, ([d]b, [d]c) = 0, we get [d + 1]× [1](b, c) = (b, c) for
any (b, c) ∈ D. In particular, [d + 1]× [1] induces a morphism

f : A −→ A.

By the snake lemma, Ker([d + 1]× [1]) = Ker f , thus f is a surjective morphism
with deg f ≥ 2. Now we take a finite extension field K of M such that B and C
are defined over K and that C(K) is an infinite set. Then the infinite set

g({(0, Q) ∈ B(K)× C(K)}),
is contained in A(K)per,f . ✷

Combining Proposition 4.1 and Proposition 4.3, we obtain the following the-
orem.

Theorem 4.4. Let A be an abelian variety defined over a number field . Then
A is periodically finite if and only if A is simple.

5. surfaces with non-negative Kodaira dimensions

In this section we consider smooth projective surfaces with non-negative Ko-
daira dimensions.

E. Sato and Y. Fujimoto [10] [11] classified smooth projective varieties of
dim = 3 with the non-negative Kodaira dimensions which has a non-trivial
surjective endomorphism.

As a test case, they considered the surface case, which is as in the following.

Theorem 5.1 (E. Sato and Y. Fujimoto). If a smooth projective surface X has
a surjective endomorphism f : X → X with deg f ≥ 2, then X must be minimal
and is one of the following types;

(i) X is an abelian surface,
(ii) X is a hyperelliptic surface, or
(iii) The Kodaira dimension κ(X) of X is 1 and X carries an elliptic fibration

π : X → B whose singular fibers are at most multiple of the type mI0 in
the sense of Kodaira, where B is a smooth projective curve.

Proof. For the reader’s sake, we give a brief sketch of a proof.
Since X has non-negative Kodaira dimension, f : X → X must be étale (cf.,

[4, Theorem 11.7]). Suppose there is an exceptional curve C on X. Then the
equality

f∗(C) ·KX = f∗(C) · f∗KX = −(deg f),
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shows that there are at least two exceptional curves on X. Iterating this proce-
dure, we get a contradiction.

We note that since f is étale, χtop(X) = (deg f)χtop(X). Then deg f ≥ 2
implies χtop(X) = 0. In the same way, we get χ(OX) = 0.

If κ(X) = 2, then there are no surjective morphisms f : X → X with deg f ≥
2 (cf., [4, Proposition 10.10]); If κ(X) = 1, then χtop(X) = 0 indicates that
X has possibly only multiple singular fibers of type mI0; If κ(X) = 0, then
χ(OX) = 0 indicates that X cannot be a K3 surface nor an Enriques surface.

✷

We determined in the previous section when an abelian surface is periodically
finite. Now we study whether a surface of the case (ii) or (iii) is periodically
finite.

Proposition 5.2. Let X be a hyperelliptic surface defined over a number field
M . Then X is not periodically finite.

Proof. Let E, F be arbitrary elliptic curves, G a group of translations of E which
operates on F . According to the Bagnera-De Franchis list ([1, Liste VI.20]), all
the hyperelliptic curves are one of the following types;

(i) X ∼= (E × F )/G, G = Z/2 operating on F by x �→ −x,
(ii) X ∼= (E × F )/G, G = Z/2 × Z/2 operating on F by x �→ −x, x �→ x + ε

(ε ∈ F2),
(iii) X ∼= (E×Fi)/G, G = Z/4 operating on Fi by x �→ ix, where Fi = C/Z+iZ,
(iv) X ∼= (E × Fi)/G, G = Z/4 operating on Fi by x �→ ix,
(v) X ∼= (E×Fρ)/G, G = Z/3 operating on Fρ by x �→ ρx, where ρ = −1+

√−3
2

and Fρ = C/Z + ρZ.
(vi) X ∼= (E×Fρ)/G, G = Z/3×Z/3 operating on Fρ by x �→ ρx, x �→ x+ 1−ρ

3
(vii) X ∼= (E × Fρ)/G, G = Z/6 operating on Fρ by x �→ −ρx.
Now we consider the case (i). In this case,

[3]× [1] : E × F −→ E × F

induces a surjective morphism

f : X → X

with deg f ≥ 2. If we take a sufficiently large finite extension field K of M , Then
the infinite set {(0, Q) | Q ∈ F (K)} is contained in (E × F )(K)per,[3]×[1]. Thus
X(K)per,f is also an infinite set. The other cases can be treated in similar ways.
In lieu of [3]× [1], we have only to consider [g + 1]× [1] where g = #G. ✷

Next we treat a case of an elliptic surface. We prove the following lemma in
advance.

Lemma 5.3. Let π : X → B be a flat morphism of projective varieties over with
dimB = 1 such that all the fibers are (possibly non-reduced) abelian varieties. If
the Kodaira dimension of X is greater or equal to 1, then the geometric genus
of every horizontal curve is greater or equal to 2.
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Proof. Suppose there is a horizontal curve C on X such that the geometric genus
of C is 0 or 1. Then there is an elliptic curve B′ with a surjection u : B′ → C.
Let us set v = u◦π : B′ → B. Now we consider the following Cartesian product,

X ′ v′
−−−−→ X

π′
� π

�
B′ v−−−−→ B.

Since the singular fibers of π′ are at most multiple fibers of an abelian variety
and since π′ : X ′ → B′ has a section, π′ must be a smooth morphism. Then
there is an elliptic curve B′′ and an étale covering B′′ → B′ such that its pull-
back π′′ : X ′′ = X ′×′

B B′′ is trivial, i.e., X ′′ is a product of an abelian variety by
an elliptic curve (cf. [1, Proposition VI.8]). Thus the Kodaira dimension of X ′′

is zero. On the other hand, since there is a surjective morphism X ′′ → X, the
Kodaira dimension of X ′′ must be greater or equal to 1. This is a contradiction.

✷

Lemma 5.4. Let K be a number field. Let π : X → B be a flat morphism
of projective varieties over K with dimB = 1. Let f : X → X a surjective
morphism over K which commutes with π, i.e., π◦f = π. We make the following
three assumptions.
(A) There exist a covering u : B′ → B over K and an abelian variety A over

K such that X ×B B′ is isomorphic to A×K B′ over B′:

A×K B′ � X ×B B′ u′
−−−−→ X

π′
� π

�
B′ u−−−−→ B.

(B) If C is a horizontal curve on X, then the geometric genus of C is greater
or equal to 2.

(C) There is a line bundle L on X such that both L|Xη and f∗(L) × L−1|Xη

are ample, where η is a generic point of B.
Then X(K)per,f is a finite set.

Proof. We set X ′ = X ×B B′ and f ′ = f ×B id : X ′ → X ′. We first claim that

X(K)per,f ⊂ u′

 ⋃
[K′:K]≤d

X ′(K ′)per,f ′

 ,

where d = deg u. Indeed, for P ∈ X(K)per,f , we set Q = π(P ) and take a
point Q′ on B′ with u(Q′) = Q. We note that Q′ is defined over a number
field K ′ with [K ′ : K] ≤ d. Then the point P ′ = (P, Q′) on X ′ = X ×B B′

satisfies u′(P ′) = P and defined over K ′. For n with f◦n(P ) = P , we have
f ′◦n(P ′) = (f◦n(P ), Q) = (P, Q) = P ′. Thus P ′ ∈ X ′(K ′)per,f ′ .
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Let p : X ′ = A×K B′ → A, q : X ′ = A×K B′ → B′ be the projections. We
next claim that there are finite points x1, x2, · · · , xn ∈ A(K) such that⋃

[K′:K]≤d

X ′(K ′)per,f ′ ⊂ {x1, x2, · · · , xn} ×K B′.

Indeed, by the rigidity of abelian varieties (cf., [5, Chap 8 Theorem 1]), there
exist a finite extension field K1 of K and a morphism g : A → A defined over
K1 such that f ′

K1
= g ×K1 id : X ′

K1
→ X ′

K1
. (Here, f ′

K1
= f ×K K1 and

X ′
K1

= X ′ ×K K1.) Now if we set e = [K1 : K], then we have

p

 ⋃
[K′:K]≤d

X ′(K ′)per,f ′

 ⊂ ⋃
[K′′:K]≤de

A(K ′′)per,g.

On the other hand, if we set L′ = u′∗(L)|A, then, by the assumption (C), both
L′ and g∗(L′)⊗ L′−1 are ample. Thus, by Theorem 2.4,

⋃
[K′′:K]≤de A(K ′′)per,g

is a finite set. Therefore, we get the claim.
From the above two claims, we get

X(K)per,f ⊂ u′ ({x1, x2, · · · , xn} ×K C ′) .

On the other hand, u′(xi ×K C ′) is a horizontal curve on X and thus by the as-
sumption (B), its geometric genus is greater or equal to 2. Then
u′(xi×K C ′)(K) is a finite set by Mordell-Faltings’ theorem. Thus X(K)per,f is
a finite set. ✷

Proposition 5.5. Let M be a number field. Let X be a smooth projective sur-
face defined over M with the Kodaira dimension 1. We assume that X carries
an elliptic fibration π : X → B with at most multiple singular fibers of the type
mI0 in the sense of Kodaira, where B is a smooth projective curve of genus 0 or
1. Then X is periodically finite.

Proof. Let f : X → X be a surjective morphism with deg f ≥ 2. Since X
has a unique structure of an elliptic fibration up to isomorphisms, there is an
automorphism g : B → B with π ◦ f = g ◦ π. Let K be a sufficiently large
number field such that X, B, f, π, g are all defined over K.

Case 1 Suppose that for any k ≥ 1, g◦k is not the identity morphism. In
this case, the genus of B is 0 or 1. Let us set

S = {b ∈ B(Q) | g◦k(b) = b for some k ≥ 1}.
We claim that S consists at most two points. Indeed, suppose S contains

three points b1, b2, b3 ∈ B(Q) such that g◦ki(bi) = bi for i = 1, 2, 3. Then for
k = k1k2k3 we get g◦k(bi) = bi for i = 1, 2, 3. Since B is P1 or an elliptic curve,
this shows that g◦k is the identity morphism, which contradicts our assumption
of Case 1.

We take l such that g◦l(b) = b for any b ∈ S. Now we prove the finiteness
of X(K)per,f by showing the finiteness of lim←− f◦lX(K) (cf., Lemma 2.2 and
Lemma 2.3). Let (xn)∞n=0 be an element of lim←− f◦lX(K). Since π(xn) belongs to
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S, xn are all contained in the fiber Xπ(x0). Since f◦l is an étale morphism (cf., [4,
Theorem 11.7]), lim←− f◦l|(Xb)red

(Xb)red(K) is a finite set for b ∈ S by Lemma 3.2.
Using the finiteness of S, we obtain the finiteness of lim←− f◦lX(K).

Case 2 Suppose that there is a k ≥ 1 such that g◦k is the identity morphism.
To prove the finiteness of X(K)per,f , we may (and will) assume by interchanging
f with f◦k that g is the identity morphism (cf., Lemma 2.3).

Now by re-taking sufficiently large K, we show that X satisfies all the as-
sumptions of Lemma 5.4. Indeed, a similar argument of the proof of Lemma 5.3
yields the assumption (A); The assumption (B) is a consequence of Lemma 5.3.
Moreover, if we take an ample line bundle L on X, then L satisfies the assump-
tion (C), because the fiber is one-dimensional. Thus by Lemma 5.4, X(K)per,f

is a finite set. ✷

Combining all the results of this section, we obtain the following theorem.

Theorem 5.6. Let X be a smooth projective surface with the non-negative Ko-
daira dimension such that X is defined over a number field. Then X is not
periodically finite if and only if X is one of the following types;

(i) X is an abelian surface which is not simple, or
(ii) X is a hyperelliptic surface.

6. Finitely generated fields over Q

In this section, we work over a finitely generated field over Q. A. Moriwaki
has recently constructed the theory of height functions over a finitely generated
field over Q. We first recall a part of his theory. We refer to [7] for details.

Let K be a finitely generated field over Q with tr.degQ(K) = d. Let B be a
normal variety which is projective and flat over Z such that the field of rational
functions of B is K. Let H = (H, hH) be a nef C∞-hermitian line bundle on
B, i.e., H is a line bundle on B and hH is a C∞-hermitian line bundle such
that for any curve on C on B, d̂eg

(
ĉ1(H|C)

) ≥ 0 (in the sense of the Arakelov
geometry) and that the Chern form c1(H) is semi-positive. There exist many
such B = (B,H). We pick up a B and fix it in the following.

Now, for a point x ∈ Pn(K), let us define hB(x) to be

hB(x) =
∑
Γ

log
(

max
1≤i≤n

{− ordΓ(xi)} d̂eg
(
ĉ1(H|Γ)d

))
+∫

B(C)

log
(

max
1≤i≤n

{|xi|}
)

c1(H)d,

where x = (x0, x1, . . . , xn) ∈ Pn(K ′) is its coordinate over a sufficiently large
extension field K ′ of K, and Γ runs through all prime divisors on B. This gives
rise to a function hB : Pn(K)→ R.
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Now let X be a projective variety defined over K, φ : X → Pn a morphism
over K. For a point x ∈ X(K), we define the height of x with respect to φ,
denoted by hB

φ (x), to be hB
φ (x) = h(φ(x)).

Then the following theorem holds as is the number field case (cf., [7, §3–§4]).

Theorem 6.1. For every line bundle L on a projective variety X defined over
K, there exists a unique function hB

L : X(K) → R modulo bounded functions
with the following property;

(i) For any two line bundles L1, L2, hB
L1⊗L2

= hB
L1

+ hB
L2

+ O(1).
(ii) If f : X → Y is a morphism of projective varieties over K, then hB

f∗(L) =

f∗(hB
L ) + O(1).

(iii) If φ : X → Pn is a morphism over K, then hB
φ∗(OPn (1)) = hB

φ + O(1).

Moreover the following properties hold.
(a) (positiveness) If we denote Supp

(
Coker(H0(X, L)⊗OX)→ L

)
by Bs(L),

then hB
L is bounded below on (X \ Bs(L)) (K).

(b) (Northcott) Assume L is ample. Then for any e ≥ 1 and M ≥ 0,

{x ∈ X(K) | hB
L (x) ≤M, [K(x) : K] ≤ e}

is a finite set.

Aside from the Northcott finite theorem, we used Mordell-Faltings’ theorem
(cf., Lemma 5.4). It is known that this is also true for a finitely generated field
over Q (cf., [3, Chapter VI]).

Now it is clear that all the results before this section also hold for a finitely
generated field over Q.
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de France, Paris, 1978.

[2] G.S. Call and J.H. Silverman, Canonical heights on varieties with morphisms, Compositio
Math. 89 (1993), 163–205
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