
Mathematical Research Letters 6, 487–493 (1999)

THE WILLMORE CONJECTURE IN THE REAL PROJECTIVE
SPACE

Antonio Ros

Abstract. We prove that for any torus M immersed in the real projective space
RP3(1) with mean curvature H, we have that

∫
M (1 + H2)dA ≥ π2 and that the

equality holds only for the minimal Clifford torus. In terms of the three sphere,
this result says that the Willmore conjecture is true for immersed tori in S3(1)
invariant under the antipodal map.

1. Introduction.

In 1965 Willmore, [13], conjectured that any torus M immersed in the Eu-
clidean space R

3 satisfies the inequality∫
M

H2dA ≥ 2π2,

H being the mean curvature of M . The equality is attained for any conformal
image (via the stereographic projection) of the minimal Clifford torus in the unit
three-sphere S3(1). Although the general case remains unsolved, we have several
partial answers to this conjecture. It is known to be true if M is either a tube
around an immersed closed curve, see Shiohama and Takagi [11] or Willmore
[14], or the conformal image of a flat torus in S3(1), see Chen [2], or a torus of
revolution, see Langer and Singer [5]. An important partial result was found by
Li and Yau [7] who solve affirmatively the problem when the conformal struc-
ture induced by the immersion belongs to a certain bounded domain (described
explicitly) of the moduli space of conformal structures on the torus. Montiel
and Ros [8] give a larger domain in this moduli space for which the conjecture
is true. Simon [12] proved the existence of a torus in R

3 which minimizes the
functional

∫
M

H2dA. This torus is known to be embedded, see Li and Yau [7],
and unknotted, see Langevin and Rosenberg [6]. Other related results can be
found in Bryant [1], Kuhnel and Pinkall [3] and Kusner [4].

The functional above is well-known to be invariant under conformal trans-
formations and the Willmore conjecture, when rewritten in terms of spheri-
cal surfaces, says that any torus M immersed in the unit sphere S3(1) verifies∫

M
(1 + H2)dA ≥ 2π2, H being the mean curvature of M in S3(1), and that the
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equality holds only for the minimally embedded Clifford torus and its images by
conformal transformations of the sphere.

In this paper we solve the Willmore conjecture for tori in the sphere which are
invariant under the antipodal map or, equivalently, we find the minimum of the
Willmore functional for tori immersed in the three dimensional real projective
space RP3(1). More precisely, we prove that:

If M is a torus immersed in RP3(1), then
∫

M
(1 + H2)dA ≥ π2. If

the equality holds, then M is the (projection to the projective space
of the) minimal Clifford torus.

In fact we show that the above inequality holds for any orientable surface
immersed in the projective space. In terms of spherical surfaces our result say
that:

If M is an immersed torus in the sphere S3(1) invariant under the
antipodal map, then

∫
M

(1 + H2)dA ≥ 2π2 and the equality holds if
and only if M is the minimal Clifford torus.

The same result is true if M is not a torus but any compact orientable surface
of odd genus.

The main ingredient in our proof is the solution of the isoperimetric problem
in the projective space RP3(1) given by Ritoré and Ros in [9].

2. Preliminaries.

We shall need the following result

Theorem 1. If M is a compact surface immersed in S3(1), then∫
M

(1 + H2)dA ≥ 4π,(1)

and the equality holds if and only if M is an umbilic sphere. Moreover, if M is
not embedded, then ∫

M

(1 + H2)dA > 8π.(2)

The first part of the theorem is the result of Willmore [13] transported to the
sphere via stereographic projection. It can be obtained from a lot of different
arguments. We propose our own proof in Remark 1. The second statement is
proved by Li and Yau [7] (see also the comments in [9] for the strict inequality).

Given a closed subset Ω in S3(1) or in RP3 we will denote its volume by V (Ω)
and the area of its boundary, when it makes sense, by A(∂Ω). The isoperimetric
problem consists of finding among the subsets of given volume the ones which
have the smallest area at its boundary. In the sphere it is well-known that
the solutions of this problem are the geodesic balls. In the three dimensional
projective space the isoperimetric problem was solved by Ritoré and Ros, [9],
who proved that the solutions are the geodesic balls, solid tubes around geodesics
or the complementary domains of geodesic balls, depending of the value of the
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fixed volume. This fundamental problem is unsolved for the other elliptic space
forms, even for lens spaces, and the same holds for other simple compact 3-
manifolds like flat three tori, see the final remark of [10] for some results in this
direction.

The following is a particular case of the theorem in [9]. It asserts that the
solution of the isoperimetric problem for domains whose volume is one half of
the volume of RP3(1) is the domain enclosed by the embedded minimal Clifford
torus, i.e., the projection to the projective space of the minimal Clifford torus in
the 3-sphere. It will be convenient for us to state the result in terms of antipodal
invariant domains in the three sphere.

Theorem 2. Let Ω ⊂ S3(1) be a closed subset invariant under the antipodal
map with V (Ω) = 1

2V (S3(1)) and whose boundary has well defined area. Then

A(∂Ω) ≥ 2π2.(3)

Moreover, if ∂Ω is a smooth surface, then the equality in (3) holds if and only if
∂Ω is the minimally embedded Clifford torus.

3. The theorem.

Let ψ : M → S3(1) ⊂ R
4 be an oriented surface immersed in the unit three-

sphere and N : M → S3(1) its unit normal vector field. Consider, for any t ∈ R,
the parallel map ψt : M → S3(1) defined as ψt = cos t ψ + sin t N . For each
p ∈ M , take a positive orthonormal basis e1, e2 ∈ TpM of principal directions
with principal curvatures k1 and k2 respectively. The differential of ψt at p is
given by (ψt)∗(ei) = (cos t − ki sin t)ei, i = 1, 2. So we get that the Jacobian of
ψt is (Jac ψt) (p) = (cos t − k1 sin t)(cos t − k2 sin t).

Lemma 1. Given t, 0 ≤ t < π, the Jacobian of the map ψt parallel to ψ verifies

Jac ψt ≤ 1 + H2,

H = 1
2 (k1+k2) being the mean curvature of immersion ψ. Moreover, the equality

holds everywhere on M (assumed to be connected) if and only if either ψ is totally
umbilical and ψt is totally geodesic, or ψ is a minimal immersion and t = 0.

Proof. We have that

Jac ψt = cos2 t − 2H cos t sin t + k1k2 sin2 t ≤ cos2 t − 2H cos t sin t + H2 sin2 t,

with the equality holding if and only if either t = 0 or the point is umbilical.
Thus

Jac ψt ≤ (cos t − H sin t)2 ≤ (cos2 t + sin2 t)(1 + H2) = 1 + H2,

where we have applied the Schwarz inequality to the vectors (cos t, sin t) and
(1,−H).

If we have the equality everywhere on M we obtain that either t = 0 and the
above vectors are proportional (which means that M is minimal) or 0 < t and
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M is totally umbilical. In that case M and ψt(M) are isometric to 2-spheres
S, St ⊂ S3(1) of radius r and rt respectively and ψt : S → St is an homothety.
Clearly Jac ψt attains its maximum just for rt = 1. This proves the lemma.

Let Ω be one of the domains enclosed by a given closed surface M embedded
in S3(1). For any number t, 0 ≤ t < π, we can consider the subset B(Ω, t) =
{p ∈ S3(1)/dist(p,Ω) ≤ t} of points whose (spherical) distance to Ω is less than
or equal to t. The distance between Ω and a point in B(Ω, t)−Ω is attained by
a minimizing geodesic which meets the surface M orthogonally. This distance is
controlled by the cut function, c : M → {0 ≤ t < π}. If N denotes the outward
pointing unit normal along M and p ∈ M , c(p) is the last positive time, such that
the normal geodesic t 	→ cos t p+sin t N(p) attains the distance to M . Thus, we
have B(Ω, t) = Ω∪{cos s p + sin s N(p) | p ∈ M, 0 ≤ s ≤ min{t, c(p)}}. Moreover
c(p) is less than or equal to the first focal value along the normal geodesic at p
and, so, for any t, 0 ≤ t ≤ c(p), the Jacobian at p of the parallel surface ψt is
nonnegative, (Jacψt) (p) ≥ 0. As any point of the boundary of B(Ω, t) lies at
distance t from M we obtain that

∂B(Ω, t) ⊂ ψt ({p ∈ M | (Jac ψt) (p) ≥ 0}) .(4)

Proposition 1. Let M ⊂ S3(1) be a compact surface embedded in the unit
three-sphere and Ω ⊂ S3(1) the closure of one of the components of S3(1) − M .
Then, for any t, 0 ≤ t < π, we have

A(∂B(Ω, t)) ≤
∫

M

(1 + H2)dA,(5)

H being the mean curvature of M . Moreover, the equality holds if and only if
either M is an umbilical surface and B(Ω, t) is a halfsphere in S3(1), or M is a
minimal surface and t = 0.

Proof. From the inclusion (4) we have that

A(∂B(Ω, t)) ≤ A (ψt ({p ∈ M | (Jac ψt) (p) ≥ 0})) ≤
∫
{Jac ψt≥0}

Jac ψtdA,

which, combined with Lemma 1 gives

A(∂B(Ω, t)) ≤
∫
{Jac ψt≥0}

(1 + H2)dA ≤
∫

M

(1 + H2)dA.

This proves the claimed inequality. If the equality holds then we conclude that
Jac ψt ≥ 0 on M and, using again Lemma 1 we get that either M is an umbilical
sphere and ψt is totally geodesic or t = 0 and M is a minimal surface.

Theorem 3. Let ψ : M → RP3(1) by a compact orientable surface immersed
in the real projective space with mean curvature H. Then∫

M

(1 + H2)dA ≥ π2,

and the equality holds if and only if M is the minimally embedded Clifford torus.
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Proof. If the immersion ψ lifts to an immersion of M in the sphere we conclude
directly from (1) that

∫
M

(1 + H2)dA ≥ 4π, which is more than we need.
If the above lift does not exist, then we can construct a two fold covering

M̃ → M and an immersion ψ̃ : M̃ → S3(1) locally congruent to ψ. Therefore,
we have 2

∫
M

(1 + H2)dA =
∫

M̃
(1 + H2)dA, where we denote again by H and

dA the mean curvature of ψ̃ and the measure of M̃ . If ψ̃ is not an embedding,
by using (2), we obtain that

∫
M

(1 + H2)dA > 4π.
Thus we can assume that M̃ is connected, embedded in S3(1) and invariant

under the antipodal map. Let Ω be the closure of the component of S3(1) − M̃
which has the smallest volume. As M is orientable it follows that Ω is invariant
under the antipodal map and, so, B(Ω, t) is also antipodally symmetric. As the
volume of B(Ω, t) is a continuous function of t and V (Ω) ≤ 1

2V (S3(1)), we can
find t, 0 ≤ t < π such that V (B(Ω, t)) = 1

2V (S3(1)). By combination of (5) and
(3) we conclude that

∫
M̃

(1 + H2)dA ≥ 2π2. If the equality holds, then Lemma
1 implies that either M̃ is an umbilical sphere, or t = 0 and M̃ is minimal. The
first option is discarded because Ω must be antipodal invariant and so, we obtain
from the equality case in Theorem 2 that M̃ is the embedded Clifford torus in
S3(1). This proves the theorem.

Remark 1. If M is a compact surface embedded in the three sphere (non nec-
essarily antipodal invariant), we can repeat the arguments above by changing the
isoperimetric inequality in RP3(1) by the one in S3(1). In this way we obtain
another proof of the first result in Theorem 1.

Corollary 1. Let M be a compact orientable surface of odd genus immersed in
S3(1). If M is invariant under the antipodal map, then∫

M

(1 + H2)dA ≥ 2π2

and the equality holds if and only if M is the embedded minimal Clifford torus.

Proof. As in the proof above we reduce to the case in which M is embedded.
If the antipodal map preserves the components of S3(1) − M we have that M
induces an orientable surface in RP3(1) and so the result follows from Theorem
3. If the antipodal maps reverses the orientation of M , then the induced surface
in the projective space will be an embedded Klein bottle with handles. As
Proposition 2 below says that this case cannot hold, we have proved the corollary.

In our last result we sumarize all the information we have for the Willmore
functional in the real projective space.

Corollary 2. Let M be a compact surface immersed in RP3(1).
If M is a sphere, then ∫

M

(1 + H2)dA ≥ 4π,



492 ANTONIO ROS

and the equality holds if and only if M is an umbilical sphere.
If M is an sphere with n handles, n ≥ 1, then∫

M

(1 + H2)dA ≥ π2,

and the equality holds if and only if M the minimal Clifford torus.
If M is a projective plane with handles, then∫

M

(1 + H2)dA ≥ 2π,

and the equality holds if and only if M is a linear plane.
If M is a Klein bottle with handles, then∫

M

(1 + H2)dA > 4π.

In the first case the immersion lifts to S3(1) and the result follows from (1).
The second case is our main result. The third one is simply the inequality (1)
for antipodal invariant surfaces and the last one follows from Proposition 2 and
(2).

Finally we remark that the inequalities above transform into area estimates
in the particular (but interesting) case that M is a minimal surface.

4. Appendix.

Any nonorientable compact surface is constructed by adding n handles,
n = 0, 1, 2, . . . , either to a projective plane or to a Klein bottle. Adding handles
to a linear subvariety of RP3 we conclude that any surface of the first type can
be embedded in the projective space. The next result shows that this is not
possible for surfaces of the second type. This fact could be well known, but I
have not found any reference about it. In any case, the proof below may be
useful to some readers.

Proposition 2. A Klein bottle with handles cannot be embedded in the projec-
tive space RP3.

Proof. Suppose that such a surface exists and let M ⊂ S3(1) be its pullback
image in the three sphere. If M where nonconnected, then its components
would be compact nonorientable surfaces embedded in the three sphere. As this
is impossible we get that M is a connected compact orientable surface invariant
under the antipodal map f : S3 → S3. Thus M covers twice the given Klein
bottle with handles and in particular the genus of M is odd. Moreover, as f
reverses the orientation of M , if we denote the components of S3(1)−M by W1

and W2 we have that f(W1) = W2 and f(W2) = W1.
Take and 2-dimensional equator S in the three sphere which cuts M transver-

sally and denote the components of S3(1) − S by S+ and S−. Because of the
symmetry of M , the domains M+ = M ∩ S+ and M− = M ∩ S− are homeo-
morphic compact surfaces with the same boundary Γ = M ∩ S and Γ consists
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in a disjoint union of r Jordan curves. If M+ has k connected components,
Σ1, . . . ,Σk, and each Σi has genus gi and ri boundary components, we have
that r = r1 + · · · + rk and the Euler characteristic of M can be computed as
follows

χ(M) = χ(M+) + χ(M−) = 2χ(M+) = 2 (χ(Σ1) + · · · + χ(Σk)) =

2 (2 − 2g1 − r1 + · · · + 2 − 2gk − rk) = 4m − 2r,

for some integer number m. As the genus of M is odd we conclude that r is
even.

On the other hand, as the antipodal map f preserves S −Γ = (W1 ∪W2)∩S
but does not preserve any of its components (because f interchanges W1 and
W2) we obtain that the number of connected components of S − Γ is even. As
this contradicts the assertion below (which is obtained by a repeated application
of the Jordan curve theorem) we conclude that M cannot exist, as we claimed.

Assertion. If Γ ⊂ S is the union of r pairwise disjoint Jordan curves,
then S − Γ has exactly r + 1 connected components.
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