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A REMARK ON: LOWER BOUNDS FOR EIGENVALUES
OF HYPERSURFACE DIRAC OPERATORS

Xiao Zhang

Let N be an (n+1)-dimensional Riemannian manifold and M be an
n-dimensional spin hypersurface in N . Let S be the hypersurface spinor bundle
of M and D̃ be the hypersurface Dirac operator of M . Denote R and H as the
scalar curvature and the mean curvature of M respectively. Suppose e0 is the
unit normal covector of M . Then D̃ = D + H

2 e0, D̃∗ = D − H
2 e0. In [Z], we

establish the following lower bound estimate for eigenvalue of operator D̃∗D̃.

Theorem 3.1 [Z]. Let M ⊂ N be a compact spin hypersurface, and λ be the
eigenvalue of D̃∗D̃. Then

λ ≥ 1
4

sup
a

inf
M

(
R

1 + na2 − 2a
− (n − 1)H2

(1 − na)2

)
,(1)

where a is any real number, a �= 1
n if H �= 0. If λ achieves its minimum, M

must have constant Ricci and mean curvatures,

Rij =
(n − 1)(1 + na2

0 − 2a0)2

(1 − na0)4
H2δij ,(2)

with eigenvalue λ = (n−1)2

4(1−na0)4
H2, where a0 is chosen such that the right side of

(1) achieves its maximum.

Denote x = (1 − na)2. Then (1) becomes

λ ≥ 1
4

sup
x∈R+

inf
M

(
nR

x + n − 1
− (n − 1)H2

x

)
.(3)

Remark 1. We observe that, from the proof of Theorem 3.1 in [Z], a or x, in
fact, can be chosen as a real function. Therefore, by choosing a special a or x,
Theorem 3.1 will be replaced by the one (Theorem 3.1’ below) in a much more
precise form which is nearly optimal (see Remark 2 below).

We assume nR > (n − 1)H2 since, otherwise, the right-hand side of (3) is
negative and the estimate of eigenvalue is meaningless.

Now we can prove the following result.
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Theorem 3.1’. Let M ⊂ N be a compact spin hypersurface, and λ be the
eigenvalue of D̃∗D̃. Suppose nR > (n − 1)H2. Then

λ ≥ 1
4

inf
M

(√
n

n − 1
R − |H|

)2

.(4)

If λ achieves its minimum, M must have constant Ricci and mean curvatures.

Proof. Define a modified covariant derivative on Γ(S) by

Li = ∇i +
1 − a

2(1 − na)
He0ei + aeiD̃,

where (1 − na)2 = (n−1)|H|√
n

n−1 R−|H| . Same as [Z], we obtain∫
M

|D̃φ|2 =
∫

M

|Lφ|2
1 + na2 − 2a

+
1
4
(
√

n

n − 1
R − |H|)2|φ|2.(5)

Therefore (4) is proved. When λ achieves its minimum, we know, from [Z], that
H̃ = 1+na2−2a

(1−na)2 H is constant. And the Ricci curvature Rij = (n − 1)H̃2δij is

constant also. On the other hand, (5) implies that
√

n
n−1R − |H| is constant.

Therefore the mean curvature H is constant. The proof of theorem is complete.

Remark 2. Note that, on R+, the real function

f(x) =
C2

x + n − 1
− 1

x
,

where constant C > 1, achieves its maximum (C−1)2

n−1 at point x = n−1
C−1 . There-

fore, if there exists constant C > 1 such that nR ≥ C2(n − 1)H2, then (4) is
optimal.
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