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ON THE NUMBER OF VANISHING CYCLES IN LEFSCHETZ
FIBRATIONS

András I. Stipsicz

Abstract. We prove a lower bound for the number of (nonseparating) vanishing
cycles of a genus-g Lefschetz fibration. We also show that a fiber sum X#f X for

a Lefschetz fibration X → S2 is a minimal symplectic 4-manifold.

1. Statement of results

Assume that f : X → S2 is a relatively minimal genus-g Lefschetz fibration
with s separating and n nonseparating vanishing cycles. (For definitions of the
above notions see Section 2; the reader is also advised to turn to [GS] or [La]
for further reference. In our subsequent disscussions we will always assume that
f is injective on its critical set.) The fibration is called trivial if s = n = 0, in
this case X is diffeomorphic to S2 × Σg hence it also admits a ruling over the
genus-g surface Σg. In the following we will prove a bound for n:

Theorem 1.1. If f : X → S2 is as above and the fibration is nontrivial then

1
5
(4g + 2) ≤ n.

In particular, a genus-g Lefschetz fibration has at least 1
5 (4g +2) singular fibers.

Remarks 1.2.

(a) The above theorem, in particular, shows that n > 0 — a results earlier
found by T.-J. Li [L2] and I. Smith [ABKP]. Since in proving Theorem 1.1
we need n > 0, in the following we will show an alternative proof for it,
cf., Theorem 1.3.

(b) In [C] Cadavid shows genus-g Lefschetz fibrations over S2 with 2g+10 (and
2g +4 in the even g case) singular fibers. In conjunction with Theorem 1.1
this shows that the minimal number N(g, 0) of singular fibers of a genus-g
Lefschetz fibration over S2 (the surface of genus 0) satisfies 1

5 (4g + 2) ≤
N(g, 0) ≤ 2g + 10. For the determination of N(g, h) (the minimal number
of singular fibers in a genus-g Lefschetz fibration over a Riemann surface
of genus h) in case h > 0 see [KO].
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(c) By applying a refined version of Theorem 2.6 (due to Cadavid [C]) we can
show that, in fact,

6
5
(2g − b1(X)) +

4
5
(g − 1) ≤ n.

Note that for a genus-g Lefschetz fibration over S2 we always have b1 ≤
2g; once X → S2 is nontrivial — according to Theorem 1.3 — we have
b1(X) < 2g.

In the proof of Theorem 1.1 we will use the fact that n > 0 for a nontrivial
Lefschetz fibration; for sake of completeness we give a proof of this statement as
well. More precisely, we show the following:

Theorem 1.3. If X is a genus-g Lefschetz fibration with s separating and n
nonseparating vanishing cycles, then s ≤ 5n. Consequently n = 0 implies s = 0,
i.e., the triviality of the fibration.

Corollary 1.4. If X �= S2 × Σg (i.e., the fibration has vanishing cycles) then
n > 0.

The proof of Theorem 1.3 relies on the fact that a relatively minimal Lefschetz
fibration over a Riemann surface of positive genus is minimal [S], cf., Theorem 2.7
and Remark 2.8(c). By similar arguments a corresponding statement can be
shown for fibrations over S2; this statement is interesting in its own right (and
leads us to the proof of Theorem 1.1).

Theorem 1.5. If f : X → S2 is a relatively minimal genus-g Lefschetz fibration,
then the fiber sum X#fX is minimal (as a symplectic 4-manifold).

After giving the basic definitions concerning Lefschetz fibrations, in Section 2
we will give the necessary technical background for the proofs of the above
theorems — proofs of some of the theorems applied will be sketched. In Section 3
we give the proofs of the theorems announced above.

2. Methods and theorems applied in the proofs

A map f : X → Σ between the (closed, oriented) 4- and 2-manifolds X and Σ
is a Lefschetz fibration if df is onto except at finitely many points {p1, . . . , pk} =
C around which there are orientation preserving charts Ui (i = 1, . . . , k) such
that f on Ui can be modeled by the map g(z1, z2) = z2

1 + z2
2 . Any such map

admits a perturbation which is still a Lefschetz fibration (in the above sense)
with the additional property that f |C is injective, i.e., f(pi) = f(pj) implies
pi = pj . (In the following we will always assume that f is injective on the
set C of its critical points.) The genus of the Lefschetz fibration f : X → Σ
is by definition the genus of its generic fiber f−1(t) for some t ∈ Σ − C. A
Lefschetz fibration f : X → Σ is relatively minimal if there is no fiber f−1(t)
containing a sphere of self-intersection −1. Taking an arc γi : [0, 1] → Σ with
γi(0) = σ and γi(1) = f(pi) (with σ ∈ Σ fixed) a simple closed curve vi — called
a vanishing cycle — in f−1(σ) can be identified: This is the curve which gets
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collapsed to a point when travelling from σ to f(pi) along γi. The singular fiber
f−1(f(pi)) is called separating or nonseparating according to the fact whether
the corresponding vanishing cycle vi separates (i.e., homologically trivial) or does
not separate (i.e., homologically nontrivial) in f−1(σ).

Remarks 2.1.
(a) Note that the vanishing cycle vi itself depends on the chosen path γi. It

is not very hard to show, however, that its separating property does not
depend on this choice.

(b) In fact, it can be shown that a singular fiber f−1(f(pi)) is the immersed
image of a (not necessarily connected) Riemann surface S with a single
(transverse) double point and f−1(f(pi)) is nonseparating iff S is con-
nected. (If f−1(f(pi)) corresponds to a separating vanishing cycle, then
S has two components and the image of each component in X has self-
intersection −1.)

(c) Relative minimality means that although X might contain an embedded
−1-sphere, by blowing it down we ruin the fibration given on X. Not rel-
atively minimal Lefschetz fibrations can be blown down while preserving
the fiber structure. (Another way to detect relative minimality is that in
such a fibration there is no homotopically trivial vanishing cycle.) A sym-
plectic 4-manifold X is called minimal if it does not contain any embedded
−1-sphere.

(d) By weakening the definition of Lefschetz fibration — by dropping the re-
quirement that the charts Ui should be orientation preserving — we get
a related notion, called achiral Lefschetz fibration. Such (more general)
fibrations, however, do not necessarily admit symplectic structures, hence
most of the arguments presented in this paper do not apply for achiral
Lefschetz fibrations.

Before giving the proofs of the theorems announced in Section 1, we quickly
review the necessary background. We begin with the description of the connec-
tion between Lefschetz fibrations and symplectic structures on 4-manifolds.

Theorem 2.2. (Donaldson, [D] and Gompf, [GS]) If (X, ω) is a symplectic
4-manifold, then there exists a positive integer n such that the n-fold blow-up
X#nCP2 admits a Lefschetz fibration X#nCP2 → S2. Conversely, a genus-g
Lefschetz fibration f : X → Σ with fiber-genus g ≥ 2 over a Riemann surface Σ
admits a symplectic structure.

Consequently, in studying Lefschetz fibrations we can always assume that the
4-manifold under consideration is symplectic, hence the powerful methods of
symplectic topology apply. At the same time, information about the topological
behaviour of Lefschetz fibrations might lead us to a better understanding of the
topology of symplectic 4-manifolds. (We will always assume that the genus of the
fiber in the fibrations considered is ≥ 2, i.e., Theorem 2.2 applies and equips the
total space with a symplectic structure. The g ≤ 1 case is fairly well-understood,
cf. [GS], for example.)
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In studying the topology of symplectic 4-manifolds, theorems of Taubes turn
out to be extremely powerful. In the following we will only outline the few special
cases of his theory relating almost-complex geometric properties of a symplectic
4-manifold to its differential topological invariants.

Theorem 2.3. (Taubes, [T2]) If (X, ω) is a symplectic 4-manifold with
b+
2 (X) > 1 and Σ ⊂ X is an embedded sphere with [Σ]2 = −1, then for a

generic almost-complex structure J the homology class [Σ] can be represented by
a J-holomorphic sphere C.

Theorem 2.4. (Taubes, [T2] and Liu, [Liu]) If (X, ω) is a minimal symplectic
4-manifold then c2

1(X, ω) ≥ 0 holds unless X is a ruled surface, i.e., diffeomor-
phic to an S2-bundle over a Riemann surface Σ. (Note that in this latter case
b+
2 (X) = 1.)

Theorem 2.5. (Li, [L1]) If X is the blow-up of a minimal symplectic 4-manifold
which is not rational or ruled, and ei (i = 1, . . . , n) are the homology classes
of the exceptional spheres of the blow-ups, then these ei’s are the only homology
classes which can be represented by smoothly embedded spheres of square −1.
Consequently, Σ1,Σ2 symplectic −1-spheres in X cannot satisfy [Σ1] · [Σ2] > 0
once b+

2 (X) >1.

Theorem 2.6. (Ozbagci, [Ob]) If X → S2 is a Lefschetz fibration with s sep-
arating and n nonseparating vanishing cycles, then for the signature of X we
have σ(X) ≤ n − s. Moreover, if n > 0, then σ(X) ≤ n − s − 2.

Theorem 2.7. ([S]) If X → Σ is a relatively minimal Lefschetz fibration over
the Riemann surface Σ with positive genus, then X is a minimal symplectic 4-
manifold. Since for such a fibration we have b+

2 (X) > 1, Theorem 2.4 implies
that c2

1(X) ≥ 0.

In the following remark we briefly indicate the proofs of the above theorems.

Remarks 2.8.
(a) The proofs of Theorems 2.3 and 2.4 follow from Taubes’ argument showing

that if the Seiberg-Witten invariant SWX(c1(X, ω)+2K) of the symplectic
4-manifold X with b+

2 (X) > 1 is nonzero, then (for a generic almost-
complex structure) PD(K) ∈ H2(X;Z) can be represented by a pseudo-
holomorphic curve. By the blow-up formula it already proves Theorem 2.3;
since (according to [T1]) SWX(−c1(X, ω)) = ±1, c2

1(X, ω) ≥ 0 follows once
(X, ω) is minimal, i.e., the pseudo-holomorphic representative of −c1(X, ω)
has no sphere component. The characterization of minimal symplectic
manifolds with c2

1(X) < 0 (due to Liu [Liu]) involves a detailed analysis of
the change of SWX under certain perturbations together with symplectic
geometric results of McDuff.

(b) It can be shown [Ob] that every vanishing cycle (corresponding to a 2-
handle in an appropriate handle decomposition of X) contributes 0 or ±1 to
σ(X). By showing that a separating vanishing cycle necessary contributes
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−1, Ozbagci concluded σ(X) ≤ n− s. Noting that the first nonseparating
vanishing cycle contributes 0 (since it necessarily kills the corresponding
element in the first chain group of X), and realizing that by Poincaré
duality the corresponding element in the third chain group has to be killed
by a 2-handle as well, we arrive to σ(X) ≤ n− s− 2 once n > 0. Since the
dimension of the subspace of H1(F ;R) spanned by the vanishing cycles is
2g−b1(X) (here F is the generic fiber of the fibration), the same argument
yields σ(X) ≤ n − s − 2(2g − b1(X)), cf., [C].

(c) In proving Theorem 2.7, for nonminimal X (according to Theorem 2.3)
the −1-sphere can be represented by a pseudo-holomorphic sphere C. Re-
stricting the projection f : X → Σ to that sphere we get a holomorphic
map f : C → Σ, which obviously has degree 0, i.e., C is in the fiber. By
assuming that f is injective on its critical set (which can be arranged by a
slight perturbation of the fibration), we know that a sphere contained by a
fiber has square −1. Consequently if X is nonminimal, then the fibration
is not relatively minimal; for details see [S].

3. The proofs

Proof of Theorem 1.3. Suppose that X → S2 is a relatively minimal genus-g
Lefschetz fibration with s separating and n nonseparating vanishing cycles. For
the Euler characteristic χ(X) we have χ(X) = 4 − 4g + n + s; by definition
c2
1(X) = 3σ(X) + 2χ(X) = 3σ(X) + 2(4 − 4g + n + s). Applying Theorem 2.6

we get that

c2
1(X) ≤ 3(n − s) + 2(4 − 4g + n + s) = 5n − s + 8 − 8g.

Take the fiber sum Y = X#fΣg × T 2 of X with the trivial genus-g Lefschetz
fibration over the torus T 2. The resulting symplectic 4-manifold Y obviously
fibers over T 2, and since X is relatively minimal, by Theorem 2.7 Y is a minimal
symplectic 4-manifold with b+

2 (Y ) > 1. Consequently c2
1(Y ) (which is equal to

c2
1(X) + 8g − 8) is nonnegative by Theorem 2.4, implying that

8 − 8g ≤ c2
1(X).

The two inequalities above imply 0 ≤ 5n − s which proves Theorem 1.3.

Before proceeding further, we prove a helpful topological lemma regarding b+
2

of the fiber sum X#fX.

Lemma 3.1. For the fiber sum X#fX we have b+
2 (X#fX) = 2b+

2 (X) − 1 +
(2g − b1(X)). In particular, if the fibration X → S2 admits singular fibers then
b+
2 (X#fX) ≥ 2.

Proof. Since the vanishing cycles of X → S2 and of X#fX → S2 are the
same (for X#fX we just repeat the same set of cycles again), we obviously
get that b1(X) = b1(X#fX). The facts σ(X#fX) = 2σ(X) and χ(X#fX) =
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2χ(X) − 2(2 − 2g) together with the definitions σ(X) = b+
2 (X) − b−2 (X) and

χ(X) = 2 − 2b1(X) + b+
2 (X) + b−2 (X) imply the result.

By Theorem 1.3, if X → S2 is nontrivial, then it admits nonseparating van-
ishing cycles, i.e., for those fibrations b1(X) < 2g. (The first 2-handle attached
along a nonseparating vanishing cycle kills the corresponding first homology el-
ement.) Since b+

2 (X) ≥ 1 by the existence of a symplectic structure on X, the
second assertion of the lemma easily follows.

Now we are in the position to give the proof of Theorem 1.1. It relies on
Theorem 1.5, the proof of which will be given later.

Proof of Theorem 1.1. Assuming Theorem 1.5, roughly the same idea which
proved Theorem 1.3 above, provides the proof of Theorem 1.1 once we show

Lemma 3.2. Suppose that X → S2 is a relatively minimal genus-g Lefschetz
fibration. If c2

1(X) < 4 − 4g then c2
1(X) = 8 − 8g and X = S2 × Σg.

Proof. Assume that c2
1(X) < 4 − 4g and suppose that X is not the trivial

fibration; hence by Theorem 1.3 we have that n > 0. Consider the fiber sum
X#fX. By Lemma 3.1 (and since X → S2 is nontrivial) we have b+

2 (X#fX) ≥
2; on the other hand c2

1(X) < 4 − 4g shows that c2
1(X#fX) = 2c2

1(X) + 8g −
8 < 0. Since Theorem 1.5 shows that X#fX is minimal, we found a minimal
sympletcic manifold with b+

2 (X) > 1 and c2
1(X) < 0. This, however, contradicts

Theorem 2.4, showing that if c2
1(X) < 4 − 4g, then X is the trivial genus-g

fibration and so c2
1(X) = 8 − 8g.

Now the proof of Theorem 1.1 is easy: Since by assumption X �= S2 × Σg,
according to Lemma 3.2 above we have c2

1(X) ≥ 4 − 4g. By Theorem 1.3
we also know that n > 0, so the relevant result of Theorem 2.6 tells us that
σ(X) ≤ n − s − 2. The argument given for the proof of Theorem 1.3 now
modifies to the inequality

4 − 4g ≤ 5n − s − 6 + 8 − 8g,

implying s+4g +2 ≤ 5n. Since s ≥ 0, this latter inequality obviously yields the
result.

Remarks 3.3.
(a) Lemma 3.2 is sharp in the sense that there are genus-g Lefschetz fibrations

Xg → S2 with c2
1(Xg) = 4−4g: Take the double branched cover of S2×S2

(presented as the trivial S2-fibration over S2) branched along two fibers
and 2g + 2 sections. The resolution of the manifold given this way will
provide an example of a relatively minimal genus-g Lefschetz fibration
with c2

1 = 4 − 4g [GS]. Note that all these examples are blow-ups of the
complex projective plane; in fact, Xg ≈ CP2#(4g + 5)CP2. (According
to a recent result of Li [L3], if X admits a genus-g Lefschetz fibration and
it is not the blow-up of a ruled surface (for example, if b+

2 (X) > 1), then
in fact c2

1(X) ≥ 2 − 2g.)
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(b) It is expected that in a generic Lefschetz fibration there are no separating
vanishing cycles; hence we cannot expect to improve our bounds by finding
lower bounds for s.

(c) By invoking σ(X) ≤ n− s− 2(2g − b1(X)) (cf., Remark 2.8(b)), the same
argument as above yields 6

5 (2g− b1(X))+ 4
5 (g− 1) ≤ n, cf. Remark 1.2(c).

Finally we turn to the proof of Theorem 1.5. In the proof we will appeal
to Theorem 2.5 of Li; an alternative way to conclude the proof is outlined in
Remark 3.4.

Proof of Theorem 1.5. Equip X with an almost-complex structure for which
the fibers of X → S2 are pseudo-holomorphic. The fiber sum X#fX can be
given as the double branched cover of X along a pair of generic fibers [GS] — in
this way X#fX comes with an almost-complex structure J (inherited from X)
and a pseudo-holomorphic involution τ : X#fX → X#fX. For this involution
(X#fX)/τ = X and the fixed point set Fix(τ) can be identified with a pair
of regular fibers (the inverse image of the branch locus of the branched cover
X#fX → X).

Now suppose that X#fX is nonminimal, i.e., it contains an embedded sphere
Σ of self-intersection −1. Represent [Σ] with a J-holomorphic curve C and
consider τ(C). Since τ is J-holomorphic, τ(C) is a J-holomorphic curve.

If τ(C) = C then C lifts from a curve in X. All such lifts have even squares
unless the curve is contained in the branch locus. In our case, however, [C]2 = −1
and the branch locus (a pair of regular fibers) contains no closed curve of nonzero
self-intersection; hence we conclude that τ(C) �= C. By [M] we know that in
case τ(C) �= C, every intersection of the two curves is positive — in particular,
[τ(C)]·[C] ≥ 0. Since C∩Fix(τ) ⊂ C∩τ(C), the equation [τ(C)]·[C] = 0 implies
that C is disjoint from the generic fiber (which is part of Fix(τ)). In this case, by
restricting the projection map f : X#fX → S2 to the sphere component C1 of
C, we get a holomorphic map f |C1 : C1 → S2 of degree 0. Consequently C1 is in
a fiber of X#fX; now standard argument gives a contradiction with the relative
minimality of X → S2, cf. [S] and Remark 2.8(c). Finally, if C ∩ τ(C) �= ∅ (that
is, [τ(C)] · [C] > 0), we found two symplectic −1-spheres Σ and τ(Σ) in X#fX
(with b+

2 (X#fX) > 1 by Lemma 3.1) intersecting each other positively, which
contradicts Theorem 2.5. According to the above contradictions we showed that
X#fX cannot contain any embedded −1-sphere, hence the proof of Theorem 1.5
is complete.

Remark 3.4. For the sake of completeness we sketch an argument showing that
in a symplectic 4-manifold X with b+

2 (X) > 1 symplectic spheres of square −1
cannot intersect each other positively. Assume, in the contrary, that spheres
Σ1,Σ2 ⊂ X satisfy [Σ1]2 = [Σ2]2 = −1 and [Σ1] · [Σ2] = k > 0 (with orientations
compatible with the symplectic structures). For a generic almost-complex struc-
ture J represent [Σ1], [Σ2] by J-holomorphic spheres intersecting transversally
in k points. Blowing Σ1 down, Σ2 defines an immersion ϕ of S2 into the blown
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down manifold Y with an ordinary k-tuple point. Since by blowing ϕ(S2) back
again we get Σ2, we have [ϕ(S2)] − k[Σ1] = [Σ2]. By perturbing ϕ : S2 → Y

slightly we get an immersion ϕ̃ : S2 → Y with k(k−1)
2 positive double points and

[ϕ̃(S2)]2 = [ϕ(S2)]2 = k2 − 1. Since b+
2 (Y ) = b+

2 (X) > 1, this configuration con-
tradicts the adjunction formula of Fintushel and Stern [FS] found for immersed
spheres in symplectic 4-manifolds with b+

2 > 1. Note that the above argument
also shows that a symplectic 4-manifold with b+

2 > 1 admits a unique minimal
model. The result of Li quoted above, in fact, shows that the minimal model is
always unique unless the symplectic 4-manifold is the blow-up of a rational or
ruled surface, cf. [L1].
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