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LATTICES IN KAC-MOODY GROUPS

Lisa Carbone and Howard Garland

§0. Introduction

Initially, we set out to construct non-uniform ‘arithmetic’ lattices in Kac-
Moody groups of rank 2 over finite fields, as constructed by Tits [Ti1, Ti2] using
the Bruhat-Tits tree of a Tits system for such groups. This attempt succeeded,
and in fact, the construction we used can be applied to higher rank Kac-Moody
groups over sufficiently large finite fields, and their buildings (Theorem 1.7 be-
low). After completing this work, we learned that B. Remy has obtained an
equivalent result for the more general class of almost split Kac Moody groups
[R1, R2].

We have also constructed an uncountably infinite family of non-uniform lat-
tices in the rank 2 Kac-Moody case, that is, we have succeeded in carrying over
A. Lubotzky’s construction of non-uniform lattices in Sl2 over a Laurent series
field (Theorem 2.9 below). The basic tool for this extension is a (new) spherical
Tits system (Theorems 2.2 and 2.7 below). It remains to determine whether,
as in the case of Sl2, we have constructed uncountably many distinct conjugacy
classes of non-uniform lattices within the Kac-Moody group.

In further analogy with Lubotzky’s construction of lattices in Sl2, we have
constructed an uncountably infinite family of cocompact lattice subgroups of
rank 2 Kac-Moody groups. Once again, it remains to determine if there are
uncountably many distinct conjugacy classes of these lattices.

In rank 2, the Kac-Moody groups and their lattice subgroups fail to have
property T (Proposition 4.1 below). In contrast to this, in the higher rank case,
a result of Dymara and Januszkiewicz [DJ] implies that certain ‘hyperbolic’ Kac-
Moody groups do have property T . Hence, the lattices that we construct in these
cases are finitely generated and have finite commutator quotients.

Detailed proofs of the results mentioned above will appear elsewhere.
The authors would like to thank B. Remy and T. Januszkiewicz for their

correspondence, and for informing us of their results. Thanks to A. Lubotzky
for encouraging us to undertake this work and for explaining his constructions
to us, and to H. Bass for many illuminating conversations.
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§1. The setting

Let A = (Aij)i,j=1,...,l be an irreducible l×l symmetrizable generalized Cartan
matrix. Let g(A) be the Kac-Moody algebra over C corresponding to A. We
have, as usual, the generators ei, fi, hi, i = 1, . . . , l of g(A) (Kac, [K]). Let αi be
the simple root corresponding to ei, i = 1, . . . , l. For a field k, let G0 = G0

A(k)
be the minimal group associated to A and k, as in Tits [Ti1], and let G = GA(k)
be the corresponding completion, also constructed in [Ti1].

We have BN -pairs

(B0, N) in G0,(1.1)

(B, N) in G,(1.2)

where W ∼= N/B0 ∩ N ∼= N/B ∩ N is the Weyl group of the matrix A. In
particular, we have Bruhat decompositions

G0 = B0WB0,(1.3)

G = BWB.(1.4)

From now on, we assume that k is a finite field. In this case, G has the
structure of a locally compact, totally disconnected, unimodular, topological
group, with B an open compact subgroup. The subgroups of B of finite index
constitute a basis of neighborhoods of the identity in G.

In G0, there is an opposite (or twin) BN -pair (B−, N) (see [Ti2]). One has
a second corresponding Bruhat decomposition

(1.5) G0 = B−WB−,

with W ∼= N/B− ∩ N . We also have, in addition

(1.6) G0 = B−WB0

From (1.6), we can easily deduce

(1.6a) G = B−WB,

where we now regard B− as a subgroup of the larger group G. We set q = |k|,
the cardinality of the finite field k. We have the following:

Theorem 1.7. Let P− ⊆ G0 be a proper standard parabolic subgroup for the
BN -pair (B−, N), (thus B− ⊆ P− � G0). Assume that the submatrix of A
corresponding to P− is positive-definite. If q > l, then P− is a non-uniform
lattice in G.

The proof of Theorem 1.7 follows easily from (1.6a). One can compute the
isotropy groups for B− on the cosets w · B, w ∈ W in G/B, and obtain that
suitably normalized, the covolume of B− is given by the infinite series∑

w∈W

1
ql(w)

,

which is convergent (in fact, dominated by a convergent geometric series) pro-
vided q > l.
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1.8 Remarks.
(1) If P− corresponds to a positive-definite submatrix of A, then B−\P− is

finite. Hence, if B− is a lattice, then so is P−.
(2) When l = 2, one has that the Bruhat-Tits building X associated to (B, N)

is a homogeneous tree of degree q + 1. In this case, B− is also a non-
uniform lattice in the automorphism group of the q+1-homogeneous tree.

When l = 2, the structure theory of discrete groups that act on trees with
infinite quotient but finite covolume [BL] gives the following.

Corollary 1.9. When l = 2, the group B− is not finitely generated.

It follows that the group B− cannot have Kazhdan’s property T (see §4).
Corollary 1.9 is in contrast to the higher rank case where our lattices do have
property T and so are finitely generated (see §5).

We say that the matrix A is hyperbolic if every proper subdiagram has cor-
responding matrix A′ which is positive, semi-definite, but A itself is neither
classical nor euclidean.

This notion of hyperbolicity is closely related to, but somewhat different from
the more usual notions such as those of [CS, Mo].

§2. The tree case

We now take l = 2 and A symmetric. We have

A =
(

2 −m
−m 2

)
for m ≥ 2. When m = 2, we say that A is affine. For m > 2, A is hyperbolic.
When l = 2, the Weyl group W is generated by two simple root reflections w1,
w2, corresponding to the simple roots α1, α2. Let X = Xq+1 be the Bruhat-
Tits tree of the BN -pair (B, N), and let A0,+ be the ray in X whose edges are
indexed by

(2.1) {w · B}w∈W, l(w1w)>l(w),

where l(.) is the length function on W .
Let B ⊆ G be the stabilizer of the end determined by A0,+. Then

Theorem 2.2. G = B � Bw1B.

Moreover, we can explicitly describe the structure of B. To this end, we let
∆W denote the set of Weyl roots of g(A), and we set t = w1w2. Then we have:

(2.3) ∆W = ∆W,1 � ∆W,2,

where

∆W,1 = {−α2, −w2α1, −w2w1α2, . . . } ∪ {α1, w1α2, w1w2α1, . . . },
(2.4)

∆W,2 = {−α1, −w1α2, −w1w2α1, . . . } ∪ {α2, w2α1, w2w1α2, . . . },
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We let

(2.5) U = {closed subgroup of G generated by all χα(s)},
where s ∈ k, α ∈ ∆W,1, and

(2.6) χα(s) = exp(seα), eα = we1, α = wα1.

Let
T = {tn}n∈Z,

and
BI =

⋂
w∈W

wBw−1.

We have the following.

Theorem 2.7. B = UTBI = UBIT = BITU . . .

In particular,

(2.8) G/B = B/B � (Uw1B/B) = (w1B/B) � (U−B/B),

where U− = w−1
1 Uw1.

The spherical building corresponding to Theorem 2.2 is 0-dimensional, and
may be identified with G/B. By (2.8), we have

G/B ∼= (U �∞)

which we may identify with ∂X, the boundary of the Bruhat-Tits tree X = Xq+1.
We let ∆ be the subgroup of G generated by all χα(s), where α is negative,

and α ∈ ∆W,1. Then ∆ is a cocompact lattice in U , and following Lubotzky
([L1]), we enlarge ∆ to a non-uniform lattice in G in the following way.

We let g0 = id, g1 . . . , gq in P1 be a set of coset representatives for P1/B,
where q = |k|. For i = 0, . . . , q, let ∆i = gi∆g−1

i . In analogy with Lubotzky’s
construction of non-uniform lattices in Sl2 over a non-archimedean local field of
characteristic p > 0 [L1], and using Theorems 2.2 and 2.7, we have the following:

Theorem 2.9. Let Γ be the group generated by ∆0, . . . ,∆q. Then Γ is a non-
uniform lattice in G, and moreover, Γ is the free product of the ∆i, i = 0, . . . , q.

The covolume of Γ, suitably normalized, is given by:

1 + (q + 1)
∞∑

i=1

1
qi

=
2q

q − 1
,

which is finite.
By varying the gi over the open set B/(B ∩ NG(∆)), where NG(∆) denotes

the normalizer in G of ∆, for i = 1, . . . q, we have an uncountably infinite family
of non-uniform lattices here, parametrized by an open set of the form:

(2.10) P(Γ, G) = B/(B ∩ NG(∆)) × · · · × B/(B ∩ NG(∆))

(q factors).



LATTICES IN KAC-MOODY GROUPS 443

Lemma 2.11. We have NG(∆) ⊆ B.

The question arises as to whether we have uncountably many distinct conju-
gacy classes of lattices in G.

We have natural maps:

B/(B ∩ NG(∆)) × · · · × B/(B ∩ NG(∆))

↓

B/(B ∩ B) × · · · × B/(B ∩ B)

↓

G/B × · · · × G/B,

∼=

(U �∞) × · · · × (U �∞)

∼=

∂X × · · · × ∂X.

(q factors).
We have the following:

Conjecture 2.12. The diagonal action of G on

G/B × · · · × G/B

(q factors), has the property that every orbit is nowhere dense.

An affirmative answer to Conjecture 2.12 would imply the existence of un-
countably many conjugacy classes of non-uniform lattices in G.

Suppose that A is affine, that is,

A =
(

2 −2
−2 2

)
.

Then G is a central extension Ŝl2

1 −→ k× −→ Ŝl2 −→ Sl2 −→ 1

of Sl2 over a Laurent series field Lk, in one variable, over the finite field k, by
the (one dimensional) multiplicative group k×.

In this case, our uncountably infinite family of non-uniform lattices essentially
coincides with Lubotzky’s construction of uncountably many conjugacy classes
of non-uniform lattices in Sl2(Lk) (see [L1] pp. 415), where Conjecture 2.12
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can be easily verified by dimension counting for q ≥ 4, where q = |k|. Thus
Conjecture 2.12 is true for m = 2, and q ≥ 4.

An affirmative answer to Conjecture 2.12 would also permit the following
discussion about certain representation spaces of Γ in G.

The non-uniform lattice Γ that we constructed in Theorem 2.9 is not finitely
generated (see also Corollary 1.9). Following A. Weil ([We]) we may obtain the
following topological description of Hom(Γ, G). We may view Hom(Γ, G) as the
subspace of all homomorphisms (with the induced topology) of the space

GΓ = {f : Γ −→ G} =
∏
γ∈Γ

G,

of all maps from Γ to G, with the product topology. Let

Hom0(Γ, G) = {ρ ∈ Hom(Γ, G) | ρ is injective, ρ(Γ) is discrete,

has infinite fundamental domain and finite covolume.}

We recall that our uncountably infinite family of non-uniform lattices is
parametrized by an open set of the form (see 2.10):

P(Γ, G) = B/(B ∩ NG(∆)) × · · · × B/(B ∩ NG(∆))

(q factors). Any choice of the elements (g1, . . . , gq) (as in Theorem 2.9) from
P(Γ, G) gives rise to a non-uniform lattice with fundamental domain isomorphic
to that of Γ, and the same covolume as Γ.

We have a continuous map

φ : P(Γ, G) −→ Hom0(Γ, G).

We ask the following:

Question 2.13. Is the image of P(Γ, G) open in Hom0(Γ, G)?

We do not even know if the answer to Question 2.13 is affirmative for
Lubotzky’s non-uniform lattices Γ in Sl2 (see [L1] pp. 415 and [C]).

§3. Cocompact lattices — the Schottky construction

In the ‘tree case’; that is, l = 2, we can also exhibit an uncountably infinite
family of cocompact lattices in G, once again, in analogy with Lubotzky’s con-
struction of cocompact lattices in a simple rank 1 group over a non-archimedean
local field of characteristic p ≥ 0. We use Lubotzky’s generalization of the con-
struction of classical Schottky groups of automorphisms of the upper-half plane.



LATTICES IN KAC-MOODY GROUPS 445

Theorem 3.1. When l = 2, the group G contains an uncountably infinite family
of cocompact lattices which are finitely generated free groups that are generated
by hyperbolic tree automorphisms (elements of infinite order which act as trans-
lations along a linear axis), and that act on the Bruhat-Tits tree X = Xq+1 with
finite fundamental domain.

The uncountably infinite family of cocompact lattices is parametrized by an
open set of the form:

(3.2) P(Γ, G) = g1Bg′1 × · · · × grBg′r,

(r = q2 factors), where gi, g
′
i ∈ G. Any choice (g1b1g

′
1, . . . , grbrg

′
r) ∈ P(Γ, G)

generates a free cocompact lattice of rank r = q2 in G, with the same funda-
mental domain as Γ.

We have the following:

Conjecture 3.3. The group G contains uncountably many distinct conjugacy
classes of cocompact lattices.

As in §2, Conjecture 3.3 is true when A is affine, and we can verify the
conjecture by dimension counting.

Since Γ is free, we may identify Hom(Γ, G) with

G × · · · × G,

(q2 factors, one for each generator of Γ). Let

Hom0(Γ, G) = {ρ ∈ Hom(Γ, G) | ρ is injective,

ρ(Γ) is discrete, free and cocompact}.

Let P(Γ, G) be as in 3.2. We have a continuous map

φ : P(Γ, G) −→ Hom0(Γ, G).

We have the following:

Conjecture 3.4. The image of P(Γ, G) is open in Hom0(Γ, G).

We know that Conjecture 3.4 is true for Lubotzky’s cocompact lattices in Sl2
(see [L1], pp. 407, and [C]).

§4. Failure of property T in rank 2

If a property T group H acts on a tree, then the group H must fix a vertex
([VH]). Therefore, if a non-compact group G acts on a tree with compact vertex
stabilizers, G cannot have property T . This is the case for the group GA(k) in
the case l = 2, and thus we have the following.
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Proposition 4.1. When l = 2, the group G does not have Kazhdan’s property
T .

For a locally compact group H containing lattices, H has property T if and
only if lattices of H have property T . Thus we obtain the following.

Corollary 4.2. When l = 2, lattices of G do not have Kazhdan’s property T .

As we remarked in §1., Corollary 4.2 also follows from the fact that B− cannot
be finitely generated. Proposition 4.1 and Corollary 4.2 are in contrast to the
higher rank case (see §5).

§5. Cohomology

In this section, we assume that all proper submatrices Aθ of A of the form

Aθ = (Aij)i,j∈θ,

where θ is a proper subset of {1, . . . , l}, are positive definite. One can in fact
weaken this assumption, but we make it here, nevertheless, for the sake of sim-
plicity.

For l ≥ 3, the methods of Garland in [G] yield results for various cohomologies
on the Bruhat-Tits building X associated with (B, N), and on discrete subgroups
Γ ⊆ G (see also Ballmann-Swiatkowski [BSw], Pansu [P], and Zuk [Z]). For
example, we have the following.

Theorem 5.1. Let Γ ⊆ G be a cocompact lattice of G, and let

ρ : Γ −→ Aut(V )

be a unitary representation Γ in the complex Hilbert Space V (not necessarily
finite dimensional). If l ≥ 3, and if q = |k| is sufficiently large, then

Hi(Γ, ρ) = 0, 0 < i < l − 1.

By Theorem 5.1 and [VH] we have the following.

Corollary 5.2. Given G and q as in the theorem, if G contains a cocompact
lattice, then G has property T .

Applying the result of Valette and de la Harpe [VH] in this way has already
been utilized in the works of Ballmann-Swiatkowski, Pansu and Zuk cited above.

We remark that we have not yet succeeded in constructing cocompact lattices
in G for l ≥ 3.

During the preparation of this work, Dymara and Januszkiewicz brought their
work to our attention [DJ]. They have also used the results in [G], to obtain van-
ishing theorems, but in addition, they applied the argument of the Casselman-
Wigner Theorem ([CW], Th. 2, pp. 209), to compute the continuous cohomology
of G, and hence, in that way, to prove that G has property T .

It then follows (see, in contrast, Corollary 4.2) that a lattice, (cocompact or
non-uniform), Γ ⊆ G has property T . In particular, Γ is finitely generated and
has finite commutator quotients. This is the case for the subgroups P− as in
Theorem 1.7.
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