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WEIGHT REPRESENTATIONS OF THE POLYNOMIAL
CARTAN TYPE LIE ALGEBRAS Wn AND S̄n

Ivan Penkov and Vera Serganova

To the memory of Moshe Flato (1937–1998)

Abstract. We give an explicit description of the support of an arbitrary irre-
ducible weight module of the infinite-dimensional Lie algebra of polynomial vector
fields Wn, as well as of its subalgebra S̄n of vector fields with constant divergence.

Introduction

The Lie algebras of Cartan type are certain infinite-dimensional simple Lie
algebras of vector fields with formal power series coefficients. They are the Lie
algebras of “infinite Lie groups” which arose in the work of Sophus Lie around
1870 and were further studied by Elie Cartan in 1904–1908. The work of Lie
and Cartan has been continued and explained in modern terms by I.M. Singer
and S. Sternberg, [?SS], in 1964. The general theory of representations of the
Cartan type infinite-dimensional Lie algebras was initiated only in 1973 when
A.N. Rudakov began the study of topological irreducible representations of these
Lie algebras, [?R1, ?R2]. Rudakov’s main result, roughly speaking, is that all
irreducible representations which satisfy a natural continuity condition can be
described explicitly as induced modules or quotients of induced modules.

In this paper we take a different approach. We restrict ourselves to the poly-
nomial Cartan type Lie algebras Wn and S̄n (see their definition in section 3)
and, without imposing any continuity condition, we investigate arbitrary irre-
ducible weight representations of Wn and S̄n in the spirit of the recent papers
[?DMP, ?PS, ?DP2]. Our main result is an explicit description of all possible sets
of weights of such representations, i.e., a description of the supports of all irre-
ducible weight representations of Wn and S̄n. Although a relatively small part
of these modules belongs to Rudakov’s class, the answer turns out to be surpris-
ingly simple and resembles very much the answer for the finite-dimensional Lie
algebra sln+1, see [?DMP]. A key technical feature that makes our description
possible (and which is not shared by the polynomial Hamiltonian and contact
Lie algebras) is that any parabolic subalgebra of sln+1 has a certain canonical
extension to a parabolic subalgebra of Wn or S̄n (see Lemma ?lm22? below).
The main problem in the theory of weight Wn- and S̄n-modules now is to gain
a better understanding of each class of irreducible weight modules with fixed
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support. O. Mathieu has informed us that his method from [?M], together with
the result of the present paper, should lead to a classification of all irreducible
weight Wn- and S̄n-modules with finite-dimensional weight spaces.

Section 1 is devoted to preliminaries: Lie algebras admitting a root decom-
position with respect to a finite-dimensional Cartan subalgebra, parabolically
induced weight modules over such algebras, shadow decompositions for reduc-
tive Lie algebras. In section 2 we introduce our main object of study, the Lie
algebras Wn and S̄n, and discuss some properties of their root decomposition.
We then state our main theorem and give examples. The proof of the theorem
is presented in section 3. The reader could go directly to sections 2 and 3 and
then use section 1 as reference only.

Acknowledgement. The first author acknowledges partial NSF support
through a GIG Grant and thanks the Max Planck Institute in Bonn (where
a portion of this work was done) for support and excellent working conditions.

0. Conventions

The ground field is C. If A and B are two sets, A\B is by definition the set
{a ∈ A | a /∈ B}. The superscript * always stands for dual space. We denote
by R+ (respectively by R−) the set of non-negative (resp. non-positive) real
numbers; Z±

def= Z ∩ R±. Linear span is denoted by 〈 〉
R
, 〈 〉

R+
, 〈 〉

Z+
etc.,

the subscript indicating the coefficients. We use the term cone as a synonym
for an additive subset of a vector space. If g is a Lie algebra, the terms a
“representation of g” and a “g-module” are synonyms. We assume that a g-
module is automatically non-zero; a trivial g-module is a 1-dimensional vector
space with the zero action of g.

1. Lie algebras with root decomposition and generalized weight
modules

Let g denote a (complex) Lie algebra with generalized root decomposition, i.e.,
with a fixed self-normalizing nilpotent Lie subalgebra, called a Cartan subalgebra,
such that as an h-module g decomposes as h ⊕ (⊕α∈h∗gα), where

gα def= {g ∈ g | (ad (h) − α (h))N (g) = 0 for every h ∈ h and some N > 0}.
The set of non-zero linear functions α ∈ h∗ with gα �= 0 is the set of roots ∆ of
g. In what follows we assume h to be finite-dimensional. Some results for the
case when h is infinite-dimensional see in [?DP2]. A g-module M is a generalized
weight g-module iff as an h-module M decomposes as ⊕µ∈h∗Mµ, where

Mµ def= {m ∈ M | (h − µ (h))N · m = 0 for every h ∈ h and some N > 0}.
The set of all linear functions µ ∈ h∗ such that Mµ �= 0 is the support of M
and will be denoted by suppM . It is not difficult to verify (using the fact that
dim h < ∞ ) that the requirement for M to be a generalized weight module is
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equivalent to the requirement that h act locally finitely on M . Furthermore,
obviously, g has a root decomposition iff the adjoint module is a generalized
weight g-module, i.e., iff the adjoint action of h on g is locally finite.

A generalized weight g-module M is a weight g-module iff h acts semi-simply
on M , i.e., iff h ·m = µ (h) m for any m ∈ Mµ and any h ∈ h. We would like to
recall

Proposition 1. Let dim g be countable and g be semi-simple as h-module (in
particular, let h be abelian). Then every irreducible generalized weight g-module
M is a weight module.

Proof. It is based on the following infinite-dimensional version of Schur’s lemma.

Lemma 1. Let A be an associative C-algebra of countable dimension and B be
an irreducible A-module. Then EndA (B) = C.

Proof of Lemma ?lm1?. Note that EndA (B) is a division algebra over C, and
therefore EndA (B) �= C implies that EndA (B) contains a field isomorphic to
C (x) (the field of rational functions of an indeterminate x). On the other hand,
dimC (EndA (B)) ≤ dimC B ≤ dimC A, and thus dimC (EndA (B)) is finite or
countable. But dimC C (x) is uncountable. Hence EndA (B) = C.

To prove Proposition ?prop1? now, let U0 denote the subalgebra in U (g)
generated by all monomials of weight zero with respect to the adjoint action
of h. Since h acts semi-simply on g, the subalgebra S (h) belongs to the center
of U0. Furthermore the irreducibility of M implies that Mµ is an irreducible
U0-module for any µ ∈ suppM . By Lemma ?lm1? (applied to A = U0 and
B = Mµ), S(h) acts via scalars on Mµ, i.e., Mµ, and therefore also M , is a
semi-simple h-module.

Recall next, see [?DP3], that a subdivision ∆ = ∆+�∆− is called a triangular
decomposition iff 〈−∆+ � ∆−〉

R+
∩ 〈∆+ � −∆−〉

R+
= {0}. Every triangular

decomposition of ∆ is determined by some (in general not unique) maximal flag
of real vector subspaces in 〈∆〉

R
,

0 = F0 ⊂ F1 ⊂ · · · ⊂ Fdim〈∆〉
R

= 〈∆〉
R

,

and by a choice of labeling by + and − of the two connected components of
Fi\Fi−1 for each i = 1, . . . , n, via the formula

∆± = �dim〈∆〉
R

i=1

(
(Fi\Fi−1)

± ∩ ∆
)

.

A generalized triangular decomposition, or a parabolic decomposition, of ∆ is by
definition a subdivision

∆ = ∆+ � ∆0 � ∆−
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such that, if p : 〈∆〉
R
→ 〈∆〉

R
/

〈
∆0

〉
R

is the natural projection, then p (∆+) ∩
p (∆−) = ∅, 0 /∈ p (∆±) and p

(
∆\∆0

)
= p (∆+) � p (∆−) is a triangular de-

composition of p
(
∆\∆0

)
. Clearly, a parabolic decomposition is determined by

a (non-unique) flag

G0 ⊂ G1 ⊂ · · · ⊂ Gk = 〈∆〉
R

, dimGi/Gi−1 = 1, k ≤ dim 〈∆〉
R

,

together with a labeling by + and − of the two connected components of
Gi\Gi−1, via the formulae

∆0 = ∆ ∩ G0,

∆± = �k
i=1

(
(Gi\Gi−1)

± ∩ ∆
)

.

A more general statement see in the Appendix of [?DP2].
If ∆ = ∆+ � ∆0 � ∆− is a parabolic decomposition, let g0 and g± be the

following Lie subalgebras:

g0 def= h ⊕ (⊕α∈∆0gα) , g± def= ⊕α∈∆±gα.

A Lie subalgebra p ⊆ g is called parabolic if, as a vector space, p equals g0 ⊕ g+

for some parabolic decomposition.
In this paper we will consider parabolic subalgebras associated with general

parabolic decompositions in which ∆− does not necessarily equal −∆+. The fol-
lowing lemma gives some rough but important information about the irreducible
quotient of a corresponding generalized Verma module.

Lemma 2. Let p be the parabolic subalgebra associated with a given parabolic
decomposition ∆ = ∆+ � ∆0 � ∆−.

(a) Let Mp be an irreducible generalized weight p-module. Then the induced
g-module U (g) ⊗U(p) Mp has a unique irreducible quotient M and

suppM ⊂ µ + (
〈
∆0 � ∆−〉

Z+
∩ 〈

∆0 � ∆+
〉

Z−
)

for any µ ∈ suppMp.
(b) Let M be an irreducible generalized weight g-module and λ ∈ suppM be

such that λ + α /∈ suppM for any α ∈ ∆+. Then M is the unique quotient
of the induced g-module U (g) ⊗U(p) Mp, Mp def

= U (p) · Mλ being an irreducible
p-module.

Proof. (a) The existence of a unique quotient follows from the fact that any
proper submodule of the induced module is a generalized weight module whose
support does not intersect suppMp. Note next that g+ · Mp = 0 by the irre-
ducibility of Mp as a p-module, and thus Mp is irreducible as a g0-module. This
implies

suppMp ⊆ µ + (
〈
∆0

〉
Z+

∩ 〈
∆0

〉
Z−

).
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Furthermore, as M is irreducible, for any µ′ ∈ suppM one can find β1, . . . , βr ∈
∆+ such that µ′ + β1 + · · · + βr ∈ suppMp. Therefore

suppM ⊆ suppMp +
〈
∆+

〉
Z−

.

On the other hand, obviously,

suppM ⊆ suppU (g) ⊗U(p) Mp ⊆ suppMp +
〈
∆−〉

Z+
.

Hence
suppM ⊆ µ + (

〈
∆0 � ∆−〉

Z+
∩ 〈

∆0 � ∆+
〉

Z−
).

The proof of (b) is left to the reader.

We need to introduce also the notion of a shadow decomposition. Let now
g be a reductive Lie algebra with root system ∆ and M be an irreducible
weight g-module. Fix a point µ ∈ suppM and for any α ∈ ∆ consider the
set nµ

α
def= {q ∈ R | µ + qα ∈ suppM}. There are four possible types of sets nµ

α:
bounded in both directions, unbounded in both directions, bounded from above
and unbounded from below, and unbounded from above but bounded from be-
low. The main point is, see [?DMP], that the type of nµ

α depends only on α and
not on µ, and therefore the module M itself determines a decomposition of ∆
into four mutually disjoint subsets:

∆ = ∆+
M � ∆I

M � ∆F
M � ∆−

M ,(1)

where

∆+
M

def= {α ∈ ∆ | nµ
α is bounded only from above} ,

∆−
M

def= {α ∈ ∆ | nµ
α is bounded only from below} ,

∆F
M

def= {α ∈ ∆ | nµ
α is bounded in both directions} ,

∆I
M

def= {α ∈ ∆ | nµ
α is unbounded in both directions} .

We call (?equ1?) the shadow of M and its existence means simply that the type
of nµ

α does not depend on a choice of µ ∈ suppM .
Any subdivision of the form (?equ1?) can be characterized abstractly by the

property that, for ∆0
M

def= ∆I
M � ∆F

M , ∆ = ∆+
M � ∆0

M � ∆−
M is a parabolic

decomposition and all roots of ∆I
M are orthogonal to all roots of ∆F

M . A sub-
division ∆ = ∆+ � ∆I � ∆F � ∆− satisfying this property is by definition a
shadow decomposition of ∆. Moreover, the Fernando-Futorny parabolic induc-
tion theorem, see [?DMP], implies that the shadow of M determines suppM up
to the support of a finite dimensional gF -module, where gF def= h⊕

(
⊕α∈∆F

M
gα

)
.

More precisely, suppM = suppMF +
〈
∆I

M � ∆−
M

〉
Z+

for some finite-dimensional

irreducible gF -module MF .
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In our study of weight modules over Wn and S̄n (the Lie algebras Wn and S̄n

are introduced in the next section) we will use certain shadow decompositions
of the root system An, and furthermore our main result will imply that, if M
is an irreducible weight module over Wn or S̄n, then M itself has a well-defined
shadow.

2. The Lie algebras Wn and S̄n and the main theorem

Let Pn = C [x1, . . . , xn] be the ring of polynomials in the indeterminates
x1, . . . , xn. Then Wn is by definition the Lie algebra of derivations of Pn, i.e.,

Wn
def= Der C[x1, . . . , xn] =

{
n∑

i=1

pi
∂

∂xi
| pi ∈ Pn

}
,

and S̄n ⊂ Wn is its Lie subalgebra of all derivations with constant divergence,
i.e.,

S̄n
def=

{
n∑

i=1

pi
∂

∂xi
|

n∑
i=1

∂2pi

∂xi∂xj
= 0 for all j = 1, . . . , n

}
.

It is known that Wn is simple for n ≥ 1, and that Sn
def=

[
S̄n, S̄n

]
is a simple

ideal of codimension 1 in S̄n for n ≥ 2.
Throughout the rest of this paper g will denote Wn for n ≥ 1 or S̄n for

n ≥ 2. Fix the Cartan subalgebra h = 〈{xi
∂

∂xi
| i = 1, . . . , n}〉C of g and set

h′ def= h∩[g, g]. Let ε1, . . . , εn be the basis in h∗ dual to the basis x1
∂

∂x1
, . . . , xn

∂
∂xn

in h. We introduce a symmetric bilinear form on h∗ by requiring ε1, . . . , εn to be
orthonormal. The set ∆ of roots of g is the same for Wn and S̄n and consists of
the vectors

∑n
j=1 mjεj and −εi+

∑
j �=i mjεj , where all mj ∈ Z+ and i = 1, . . . , n.

In what follows we always assume that mj ∈ Z+.

Consider ∆′ def= ∆∩−∆ = {±εi, εi − εj | i, j ≤ n, i �= j}. Clearly, ∆′ is a root
system of type An. When g = Wn there is a subalgebra isomorphic to sln+1 in
g (arising from the infinitesimal action of the action of PSLn+1 on CPn) , but
when g = S̄n the root subsystem ∆′ does not correspond to a subalgebra of g.
Let ∆′′ def= {εi − εj | i, j ≤ n, i �= j}. In both cases the weight spaces gα for all
α ∈ ∆′′ generate a subalgebra of g isomorphic to sln.

In the following proposition we summarize some properties of g whose proof
is straightforward.

Proposition 2. (a) The Cartan subalgebra h acts semi-simply on g. Therefore,
by Proposition ?prop1?, every irreducible generalized weight g-module is a weight
module.

(b) For any nonproportional α, β ∈ ∆ we have gα+β =
[
gα, gβ

]
.

(c) For any α ∈ ∆′′ � {−εi | 1 ≤ i ≤ n} we have dim gα = 1, and the adjoint
action of gα on g is locally nilpotent.
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(d) For every i ≤ n we have [g−εi , gεi ] = h′, and the Lie subalgebra g (Zεi)
def
=

g−εi ⊕ h ⊕ gεi ⊕ g2εi ⊕ . . . contains a subalgebra isomorphic to W1.

The following property is not quite obvious and is very important in our
description of the supports of irreducible weight g-modules.

Lemma 3. Let ∆′ = (∆′)+ � (∆′)0 � (∆′)− be a parabolic decomposition of

∆′. Set ∆0 def
= ∆ ∩ 〈(∆′)0〉Z, ∆+ def

= (∆ ∩ 〈(∆′)+ � (∆′)0〉Z+)\∆0, ∆− def
=

∆\ (
∆0 � ∆+

)
. Then ∆ = ∆+ � ∆0 � ∆− is a parabolic decomposition of ∆.

Proof. We start by observing that any sequence γ1, . . . , γk of linearly indepen-
dent vectors in 〈∆〉

R
determines a parabolic decomposition of ∆, as well as a

parabolic decomposition of ∆′. Indeed, define the following cones in 〈∆〉
R
:

C0 (γ1, . . . , γk) = {ξ ∈ 〈∆〉
R
| (γ1, ξ) = . . . = (γk, ξ) = 0} ,

C± (γ1, . . . , γk) ={
ξ ∈ 〈∆〉

R
| (γ1, ξ) = . . . = (γi−1, ξ) = 0, (γi, ξ) >(<) 0 for some i ≤ k

}
.

Then ∆ = ∆+ � ∆0 � ∆−, where

∆0 def= C0 (γ1, . . . , γk) ∩ ∆, ∆± def= C± (γ1, . . . , γk) ∩ ∆,

is a parabolic decomposition of ∆, and respectively ∆′ = (∆′)+ � (∆′)0 � (∆′)−

is a parabolic decomposition of ∆′, where (∆′)0 def= ∆′ ∩ ∆0, (∆′)± def= ∆′ ∩ ∆±.
Fix now a parabolic decomposition of ∆′, ∆′ = (∆′)+ � (∆′)0 � (∆′)−. Using

the fact that any maximal parabolic subalgebra of a finite-dimensional Lie alge-
bra corresponds to a fundamental weight, we can check that our fixed parabolic
decomposition is determined by a sequence of the form ω−

1 , . . . , ω−
k , ω+

1 , . . . , ω+
l ,

where

ω−
r = −

∑
s∈S−

r

εs for a decreasing sequence of sets S−
1 ⊃ . . . ⊃ S−

k ,

ω+
r =

∑
s∈S+

r

εs for an increasing sequence of sets S+
1 ⊂ . . . ⊂ S+

l ,

and S+
l ∩ S−

1 = ∅. All it remains is to verify that the parabolic decomposition
of ∆ determined by the sequence ω−

1 , . . . , ω−
k , ω+

1 , . . . , ω+
l coincides with the

decomposition of ∆ defined in the Lemma. For this it suffices to check that any
α ∈ ∆+ �∆0 can be written as a sum β1 + . . .+βp for some βj ∈ (∆′)0 � (∆′)+.
Note that, by definition, either

(
ω−

1 , α
)

> 0 or
(
ω−

1 , α
)

= 0. In the former case

α = −εi +
∑

j /∈S−
1

mjεj
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for some i. Since −εi ∈ ∆+ and εj ∈ (∆′)+ � (∆′)0 for all j, in this case the
Lemma is proved.

The latter case splits into two:

(1)
(
ω−

1 , α
)

= . . . =
(
ω−

r−1, α
)

= 0, (ω−
r , α) > 0 for some r ≤ k. Then

α = εi − εi′ +
∑

j /∈S−
1

mjεj for some i′ ∈ S−
r−1\S−

r and some i ∈ S−
r .

Since εi − εi′ ∈ (∆′)+ and εj ∈ (∆′)+ � (∆′)0, this case is also settled.
(2)

(
ω−

1 , α
)

= . . . =
(
ω−

k , α
)

= 0. Then either α = εi − εi′ +
∑

j /∈S−
1

mjεj

with i, i′ ∈ S−
r−1\S−

r ( here εi − εi′ ∈ (∆′)0, εj ∈ (∆′)+ � (∆′)0), or α =∑
j /∈S−

1
mjεj (here εj ∈ (∆′)+�(∆′)0), or finally α = −εi+

∑
j /∈S−

1
mjεj

for some i /∈ S−
1 . In the first two subcases there is nothing to check.

In the last subcase
(
ω+

1 , α
)

= . . . =
(
ω+

p−1, α
)

= 0,
(
ω+

p , α
)

> 0 for
some p ≤ l + 1, where, if p = l + 1, we define S+

p as {1, . . . , n} \S−
1

and ω+
p as

∑
s∈S+

p
εs. Assume first that i ∈ S+

p−1. Choose r < p such
that i ∈ S+

r \S+
r−1. Then there is q ∈ S+

r \S+
r−1 such that α = εq − εi +∑

j /∈S−
1 	S+

p−1
mjεj . Here all εj ∈ (∆′)+ � (∆′)0 and εq − εi ∈ (∆′)0. Let

now i /∈ S+
p−1. Then one can find q ∈ S+

p \S+
p−1 with mq > 0 and rewrite

α as the sum (εq − εi) +
∑

j /∈S−
1

m′
jεj . This settles the last subcase, as

εq − εi ∈ (∆′)+ � (∆′)0 for all i /∈ S+
p−1, and εj ∈ (∆′)+ � (∆′)0 for all

j /∈ S−
1 .

We say that a parabolic decomposition of ∆ is induced from a parabolic de-
composition of ∆′ if it can be obtained as in Lemma ?lm22?.

In what follows we assume that M is an irreducible weight g-module, unless
stated otherwise. For any λ ∈ suppM , set

Γλ
def= 〈α ∈ ∆′ | λ + Z+α ⊆ suppM〉

Z+

and

(∆′)I
λ

def= {α ∈ ∆′ | α,−α ∈ Γλ} ,

(∆′)F
λ

def= {α ∈ ∆′ | α,−α /∈ Γλ} ,

(∆′)+λ
def= {α ∈ ∆′ | −α ∈ Γλ, α /∈ Γλ} ,

(∆′)−λ
def= − (∆′)+λ .

Clearly,

∆′ = (∆′)+λ � (∆′)I
λ � (∆′)F

λ � (∆′)−λ .(3)

Furthermore, given a shadow decomposition ∆′ = (∆′)+� (∆′)I � (∆′)F � (∆′)−

and a weight λ ∈ h∗, define the parabolic decomposition λ∆′ = λ (∆′)+ �
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λ (∆′)0 � λ (∆′)− by putting

λ (∆′)± def= (∆′)± �
{

α ∈ (∆′)F | (λ, α) >(<) 0
}

,

λ (∆′)0 def= (∆′)I �
{

α ∈ (∆′)F | (λ, α) = 0
}

.

We call a root α ∈ (∆′)+ λ-indecomposable if it can not be decomposed as a
sum β +β′ for some β, β′ ∈ (∆′)I � λ (∆′)+. A weight λ ∈ h∗ is compatible with
the given shadow decomposition if the following two conditions hold:

(1) (λ, α) ∈ Z for any α ∈ ∆′′ ∩ (∆′)F ;
(2) λ (h′) �= 0 whenever there is at least one λ-indecomposable root α0 ∈

(∆′)+, and moreover (λ, α) /∈ Z+ for all λ-indecomposable roots α ∈
∆′′ ∩ (∆′)+.

Finally we set gF def= h ⊕ (⊕α∈∆′′∩(∆′)F gα) and note that gF is a reductive
subalgebra, gF ⊆ gln ⊂ g. For any weight λ, compatible with the given shadow
decomposition, there is a suitable set of positive roots in (∆′′)∩ (∆′)F such that
λ is the highest weight of a finite-dimensional irreducible gF -module MF

λ .
The following theorem is our main result.

Theorem 1. Let M be an irreducible weight g-module.
(a) Γλ = Γµ for any λ, µ ∈ suppM , and therefore the subdivision (?equ2?)

does not depend on λ ∈ suppM . We shall denote it by

∆′ = (∆′)+ � (∆′)I � (∆′)F � (∆′)− .(4)

(b) The subdivision (?equ3?) is a shadow decomposition of ∆′, and moreover
(∆′)F ⊆ ∆′′.

(c) There exists λ ∈ suppM , such that it is compatible with (?equ3?) and

suppM = suppMF
λ + 〈(∆′)I � (∆′)−〉Z+ .(5)

(d) For any shadow decomposition ∆′ = (∆′)+ � (∆′)I � (∆′)F � (∆′)− such
that (∆′)F ⊆ ∆′′, and for any compatible weight λ, there is an irreducible weight
g-module M whose support is given by (?equ4?).

The proof is presented in section 3. In the rest of this section we comment on
the result and discuss examples. Note, first of all, that the Theorem implies that
any irreducible weight g-module M has a well-defined shadow. Indeed, using the
explicit description of suppM given in claim (c), the reader will verify that for
any β ∈ ∆ and µ ∈ suppM the type of nµ

β
def= {q ∈ R | µ + qβ ∈ suppM} does

not depend on µ ∈ suppM , and therefore M defines a decomposition of ∆:

∆ = ∆+
M � ∆I

M � ∆F
M � ∆−

M .(6)
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Furthermore, it is natural to ask if the decomposition (?equ5?) inherits the
properties of the shadow decomposition (?equ3?), and in particular is it true
that, if we set ∆0

M
def= ∆I

M � ∆F
M , the decomposition ∆+

M � ∆0
M � ∆−

M is
a parabolic decomposition? The answer turns out to be no as for instance
g0 def= h ⊕ (⊕α∈∆0

M
gα) may not be a Lie subalgebra. Indeed, consider the ad-

joint representation of g = Wn, n ≥ 2. Then −ε1 + 2ε2, −ε2 + 2ε1 ∈ ∆F
M

but (−ε1 + 2ε2) + (−ε2 + 2ε1) = ε1 + ε2 ∈ ∆−
M , and in this case g0

M is not a
subalgebra.

Note also that, although the subdivision (?equ3?) is a shadow decomposi-
tion for the root system ∆′ of the Lie algebra sln+1, not all expressions of the
form (?equ4?) are equal to supports of irreducible weight sln+1-modules. This
is already clear in the case when g = W1, since if λ �= 0 is dominant integral,
the support of the irreducible highest weight module with highest weight is not
equal to the support of the finite-dimensional irreducible sl2-module with the
same highest weight, see case 2 in Lemma ?lm23? below.

Finally, it is easy to establish an explicit relationship between the above the-
orem and the class of modules studied by Rudakov, see [?R1]. Indeed, note that
Rudakov’s continuity condition ([?R1], Lemma 2.1) applies to the Lie algebras
Wn and S̄n considered in the present paper. Furthermore, a simple computation
based on the Theorem shows that the non-trivial irreducible weight modules
from Rudakov’s class are precisely those, whose shadow decomposition satisfies
εi ∈ (∆′)+ for all i.

Example 1. We start with the simplest example when g = W1. This case is
almost trivial, but we would like to discuss it first as it will be used in the proof of
the general case. The following lemma is a slightly stronger version of the main
theorem for g = W1. The cases 1–4 below correspond to all possible shadow
decompositions of ∆′ = {ε1,−ε1}.
Lemma 4. Let g = W1 and M be an indecomposable weight g-module generated
by a weight vector. Then one of the following is true:

(1) suppM = {0} and M is a trivial module;
(2) g−ε1 acts locally nilpotently on M and then suppM = λ + Z+ε1 for

some λ ∈ h∗;
(3) g−ε1 acts freely on M and suppM = λ + Z−ε1 for some λ ∈ h∗;
(4) g−ε1 acts freely on M and suppM = λ + Zε1 for some λ ∈ h∗.

Furthermore, all above cases are possible.

Proof. Note first that M must be a trivial module whenever suppM is bounded.
Indeed, in this case the annihilator of M is a non-zero ideal in g, and therefore
coincides with g as g is simple.

If now g−ε1 acts locally nilpotently on a non-trivial M one can find λ ∈
suppM and v ∈ Mλ such that g−ε1 · v = 0. Then M is a highest weight module
with highest weight λ and suppM = λ + Z+ε1. If g−ε1 acts freely on M , then
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suppM is Z−ε1− invariant. Therefore suppM equals either λ+Z−ε1 or λ+Zε1,
and in the former case M is again a highest weight module.

Finally, note that all supports listed in the Lemma can be realized. Indeed
cases 2 and 3 correspond simply to highest weight modules (in this case, if M is
irreducible, suppM determines M uniquely up to isomorphism). To construct
a module with support as in 4 consider the space M

def= xµ
1C

[
x1, x

−1
1

]
(dx1)

λ−µ

with the natural action of W1. One can easily check that M is an irreducible
W1-module whenever µ /∈ Z.

Example 2. Let g = W2. Here ∆′ = {±ε1,±ε2,± (ε1 − ε2)} and
∆′′ = {± (ε1 − ε2)}. The Theorem implies that the following are all possible
(up to a permutation of indices) supports of irreducible g-modules:

(1) λ + Zε1 + Zε2, λ being an arbitrary weight;
(2) λ + Zε1 ± Z+ε2, λ being an arbitrary weight;
(3) λ + Z (ε1 − ε2) ± Z+ε2, λ being an arbitrary weight;
(4) λ + Z+ε1 + Z−ε2, λ �= 0;
(5) λ+Z+ (ε1 − ε2)+Z+ε2, λ = λ1ε1 +λ2ε2 being such that λ2 −λ1 /∈ Z+;
(6) λ+Z+ (ε1 − ε2)+Z−ε1, λ = λ1ε1 +λ2ε2 being such that λ2 −λ1 /∈ Z+;
(7) (λ1ε1 + λ2ε2 + Z+ (ε1 − ε2) + Z+ε2)∩

(λ2ε1 + λ1ε2 + Z+ (ε2 − ε1) + Z+ε1),
λ = (λ1, λ2) ∈ C

2\ {0} being such that λ2 − λ1 ∈ Z+;
(8) (λ1ε1 + λ2ε2 + Z+ (ε1 − ε2) + Z−ε1)∩

(λ2ε1 + λ1ε2 + Z+ (ε2 − ε1) + Z−ε2),
λ = (λ1, λ2) ∈ C

2\ {0} being such that λ2 − λ1 ∈ Z+;
(9) {0}.

The next example shows that the main theorem does not extend to the poly-
nomial contact Lie algebras.

Example 3. Let g be the polynomial contact algebra K5. We define it as the
space C [t, x1, y1, x2, y2] with Lie bracket

[f, g] def= −f ′Dg + g′Df −
2∑

i=1

(
∂f

∂xi

∂g

∂yi
− ∂g

∂xi

∂f

∂yi
),

where

Dh
def= 2h −

2∑
i=1

(xi
∂h

∂xi
+ yi

∂h

∂yi
).

Here h
def= 〈t, z1, z2〉C

, where z1
def= x1y1, z2

def= x2y2. Furthermore,

∆ = {kδ + aε1 + bε2 | k + 2 ∈ Z+, a, b ∈ Z, |a| + |b| ≤ k + 2, a + b + k ∈ 2Z} .

The set ∆′ def= ∆∩−∆ = {±2δ,±δ ± ε1,±δ ± ε2,±ε1 ± ε2,±2ε1,±2ε2} is a root
system of type C3 and its C2-subsystem {±ε1 ± ε2,±2ε1,±2ε2} plays the role
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of ∆′′. One can check that all statements of Proposition ?prop21? hold after
suitable reformulation. However, Lemma ?lm22? is no longer true. As a result
there are irreducible weight g-modules M such that the faces of the closure of
the convex hull of suppM are not generated by roots. Here is an example.
Let ω = ε1 + tε2 for some irrational real number t. Consider the parabolic
decomposition ∆ = ∆+ � ∆0 � ∆−,

∆0 def= {α ∈ ∆ | (ω, α) = 0} = {kδ | k + 2 ∈ Z+} ,

∆± def=
{
α ∈ ∆ | (ω, α) >(<) 0

}
.

Then g0 = C [t, z1, z2]. Fix λ �∈ Z and define a g0-module structure on M ′ def=
tλC

[
t±1

]
by letting tmzp

1zq
2 act on M ′ as the operator 2tm

(
∂
∂t

)1−p−q
(where(

∂
∂t

)−1
denotes antiderivative in M ′). Obviously M ′ is an irreducible g0-module

and suppM ′ = λδ + Zδ. Make M ′ a p-module by putting g+ · M ′ def= 0 and
consider the irreducible quotient M of the induced module U (g)⊗U(p) M ′. One
can check that

suppM = {λδ + lδ + k1ε1 + k2ε2 | l, k1, k2 ∈ Z, k1 + tk2 < 0} ,

and therefore the single face of the closure of the convex hull of suppM is not
generated by its intersection with the root lattice.

3. Proof of the Theorem

The proof is subdivided into 14 Lemmas. The main idea is to show that
one can find a certain special weight λ ∈ suppM , called minimal, such that
(3) is a shadow decomposition of ∆′ and moreover (5) holds for this shadow
decomposition. The purpose of Lemmas 1 through 10 is to establish the existence
of a minimal λ. Then, in Lemma 11 we prove that there is a minimal λ which
is compatible with the shadow decomposition (3) and that indeed (5) holds for
the decomposition (3). Lemmas 1–11 yield more or less immediately the claims
(a), (b), and (c) in the Theorem. Finally, Lemmas 12 through 14 are necessary
for the proof of claim (d).

Let now Γ def= ∩λ∈suppMΓλ. Clearly, suppM is Γ-invariant. For any λ ∈
suppM define Kλ,

Kλ
def= {α ∈ ∆′ | λ + α /∈ suppM} ,

and put K̄λ
def= ∆′\Kλ. We call λ ∈ suppM extremal if Kλ is maximal (i.e., if

Kλ is not a proper subset of Kµ for any µ ∈ suppM).

Lemma 5. (a) If α ∈ ∆′′ and α,−α /∈ Γ, then gα and g−α act locally nilpotently
on M , and suppM is invariant with respect to the Weyl group reflection rα.
Moreover, if α ∈ Kλ, then (λ, α) ∈ Z+.

(b) If λ, µ ∈ suppM and εi ∈ Kλ, −εi ∈ Kµ, then λ (h′) = 0 and −εi ∈ Kλ.
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(c) If α ∈ Γ and λ, λ − α ∈ suppM , then Kλ ⊆ Kλ−α. In particular, if λ is
extremal, then λ − α is also extremal with Kλ = Kλ−α.

(d) (Convexity property) If α ∈ ∆′ and λ, λ + kα ∈ suppM for some k ∈ Z+,
then λ + jα ∈ suppM for any 0 ≤ j ≤ k.

Proof. (a) Note that if α ∈ ∆′′ then gα and g−α generate an sl2-subalgebra.
Since furthermore gα and g−α act locally nilpotently on g, the existence of a
vector v ∈ M with gα · v = 0 (which is a consequence of the fact that α /∈ Γ)
implies via a standard argument ([?K], Lemma 3.4) that gα acts locally nilpo-
tently on M . Similarly g−α acts locally nilpotently on M . Therefore the sl2
-subalgebra generated by gα and g−α acts locally finitely on M and in partic-
ular suppM is rα-invariant. Finally, if α ∈ Kλ, then gα · Mλ = 0 and λ is a
highest sl2-weight, i.e., (λ, α) ∈ Z+.

(b) Since g−εi acts nilpotently on g, for the same reason as in (a) g−εi acts
locally nilpotently on M . By Lemma ?prop21? (d) and Lemma ?lm23?, (λ + Zεi)∩
suppM = {λ}. Therefore gεi ·Mλ = g−εi ·Mλ = 0 and [gεi , g−εi ]·Mλ = h′ ·Mλ =
0. This shows that λ (h′) = 0 and therefore also that −εi ∈ Kλ.

(c) Since α ∈ Γ and since suppM is Γ-invariant, the inclusion λ − α + δ ∈
suppM implies λ + δ ∈ suppM . Therefore δ ∈ K̄λ−α gives δ ∈ K̄λ, i.e.,
Kλ ⊆ Kλ−α.

(d) Assume to the contrary that λ + jα /∈ suppM for some j < k. Then
α �∈ ∆′′ as otherwise the sl2-subalgebra generated by gα and g−α would have to
act locally finitely on M and we immediately obtain a contradiction. Therefore
α = −εi for some i. Then g−εi acts locally nilpotently on M , and Lemma ?lm23?,
applied to a W1-subalgebra of g (Zεi) (see Proposition ?prop21? (d)), provides a
contradiction.

Lemma 6. Let λ ∈ suppM be an extremal point and let α, β, α + β ∈ ∆′.
(a) If α, β ∈ Kλ, then α + β ∈ Kλ.
(b) If α, β ∈ K̄λ, then α + β ∈ K̄λ.

Proof. (a) First, assume that at least one of the two roots α, β (say α) belongs to
∆′′. Assume also that α, β ∈ Kλ and α+β /∈ Kλ. Then µ = λ+α+β ∈ suppM ,
α ∈ Kλ, −α ∈ Kµ. By Lemma ?lm31? (a), we have (λ, α) ∈ Z+ and (µ, α) ∈ Z−.
Since (µ − λ, α) = (α + β, α) = 1, this is impossible.

Let now α, β /∈ ∆′′. Then without loss of generality we can assume that
α = −εi and β = εj . Suppose again that α, β ∈ Kλ and α + β /∈ Kλ. Then
µ = λ + α + β ∈ suppM , −εi, εj ∈ Kλ, εi,−εj ∈ Kµ. By Lemma ?lm31? (b),
λ (h′) = µ (h′) = 0, which is impossible since (λ − µ) (h′) = (εj − εi) (h′) �= 0.

(b) As in the proof of (a) we consider two cases. First, let α ∈ ∆′′. Assume
that α, β ∈ K̄λ but α+β ∈ Kλ, i.e., λ+α, λ+β ∈ suppM , λ+α+β /∈ suppM .
Note that −α /∈ Γ by Lemma ?lm31? (c). On the other hand, α /∈ Γ because
α ∈ Kλ+β . Therefore, gα and g−α act locally nilpotently on M , and (λ + β, α) ∈
Z+. Since (β, α) = −1, we have (λ, α) ≥ 1. Furthermore, β ∈ Kλ+α\Kλ.
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Since λ is extremal, one can find δ ∈ Kλ\Kλ+α. Then λ + α + δ ∈ suppM
and λ + δ /∈ suppM , which implies (λ + α + δ, α) ∈ Z−. But (δ, α) ≥ −1 and
therefore (α + δ, α) > 0, while we showed already that (λ, α) ≥ 1. Contradiction.

Now let α, β /∈ ∆′′, for example let α = −εi, β = εj . Assume that α, β ∈
K̄λ but α + β ∈ Kλ, i.e., λ − εi, λ + εj ∈ suppM , λ + εj − εi /∈ suppM .
Notice that −εj , εi /∈ Γ. Since εj ∈ Kλ−εi , by Lemma ?lm31? (b), we have
(λ − εi) (h′) = 0. On the other hand, εj ∈ Kλ−εi\Kλ. Since λ is extremal, there
exists δ ∈ Kλ\Kλ−εi , i.e., λ− εi + δ ∈ suppM and λ+ δ /∈ suppM . Then again,
by Lemma ?lm31? (b), (λ − εi + δ) (h′) = 0. Thus δ (h′) = 0 for some δ ∈ ∆′,
which is impossible.

Corollary 1. Let λ ∈ suppM be extremal. Put

λ (∆′)+
def
=Kλ\ (Kλ ∩ −Kλ) ,

λ (∆′)−
def
= K̄λ\

(
K̄λ ∩ −K̄λ

)
,

λ (∆′)0
def
= (Kλ ∩ −Kλ) � (

K̄λ ∩ −K̄λ

)
.

Then
λ (∆′)+ �λ (∆′)0 �λ (∆′)−

is a parabolic decomposition of ∆′.

Lemma 7. If suppM contains more than one point, then {εi,−εi}∩Γ �= ∅ for
all i.

Proof. Assume that εi,−εi /∈ Γ for some i. Then, by Lemma ?lm31? (b), one
can choose λ ∈ suppM such that εi,−εi ∈ Kλ and λ (h′) = 0. Furthermore, λ
can be chosen to be extremal. Consider the parabolic decomposition λ (∆′)+ �λ

(∆′)0 �λ (∆′)− from Corollary ?cor34?. We claim that λ (∆′)0 = Kλ ∩ −Kλ.
This is equivalent to saying that for any α ∈ ∆′ at least one of the roots α
and −α belongs to Kλ. The latter however is obvious because otherwise λ +
α, λ − α ∈ suppM implies λ + α + εi, λ − α + εi ∈ suppM , and then, by
Lemma ?lm31? (d), one has λ + εi ∈ suppM . Consider now the parabolic
decomposition ∆ = λ∆+ � λ∆0 � λ∆− induced by the parabolic decomposition
λ (∆′)+� λ (∆′)0� λ (∆′)−, and let λp be the corresponding parabolic subalgebra.
Then λp is generated by h and gα for all α ∈λ (∆′)+ �λ (∆′)0. Therefore
p · Mλ = Mλ and M is the unique irreducible quotient of the induced module
U (g) ⊗U(p) Mλ. Since λ (h′) = 0, we have dimM = 1 and suppM = {λ}.

Lemma 8. Let λ ∈ suppM .
(a) (∆′)−λ ⊆ Γ.
(b) The set (∆′)F

λ is a root subsystem of ∆′′.
(c) If α ∈ (∆′)F

λ and β ∈ (∆′)I
λ, then (α, β) = 0.
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Proof. (a) Let α ∈ (∆′)−λ . If α /∈ ∆′′, Lemma ?lm35? implies that α ∈ Γ. Let
now α ∈ ∆′′. Assume that α /∈ Γ. Then gα and g−α act locally nilpotently on
M and each sl2-string λ+Zα∩ suppM is either bounded or unbounded in both
directions. Therefore α,−α ∈ (∆′)F

λ or α,−α ∈ (∆′)I
λ. Contradiction. Hence

α ∈ Γ.
(b) By Lemma ?lm35?, (∆′)F

λ ⊆ ∆′′ and, by definition, − (∆′)F
λ = (∆′)F

λ . All
we need to check is that, for any α, β ∈ (∆′)F

λ , α+β ∈ ∆′′ implies α+β ∈ (∆′)F
λ .

Assume that α+β /∈ (∆′)F
λ . Then α+β ∈ (∆′)I

λ and λ+k (α + β) ∈ suppM
for all k ∈ Z+. By possibly changing α to −α and and β to −β, we can
assume that (λ, α) ≥ 0. Therefore rα (λ + k (α + β)) = λ − mα + kβ for some
nonnegative m. Then, by Lemma ?lm31? (d), λ + kβ ∈ suppM for any k ∈ Z+,
which contradicts to the fact that β ∈ (∆′)F

λ .
(c) Assume that the statement is not true, i.e., that one can find α ∈ (∆′)F

λ

and β ∈ (∆′)I
λ such that (α, β) > 0. Then the roots ±α, ±β and ±rα (β) form

a root system R of type A2. The intersection of Γλ with R either coincides with
{β,−β} or contains all roots from the half-plane of 〈R〉

R
bounded by the line

Rβ. In the former case (∆′)F
λ ∩ R = R\ {β,−β}, which contradicts to (b). In

the latter case at least one of α and −α belongs to Γλ, which is also impossible.

Lemma 9. Let λ ∈ suppM be extremal. Then

Kλ = (∆′)+λ � {α ∈ (∆′)F
λ | (λ, α) ≥ 0}.

Proof. Obviously,

Kλ ⊆ (∆′)+λ � {α ∈ (∆′)F
λ | (λ, α) ≥ 0}.

We will prove that also

(∆′)+λ � {α ∈ (∆′)F
λ | (λ, α) ≥ 0} ⊆ Kλ.

Let us show first that (∆′)+λ ⊆ Kλ. Let α ∈ (∆′)+λ . Choose k ∈ Z+ such that
λ + kα ∈ suppM but λ + (k + 1)α /∈ suppM . By Lemma ?lm36? (a), −α ∈ Γ.
By Lemma ?lm31? (c), Kλ ⊆ Kλ+kα. Since λ is extremal, k = 0 and α ∈ Kλ.

It remains to show that {α ∈ (∆′)F
λ | (λ, α) ≥ 0} ⊆ Kλ. Let α ∈ (∆′)F

λ and
(λ, α) ≥ 0. Observe that Kλ ⊆ Kλ+α. Indeed, if δ ∈ K̄λ+α then λ + α + δ ∈
suppM and (λ + α + δ, α) > 0. Therefore λ + α + δ − α = λ + δ ∈ suppM and
δ ∈ K̄λ. We complete the proof now by using the same argument as in the case
when α ∈ (∆′)+λ .

Corollary ?cor34?, Lemma ?lm36? and Lemma ?lm32? imply

Corollary 2. If λ ∈ suppM is extremal, the decomposition

∆′ = (∆′)+λ � (∆′)F
λ � (∆′)I

λ � (∆′)−λ
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is a shadow decomposition of ∆′.

Set S± def= {i | ±εi /∈ Γ} and S
def= S+ � S−. We say that λ ∈ suppM is

minimal if λ is extremal and ±εi ∈ Kλ for all i ∈ S±.

Lemma 10. There exists a minimal λ ∈ suppM .

Proof. It consists of three steps.
Step 1. We will show that there is an extremal point λ ∈ suppM such

that εl (respectively, −εl) belongs to Kλ for every l ∈ S+ (resp. for every
l ∈ S−). Consider the case of S+ (for S− the proof is the same). Assume that
the statement is false. This implies that one can find i, j ∈ S+ and extremal
weights λ, µ ∈ suppM such that εi ∈ Kλ, εi ∈ Γµ, εj ∈ Kµ, εj ∈ Γλ. Then
λ + kεj , µ + kεi ∈ suppM and λ + εi + kεj , µ + εj + kεi /∈ suppM for any

k ∈ Z+. Furthermore, if α
def= εi − εj , then gα and g−α act locally nilpotently

on M . Therefore, for sufficiently large k we have µ + kεi − α ∈ suppM as
(µ + kεi, α) > 0. Contradiction.

Step 2. Choose an extremal point µ ∈ suppM such that −εj ∈ Kµ for
all j ∈ S−. Let ω− = −∑

j∈S− εj . Consider the parabolic decomposition

∆ = ∆− � ∆0 � ∆+, where ∆± def=
{
α ∈ ∆ | (ω−, α) >(<) 0

}
. Any α ∈ ∆+ can

be written as −εi +
∑

j /∈S− mjεj , and, since −εj ∈ Γ for all j /∈ S−, we obtain
that µ + α /∈ suppM . Then, by Lemma ?lm2? (b), M is the unique irreducible
quotient of U (g) ⊗U(p) Mp.

Step 3. Since suppM ⊆ suppU (g) ⊗U(p) Mp for any ν ∈ suppM , we have
(ω−, ν) ≤ (ω−, µ). Therefore −εj ∈ (∆′)+ν for all j ∈ S− and all ν ∈ suppM .
In particular, if ν is extremal, then by Lemma ?lm32? −εj ∈ Kν for all j ∈ S−.
Thus, an extremal point λ, such that εl ∈ Kλ for all l ∈ S+, is necessarily
minimal.

Let λ ∈ suppM be a minimal point. Consider the parabolic decomposition
∆ = λ∆+ �λ ∆0 �λ ∆+ induced by the parabolic decomposition λ (∆′)+ �λ

(∆′)0 �λ (∆′)− of Corollary ?cor34?, and set λp
def= h ⊕ (⊕α∈λ(∆′)0	λ∆+gα).

Lemma 11. One can find a minimal λ ∈ suppM such that λ + α /∈ suppM
for any α ∈ λ∆+. Therefore, by Lemma ?lm2? (b), M is the unique irreducible
quotient of the induced module U (g) ⊗U(λp) M ′ for some irreducible λp-module
M ′ with λ ∈ suppM ′. Moreover,

suppM = suppMF
λ +

〈
(∆′)I

λ � (∆′)−λ
〉

Z+
,(7)

and λ is compatible with the shadow decomposition

∆′ = (∆′)+λ � (∆′)I
λ � (∆′)F

λ � (∆′)−λ .(8)
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Proof. Set

K1
λ

def= {β = εi + εj − εk | k �= i, j, λ + β /∈ suppM}
and

K̄1
λ

def= {β = εi + εj − εk | k �= i, j, λ + β ∈ suppM} .

We will prove that any minimal λ with maximal K1
λ satisfies the requirement of

the Lemma. By Lemma ?lm2? (a) it is sufficient to show that λ + α �∈ suppM
for any α ∈λ ∆+.

Recall the proof of Lemma ?lm22?. It implies that any α ∈λ ∆+ can be
written as α = α0 +

∑
j /∈S− mjεj , (here S− = S−

1 , see Lemma ?lm22?), where

α0 ∈ ∆′′ ∩
(

λ (∆′)0 �λ (∆′)+
)

or α0 = 0. Since −εj ∈ Γ for all j �∈ S−, it is

obvious that λ + α /∈ suppM whenever α0 ∈λ (∆′)+ or α0 = 0. Consider the
case when α0 ∈λ (∆′)0. In this case mi > 0 for at least one i ∈ S+. Assume,
to the contrary, that λ + α ∈ suppM . Then λ + α0 + εi, λ + α0 ∈ suppM .
Therefore α0 /∈ Kλ, which implies by Lemma 9 that α ∈ (∆′)Iλ. Thus µ =
λ−α0 ∈ suppM . We claim that µ is minimal and that K1

λ is strictly contained
in K1

µ. To prove this claim consider two cases: α0 ∈ Γ and α0 /∈ Γ. In the former
case the claim is trivial. In the latter case gα0 acts locally nilpotently on M and,
since −α0 ∈ Kλ+α0+εi , g−α0 also acts locally nilpotently on M . Furthermore,
(λ + α0 + εi, α0) ∈ Z−, i.e., (λ, α0) ≤ −2. Fix an arbitrary element δ ∈ K̄µ∪K̄1

µ.
Then λ−α0 + δ ∈ suppM , and (λ − α0 + δ, α0) = (λ, α0)− 2+ (δ, α0) < 0 since
(δ, α0) ≤ 2. Therefore λ + δ ∈ suppM and δ ∈ K̄λ ∪ K̄1

λ. Hence Kλ ⊆ Kµ.
Moreover, K1

λ is strictly contained in K1
µ as α0 + εi ∈ K1

µ\K1
λ. This contradicts

the maximality of K1
λ, and hence λ + α �∈ suppM .

To prove (?equ90?) we use Lemma ?lm2? (a). Indeed, Lemma ?lm22? (applied
to the parabolic decomposition λ (∆′)+ �λ (∆′)0 �λ (∆′)− ) yields〈

λ∆0 �λ ∆−〉
Z+

∩ 〈
λ∆0 �λ ∆+

〉
Z−

=
〈

λ
(∆′)0 �λ (∆′)−

〉
Z+

.

Therefore suppM ⊆ λ +
〈

λ (∆′)0 �λ (∆′)−
〉

Z+

. Furthermore, suppM is Wλ-

invariant, where Wλ denotes the Weyl group of the root system (∆′)F
λ . This

gives

suppM ⊆ ∩w∈Wλ
w(λ +

〈
λ(∆′)0 �λ (∆′)−

〉
Z+

).(9)

On the other hand, Γλ =
(

λ (∆′)0 �λ (∆′)−
)
\ (∆′)F

λ , i.e., λ+Z+α ⊆ suppM for

any α ∈
(

λ (∆′)0 �λ (∆′)−
)
\ (∆′)F

λ . As suppM satisfies the convexity property
(Lemma ?lm31? (d)), we obtain that (9) is an equality, i.e.,

suppM = ∩w∈Wλ
w(λ +

〈
λ(∆′)0 �λ (∆′)−

〉
Z+

).(10)
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Furthermore, since

suppMF
λ = ∩w∈Wλ

w(λ +
〈
(∆′)F

λ ∩λ (∆′)−
〉

Z+
),

(10), together with the Wλ-invariance of (∆′)I
λ and (∆′)−λ , yields (7).

Finally, we will prove that λ is compatible with the shadow decomposi-
tion (?equ91?). First, (?equ90?) and Lemma ?lm31? (a) imply that (λ, α) ∈ Z

for any α ∈ (∆′)F
λ . To check the second condition of compatibility, choose a λ-

indecomposable root α ∈ (∆′)+λ . Note that β−pα /∈ 〈(∆′)I
λ � λ(∆′)−〉Z+ for any

β ∈ λ (∆′)+, β �= α, and any p ∈ Z+, and hence gβ · Mλ−pα = 0. Consider first
the case when α ∈ ∆′′. If k = (λ, α) ∈ Z+, then gα · Mλ−(k+1)α = 0, and there-
fore Mλ−(k+1)α generates a proper submodule in M . Hence Mλ−(k+1)α = 0,
which contradicts to the fact that −α ∈ Γλ. Therefore (λ, α) /∈ Z+ for α ∈ ∆′′.
Let now α /∈ ∆′′ and assume that λ (h′) = 0. In the same way we can show that
Mλ−α generates a proper submodule in M , i.e., Mλ−α = 0, which contradicts
to the fact that −α ∈ Γλ. Thus, we have proved that λ (h′) �= 0.

Lemma ?lm38? (together with Lemma ?lm36? (b)) implies claims (a), (b)
and (c) of the Theorem. Indeed, the explicit expression for suppM obtained in
(7) makes it obvious that the subdivision (3) does not depend on λ, and that
moreover (∆′)+ � (∆′)I � (∆′)F � (∆′)− is a shadow decomposition of ∆′. The
fact that (∆′)F ⊂ ∆′′ follows from Lemma ?lm36? (b). Finally, as (4) is well-
defined, (7) is equivalent to (5). Therefore all that remains is to prove claim (d)
of the Theorem.

The following lemma is a straightforward corollary of the definition of the Lie
algebras Wn and S̄n and of Lemma ?lm22?.

Lemma 12. Let ∆ = ∆+ �∆0 �∆− be a parabolic decomposition of ∆ induced
by some parabolic decomposition of ∆′. If g = Wn, then the Lie subalgebra g0

is isomorphic to a semidirect sum of Wm = Der C [xi1 , . . . , xim
] and the ideal

k ⊗ C [xi1 , . . . , xim
] for some reductive h-invariant Lie subalgebra k ⊆ gln. If

g = S̄n, then g0 is isomorphic to the intersection of S̄n with a semidirect sum
as above.

Lemma 13. Let g0 be as in Lemma ?lm51? and λ be an arbitrary weight. There
exists an irreducible weight g0-module M0 with suppM0 = λ +

〈
∆0

〉
Z+

.

Proof. Let λ =
∑n

i=1 λiεi, T = {i1, . . . , im}. There exists an irreducible weight
k-module Mk with suppMk =

∑
i/∈T λiεi +〈∆k〉Z

. (This follows for example from
[?BL].) Consider the space

M0 def= Mk ⊗ (xλi1−θ
i1

· . . . · xλim−θ
im

C
[
x±1

i1
, . . . , x±1

im

]
(dxi1 · . . . · dxim)θ)

with the obvious action of g0. One can easily check that, if λi1 −θ, . . . , λim
−θ /∈

Z, M0 is an irreducible g0-module which satisfies the requirement of the Lemma.
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Now we are able to construct an irreducible g-module M whose support is
given by (?equ4?).

Let ∆′ = (∆′)+ � (∆′)F � (∆′)I � (∆′)− be a shadow decomposition of ∆′

and λ ∈ h∗ be a compatible weight. Consider the parabolic decomposition
∆′ = (∆′)+ � (∆′)0 � (∆′)−, where (∆′)0 = (∆′)F � (∆′)I , and the corre-
sponding induced parabolic decomposition ∆ = ∆+ � ∆0 � ∆−. Set h̄

def={
(a, b) | a, b ∈ h,

[
a, gF

]
= 0,

[
b, gI

]
= 0

}
. Note that g0 is isomorphic to(

gF ⊕ gI
)
/h̄. Choose µ ∈ h∗ with (λ ⊕ µ)

(
h̄
)

= 0. Let M I be an irreducible
gI -module with suppM I = µ +

〈
(∆′)I 〉

Z+
(which exists by Lemma ?lm52?)

and MF
λ be the finite-dimensional irreducible gF -module with highest weight λ.

Then M0 def= M I ⊗MF
λ has a natural structure of a g0-module. Furthermore, it

is clear that

suppM0 = suppMF
λ +

〈
(∆′)I 〉

Z+
.

Finally, put g+ · M0 def= 0 and let M be the unique irreducible quotient of
U (g) ⊗U(p) M0.

Lemma 14.

suppM = suppMF
λ +

〈
(∆′)I � (∆′)−

〉
Z+

.

Proof. It follows from Lemma ?lm2? (a) that

suppM ⊆ suppMF
λ +

〈
(∆′)I � (∆′)−

〉
Z+

.(11)

To establish equality, note that both sides of (10) are invariant under the Weyl
group W of the root system (∆′)F . Note also that

(∆′)− = ∩w∈W w( λ (∆′)−).

Therefore, by the convexity property of suppM , it is sufficient to show that
λ + Z−α ⊆ suppM for every simple root α ∈ (∆′)+. The latter follows easily
from the compatibility of λ. Indeed, if α /∈ ∆′′ and λ (h′) �= 0, then −α ∈ Γ by
Lemma ?lm35?. If α ∈ ∆′′, then (λ, α) /∈ Z+ implies that −α ∈ Γλ.
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