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ABC ESTIMATE, INTEGRAL POINTS, AND

GEOMETRY OF Pn MINUS HYPERPLANES

Julie Tzu-Yueh Wang

Abstract. Let K be a field and H be a set of hyperplanes in P n(K). When K is
a function field, we show that the following are equivalent. (a) H is nondegenerate
over K. (b) The height of the (S,H)-integral points of P n(K) − H is bounded.
(c) P n

K −H is an abc variety. When K is a number field and H is nondegenerate
over K, we establish an explicit bound on the number of (S,H)-integral points
of P n(K)−H. Finally, we discuss the geometric properties of holomorphic maps
into P n(C) omitting a set of hyperplanes with moving targets.

0. Introduction

Let F be a number field and H be a set of hyperplanes in Pn(F ). Let S be a
finite set of valuations of F including all the archimedean valuations. When H is
in general position and the number of hyperplanes in H is at least 2n+1, Ru and
Wong [RW] proved that the number of the (S,H)-integral points is finite; later
the author [Wa2] provided an explicit bound on the number. Ru then found
a necessary and sufficient condition on H such that the number of the (S,H)-
integral points of Pn(F ) − H is finite; he also showed that this is a necessary
and sufficient condition of Brody hyperbolicity. However, an explicit bound on
the number of the (S,H)-integral points was not obtained in [Ru].

Let C be an irreducible nonsingular projective algebraic curve of genus g
defined over an algebraically closed field k of characteristic p ≥ 0. Let K be
the function field of C and H be a set of hyperplanes in Pn(K). Let S be a set
consisting of finitely many points of C. When p = 0, the author [Wa2] showed
that if H is in general position and the number of hyperplanes in H is at least
2n + 1 then the height of the (S,H)-integral points is bounded and the bound
is a linear function of |S|. When p > 0, the author [Wa3] showed that if H is
in general position and the number of hyperplanes in H is at least 2n + 2 then
under certain condition the height of the (S,H)-integral points is bounded and
the bound is a linear function of |S|.

Recently, motivated by the abc theorem for function fields (cf. [Ma], [BM],
[Vol] [Wa1] and [No]), Buium defined abc varieties and proved that any affine
open subset of an abelian variety over function fields (of characteristic 0) with
trace zero is an abc variety.(cf. [Bu]) The definition of abc varieties is closely
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related to the (S, D)-integral points of a projective space V deleting a very ample
divisor D. It turns out that the previous results on function fields done by the
author are all theorems about abc varieties.

In the geometric case, as mentioned before that Ru gave a necessary and suffi-
cient condition for Pn(C)−H to be Brody hyperbolic. A more general question
to consider is when the hyperplanes in H are moving, i.e., the coefficients of the
linear forms corresponding to H are holomorphic functions. In [Wa4], the au-
thor applied the method in [Wa2] and obtained a generalization of the Picard’s
theorem with moving targets.

In this paper, we will improve the number field result in [Ru] by giving an
explicit bound on the number of the (S,H)-integral points. In the function field
case of zero characteristic, we will show that the condition on H given in [Ru]
is also necessary and sufficient for the height of the (S,H)-integral points to be
bounded; and is also a necessary and sufficient condition for Pn

K − H to be an
abc variety. Therefore, we will prove that Pn

K −H is an abc variety if and only
if the height of the (S,H)-integral points of Pn(K) −H is bounded. Finally, in
the geometric case we deal with the situation when the coefficients of the linear
forms corresponding to the hyperplanes in H are holomorphic functions.

1. abc varieties and (S, D)-integral points

In this section we will restrict ourselves to function fields. However, the
definition of abc varieties and (S, D)-integral points can be easily adapted to
number fields.

Let C be an irreducible nonsingular projective algebraic curve of genus g
defined over an algebraically closed field k of characteristic p ≥ 0. Let K be
the function field of C. Given a point P ∈ C, we denote by vP the normalized
valuation associated to P . For elements f0, . . . , fn of K, not all zeros, we define
the height as

h(f0, . . . , fn) :=
∑
P∈C

−min{vP (f0), . . . , vP (fn)}.

For an element f of K, we define the height as

h(f) :=
∑
P∈C

−min{0, vP (f)}.

We now recall the definitions of (S, D)-integral points (cf. [Voj]) and abc
varieties (cf. [Bu]). Let V be a projective variety defined over K. Let D be a
very ample effective divisor on V and let 1 = φ0, φ1, . . . , φN be a basis of the
vector space:

L(D) = {f |f is a rational function on V such that f = 0 or (f) ≥ −D}.

Then φ = (φ0, . . . , φN ) defines a morphism from V to PN ; and
τ → (φ1(τ), . . . , φN (τ)) is an embedding of V (K) − D into KN .
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Definition. A point τ of V (K) − D is said to be an (S, D)-integral point if
vP (φi(τ)) ≥ 0, 1 ≤ i ≤ N , for every P /∈ S.

Following [Bu] we may define height and conductor as following:

hφ(τ) = h(φ(τ)) = h(φ0(τ), . . . , φN (τ)),

Condφ(τ) = {P ∈ C : min{vP (φ1(τ)), . . . , vP (φN (τ))} < 0},
condφ(τ) = |Condφ(τ)|.

Definition. We say that V − D satisfies the abc estimate over K if

hφ(τ) << condφ(τ) + O(1), for every τ ∈ V (K) − D,

where “ << ” means the inequality holds up to multiplication with a positive
constant.

Remark. This definition does not depend on the choice of the embedding.
(cf. [Bu]) When there is no confusion, we will omit the subscript φ.

Definition. VK −D is an abc variety if it satisfies the abc estimate over every
finite extension L of K.

In this paper, we only consider the case when V = Pn
K and D is a set of

hyperplanes in Pn(K). Let H be a set of q distinct hyperplanes in Pn(K) and
let Li, 1 ≤ i ≤ q, be the linear forms corresponding to H. Then we can fix an
embedding from Pn(K) −H to KN in the following form(

xq
0/

q∏
i=1

Li(x), . . . , xq
n/

q∏
i=1

Li(x), . . .

)
,

where each coordinate of the embedding is in the form xi0
0 xi1

1 · · ·xin
n /

∏q
i=1 Li(x)

with
∑n

j=0 ij = q. Let

φ =

(
1, xq

0/

q∏
i=1

Li(x), . . . , xq
n/

q∏
i=1

Li(x), . . .

)
.

Suppose that η is a point in Pn(K) and is represented by (f0, . . . , fn). Then
from the definition of height

h(fq
0 , . . . , fq

n) ≤ h

(
q∏

i=1

Li(f0, . . . , fn), fq
0 , . . . , fq

n, . . .

)
= h(φ(η)).

On the other hand, if Li =
∑n

j=0 aijxj then

vP (Li(f0, . . . , fn)) ≤ min{vP (f0), . . . , vP (fn)} + min{vP (ai0), . . . , vP (ain)}.
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Therefore

h(φ(η)) = h

(
q∏

i=1

Li(f0, . . . , fn), fq
0 , . . . , fq

n, . . .

)

≤ qh(f0, . . . , fn) +
q∑

i=1

h(ai0, . . . , ain).

Together we have

qh(f0, . . . , fn) ≤ h(φ(η)) ≤ qh(f0, . . . , fn) + O(1).

Proposition 1. Let H be a set of q distinct hyperplanes in Pn(K). If Pn
K −H

is an abc variety, then the height of the (S,H)-integral points of Pn(K) −H is
bounded linearly in |S|.

Proof. Let τ be an (S,H)-integral point of Pn(K) − H and be represented by
(f0, . . . , fn). Then from the definitions of Condφ and (S,H)-integral points we
have

condφ(τ) ≤ |S|.

Pn
K −H is an abc variety, hence

hφ(τ) << condφ(τ) + O(1).

Since qh(f0, . . . , fn) ≤ hφ(τ), we have

h(f0, . . . , fn) << |S| + O(1). �

Remark. This proposition is true for number fields.

2. Further results in function fields

Let F be a number field and let H be a set of hyperplanes in Pn(F ). Ru gave
a necessary and sufficient condition on H such that Pn(F )−H has only finitely
many (S,H)-integral points. We will show in this section that for a function
field K this is a necessary and sufficient condition for Pn

K − H to be an abc
variety; and also a necessary and sufficient condition such that the height of the
(S,H)-integral points of Pn(K) −H to be bounded.

We recall some definitions and results from [Ru].

Notation. Let L be a set of linear forms in n + 1 variables which are pairwise
linearly independent. We denote by (L)F the vector space generated by the
linear forms in L over F .
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Definition. Let F be a field and H be a set of hyperplanes in Pn(F ). We let L
be the set of linear forms corresponding to H. (We note here that all linear forms
in L are pairwise linearly independent over F .) H is said to be nondegenerate
over F if dim(L)F = n + 1 and for each proper nonempty subset L1 of L

(L1)F ∩ (L − L1)F ∩ L 
= ∅.

Remark. If H is in general position and the number of hyperplanes of H is no
less than 2n + 1, then H is nondegenerate over F .

Definition. Let F be a field and H be a set of hyperplanes in Pn(F ). Let V
be a subspace of Pn(F ). V is called H-admissible if V is not contained in any
hyperplane in H.

Proposition (Ru). Let H be a set of hyperplanes in Pn(F ). Then H is non-
degeneate over F if and only if for every H-admissible subspace V of Pn(F ) of
projective dimension greater than or equal to one, H∩ V contains at least three
distinct hyperplanes which are linearly dependent over F .

We will need the following version of the abc theorem [Br-Ma] for function
fields of characteristic 0.

Theorem (Brownawell-Masser). Let the characteristic of K be zero. If
f0, . . . , fn are S-units and f0 + · · ·+ fn = 1, then either some proper subsum of
f0 + · · · + fn vanishes or

(1) h(f0, . . . , fn) ≤ n(n + 1)
2

max{0, 2g − 2 + |S|}.

We also need the following version of abc theorem [Wa1] for function fields of
positive characteristic.

Theorem (Wang). Let the characteristic of K be a positive integer p. Suppose
that f0, . . . , fn+1 are S-units of K. If f0 + · · · + fn = fn+1 and f0, . . . , fn are
linearly independent over Kpm

for some positive integer m, then

(2) h(f0, . . . , fn) ≤ n(n + 1)
2

pm−1 max{0, 2g − 2 + |S|}.

The main results in this section are the following.

Theorem 1. Let K be the function field of a nonsingular projective algebraic
curve C which is defined over an algebraically closed field k with zero charac-
teristic. Let S be a set consisting of finitely many points of C such that there
exist nonconstant S-units. Let H be a set of hyperplanes in Pn(K). Then the
following are equivalent

(a) H is nondegenerate over K.
(b) Pn

K −H is an abc variety.
(c) The height of the (S,H)-integral points of Pn(K)−H is bounded linearly

in |S|.
(d) The height of the (S,H)-integral points of Pn(K) −H is bounded.
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Theorem 2. Let K be the function field of a nonsingular projective algebraic
curve C which is defined over an algebraically closed field k with characteristic
p > 0. Let S be a set consisting of finitely many points of C. Let Li = Xi,

0 ≤ i ≤ n, and Ln+1+i =
n∑

j=0

aijXj, 0 ≤ i ≤ n, where aij are elements of K.

Let H be the set of 2n+2 hyperplanes defined by Li, 0 ≤ i ≤ 2n + 1. Let Sn

be the permutation group of {0, 1, 2, . . . , n}. If H are in general position, i.e.
any n + 1 linear forms corresponding to H are linearly independent, and the
set {Πn

i=0aiσ(i)| σ ∈ Sn} is linearly independent over k, then Pn
K −H is an abc

variety.

Proof of Theorem 1. We first show that (a) implies (b). Let L = {L1, . . . , Lq} be
the set of linear forms corresponding to H. Let τ be a point of Pn(K)−H and be
represented by (f0, . . . , fn). Denote by li = Li(f0, . . . , fn). Let SH be a set con-
sisting of finitely many points of C such that every coefficient of each linear form
Li has no zero or pole outside SH. Therefore, vP (li) ≥ min{vP (f0), . . . , vP (fn)}
for P /∈ SH. On the other hand, from the definition of Cond(τ), we have

qvP (fj) ≥
q∑

i=1

vP (li), 0 ≤ j ≤ n, for every P /∈ Cond(τ). Therefore

(1) vP (li) = min{vP (f0), . . . , vP (fn)}, for P /∈ Cond(τ) ∪ SH, 1 ≤ i ≤ q.

Suppose that the set {Li1 , . . . , Lim} is linearly dependent over K and every
proper subset of {Li1 , . . . , Lim} is linearly independent over K. Then we have a
linear equation

(2) ai1Li1(X) + · · · + aim
Lim

(X) ≡ 0,

where aij ∈ K×. We call equation (2) a minimal relation. Since elements of L
are linear forms in n+1 variables and are pairwise linearly independent over K,
we have 3 ≤ m ≤ n + 2. It is clear that up to a nonzero factor in K there are
only finitely many such minimal relations for the set L. Throughout the proof
we will fix a finite set of minimal relations representing all minimal relations for
L up to a nonzero factor in K. Without loss of generality, we can enlarge the size
of SH. Therefore, we will assume that every coefficient of the minimal relations
in this finite set has no zero or pole outside of SH. Let Sτ = Cond(τ)∪ SH. We
now consider equation (2). After rearranging the index, we may assume that

(3) a1L1(X) + · · · + amLm(X) ≡ 0,

where ai, 1 ≤ i ≤ m, is an Sτ -unit. Then we have the following equation.

a1l1 + · · · + amlm = 0.

After rearranging the index we may assume that a1l1+· · ·+aulu = 0 with u ≤ m
and no proper subsum of a1l1 + · · · + aulu vanishes. Therefore

(4)
a2l2
a1l1

+ · · · + aulu
a1l1

= −1.
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By (1), li
l1

, 1 ≤ i ≤ q, is an Sτ unit. Hence by the theorem of Brownawell and
Masser we have

(5) h

(
aili
a1l1

)
≤ u(u − 1)

2
max{0, 2g − 2 + |Sτ |}, 1 ≤ i ≤ u.

From the definition of height,

(6) h

(
li
l1

)
≤ h

(
aili
a1l1

)
+ h

(
ai

a1

)
.

The coefficients a′
is in the representing set of minimal relations only depend on

L and the number is finite. Therefore inequalities (5) and (6) imply

(7) h

(
li
l1

)
<

n(n + 1)
2

|Sτ | + O1,

where 1 ≤ i ≤ u and O1 only depends on L and can be determined effec-
tively. From now Oi always represents a constant which only depends on L and
can be determined effectively. If the dimension of the vector space spanned by
L1, . . . , Lu over K is n+1, then after a linear transformation one can show that
(cf. [Wa2])

(8) h(f0, . . . , fn) ≤ n2(n + 1)
2

|Sτ | + O2.

If the dimension of the vector space spanned by L1, . . . , Lu over K is less than
n+1, then the set {L1, . . . , Lu} is a proper subset of L. Since H is nondegenerate,

(9) (L1, . . . , Lu)K ∩ (Lu+1, . . . , Lq)K ∩ L 
= ∅.

Suppose that Li ∈ (L1, . . . , Lu)K ∩ (Lu+1, . . . , Lq)K . If 1 ≤ i ≤ u, then after
rearranging the linear forms we have Li = au+1Lu+1 + au+2Lu+2 + · · ·+ awLw,
where aj 
= 0 and is assumed previously to be an Sτ -unit. Similarly, after
rearranging the index, we have an equation

li = au+1lu+1 + au+2lu+2 + · · · + aν lν , ν ≤ w,

where no proper subsum of the equation vanishes. Therefore we have

(10) h

(
lu+1

li

)
≤ n(n + 1)

2
|Sτ | + O3.

Hence,

h

(
lu+1

l1

)
≤ h

(
lu+1

li

)
+ h

(
li
l1

)
≤ n(n + 1)|Sτ | + O4.

(11)
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If i ≥ u + 1, after rearranging the index we may assume that i = u + 1. Then
we have Lu+1 = ai1Li1 + · · · + aiwLiw , where {i1, . . . , iw} is an index subset of
{1, . . . , u} and aij is an Sτ -unit. Similarly, we have

h

(
lu+1

lij

)
≤ n(n + 1)

2
|Sτ | + O5.

Therefore

h

(
lu+1

l1

)
≤ h

(
lu+1

lij

)
+ h

(
lij

l1

)
≤ n(n + 1)|Sτ | + O6.

(12)

Hence, we have showed that h( li
l1

) ≤ O7|Sτ | + O(1) for 1 ≤ i ≤ u + 1. If
(L1, . . . , Lu+1) = (L), then we are done. Otherwise, we can repeat the same
argument. Since dim(L)K = n + 1, after repeating the argument finitely many
times we can find linear forms L1, . . . , Lw such that dim(L1, . . . , Lw)K = n + 1
and h( li

l1
) ≤ O8|Sτ | + O9, 1 ≤ i ≤ w. Therefore, after a linear transformation

(cf. [Wa2])

(13) h(f0, . . . , fn) ≤ O10|Sτ | + O11 << cond(τ) + O(1).

It is clear from the proof that the abc estimate holds for every finite extension
of K. This shows that Pn

K −H is an abc variety.
It follows from Proposition 1 that (b) implies (c). (c) implies (d) trivially.

It remains to show that (d) implies (a). We follow the arguments in [Ru].
Assume that H is not nondegenerate over K. Then there exists an H-admissible
subspace V of Pn(K) of projective dimension greater than or equal to 1 such that
H ∩ V does not contain at least three distinct hyperplanes which are linearly
dependent over K. After linear changing of basis we may assume that V =
Pm(K), m ≤ n. Then H ∩ V contains exactly q distinct hyperplanes which are
linearly independent over K and q ≤ m + 1. Without loss of generality we may
assume that V = Pn(K) and H contains exactly q ≤ n + 1 distinct coordinate
hyperplanes. Let f be a nonconstant S-unit. Then the point in Pn(K) − H
represented by (1, f |S|r , . . . , f |S|r ) is an (S,H)-integral point and

(14) h(1, f |S|r , . . . , f |S|r ) = |S|rh(f) ≥ |S|r.

This shows that (d) implies (a). �
The proof in [Wa3] can be easily modified to show Theorem 2. For convenience

of readers, we give an outline of the proof.

Proof of Theorem 2. Since k = ∩∞
i=0K

pi

[GV], if the set {Πn
i=0aiσ(i)| σ ∈ Sn} is

linearly independent over k, then there exists a positive integer m which depends
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only on aij such that the set {Πn
i=0aiσ(i)| σ ∈ Sn} is linearly independent over

Kpm

.
Let (f0, . . . , fn) represent a point τ in Pn(K) − H. Denote by

li = Li(f0, . . . , fn). Let SH be a finite subset of C such that every coefficient of
each linear form has no zero or pole outside SH. Therefore (1) gives

(15) vP (li) = min{vP (f0), . . . , vP (fn)} for P /∈ Cond(τ) ∪ SH, 1 ≤ i ≤ q.

Since fi = li 
= 0, 0 ≤ i ≤ n, we may assume that fn = 1. Let Sτ = Cond(τ) ∪
SH. (15) then implies that li is an Sτ -unit for 0 ≤ i ≤ 2n+1. Since L0, . . . , L2n+1

are in general position, aij 
= 0. Without loss of generality, we let ain = 1 for
every n + 1 ≤ i ≤ 2n + 1. Then we have the following Sτ -unit equations

ai0f0 + ai1f1 + · · · + ai,n−1fn−1 + 1 = ln+1+i, 0 ≤ i ≤ n.

If aβ0f0, aβ1f1, . . . , aβ,n−1fn−1, and 1 are linearly independent over Kpm

for
some 0 ≤ β ≤ n, then by the theorem of Wang, for 0 ≤ j ≤ n − 1,

h(aβjfj) ≤ h(aβ0f0, aβ1f1, . . . , aβ,n−1fn−1, 1)

≤ n(n + 1)
2

pm−1 max{0, 2g − 2 + |Sτ |}.

From the definition of height we have the following abc estimate

h(f0, . . . , fn) ≤ h(ai0f0, ai1f1, . . . , ai,n−1fn−1, ai,nfn) + h

(
1

ai0
, . . . ,

1
ain

)

≤ n(n + 1)
2

pm−1 max{0, 2g − 2 + |Sτ |} +
∑

0≤i,j≤n

h(aij)

≤ n(n + 1)
2

pm−1 max{0, 2g − 2 + cond(τ) + SH} +
∑

0≤i,j≤n

h(aij).

Therefore, we only need to consider the case where each set {ai0f0, ..., ai,nfn},
0 ≤ i ≤ n, is linearly dependent over Kpm

. The next lemma shows that this
is impossible if {Πn

i=0aiσ(i)| σ ∈ Sn} is linearly independent over Kpm

. The
theorem is then proved. �

Lemma. Let fi and aij , 0 ≤ i, j ≤ n, be non-zero elements of a field E. If each
set {ai0f0, ai1f1, . . . , ai,nfn}, 0 ≤ i ≤ n, is linearly dependent over a subfield F
of E, then the set {Πn

i=0aiσ(i)| σ ∈ Sn} is linearly dependent over F .

Proof. See [Wa3].
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3. The explicit bound for number fields

The proof of Theorem 1 can be adapted to the number field case directly.
However, the S-unit theorem for number fields only provides an explicit bound
on the number of S-unit solutions. Therefore, our method can provide explicit
bound on the number of (S,H)-integral points, but can not say anything about
the abc estimate. Let F be a number field of degree d. Denote by MF as the set
of valuations of F and by M∞ as the set of archimedean valuations of F . We
first recall the S-unit theorem by Schlickewei [Sc]:

Theorem (Schlickewei). Let a1, . . . , an be nonzero elements of F . Suppose
that S is a finite subset of MF of cardinality s, containing M∞. Then the
equation

(16) a1x1 + · · · + anxn = 1

has no more than

(17) (4sd!)236nd!s6

solutions in S-units x1, . . . , xn such that no proper subsum ai1xi1 + · · ·+aimxim

vanishes.

When H is nondegenerate to provide an explicit bound on the number of
(S,H)-integral points we can apply the same method in the proof of Theorem 1.
Since it is completely parallel to the function field case, we will only reproduce
the parts which need the S-unit theorem.

Following the first part of the proof of Theorem 1, we apply the S-unit theorem
to equation (4) in the number field case. Then we showed that the number of
the S-unit solutions ( l2

l1
, . . . , lu

l1
) is no more than (4sd!)236ud!s6

. Therefore the
number of li

l1
, 2 ≤ i ≤ u, which satisfies (4), is no more than

(4sd!)236ud!s6
.

Again if the dimension of the vector space spanned by L1, . . . , Lu over F is
n + 1, then without loss of generality we may assume that L1, . . . , Ln+1 are
linearly independent over F . Therefore the number of (S,H)-integral points is
equal to the number of (1, l2

l1
, . . . , ln+1

l1
) which is bounded by

(18) (4sd!)n236n(n+1)d!s6
.

If the dimension of the vector space spanned by L1, . . . , Lu over F is less than
n + 1, then we can repeat the method in Theorem 1 and establish the same
bound (18) for the number of (S,H)-integral points. Therefore, together with
Ru’s result (cf. [Ru]) we have the following
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Theorem 3. Let F be a number field of degree d. Suppose that S is a finite
subset of MF of cardinality s, containing M∞. Let H be a set of hyperplanes in
Pn(F ). H is nondegenerate if and only if the number of (S,H)-integral points
of Pn(F ) − H is finite. Furthermore, the number of (S,H)-integral points of
Pn(F ) −H is bounded by

(4sd!)n236n(n+1)d!s6
.

4. A generalization of the Picard’s theorem

A complex space M is called Brody hyperbolic if every holomorphic curve
f : C → M is constant. Ru proved the following (cf. [Ru]):

Theorem (Ru). Let H be a set of hyperplanes in Pn(C). Then Pn(C) −H is
Brody hyperbolic if and only if H is nondegenerate over C.

In [Wa4] we extended the classical Picard’s theorem to the case where the
coefficients of the linear forms corresponding to H are holomorphic functions.
In this section we will improve the results by adapting the proof of Theorem 1.

First, we explain our notation and terminologies. Let

Li(z)(X) =
n∑

j=0

gij(z)Xj , 1 ≤ i ≤ q, z ∈ C,

where gij are holomorphic functions and for each i, gi0, . . . , gin has no common
zeroes . Denote by Hi(z) = {(x0, . . . , xn) ∈ Pn(C) | Li(z)(x0 , . . . , xn) = 0}
as the corresponding moving hyperplane of Li(z), 1 ≤ i ≤ q, z ∈ C, and let
H(z) = {H1(z), . . . , Hq(z)}. Let f0, . . . ,fn be holomorphic functions without
common zeroes. We say that a holomorphic map f represented by (f0, . . . , fn) is
a holomorphic map omitting H(z) if Li(z)(f0(z), . . . , fn(z)) 
= 0 for each z ∈ C

and i = 1, . . . , q.
Denote by Hol(C) as the ring consisting of all holomorphic functions on C,

and Mero(C) as the field consisting of all meromorphic functions on C. One
can identify Hi as a hyperplane in Pn(Hol(C)). Then L = {L1, . . . , Lq} can
be identified as a set of linear forms with holomorphic functions as coefficients.
Suppose that the set {Li1 , . . . , Lim} is linearly dependent over Mero(C) and any
proper subset of {Li1 , . . . , Lim} is linearly independent over Mero(C). Then we
have a minimal relation

(19) ai1Li1(X) + · · · + aimLim(X) ≡ 0,

where aij is a nonzero holomorphic function and ai1 , . . . , aim has no common
zeros.
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Definition. H is said to be unitary related if every holomorphic function aij

which appears in any of the minimal relations (19) has no zero.

We also need the following Unit Theorem which is a consequence of the Borel’s
Lemma.

Unit Theorem. Let u0, . . . , um be holomorphic functions without zeroes and
u0 + · · · + um = 1. Suppose that no proper subsum u0 + · · · + um − 1 = 0
vanishes, then u0, . . . , um are all constants.

The main result in this section is the following.

Theorem 4. Let Li(z)(X) =
∑n

j=0 gij(z)Xj , 1 ≤ i ≤ q, z ∈ C, where gij are
holomorphic functions. Denote by Hi(z) the corresponding moving hyperplane
of Li(z), 1 ≤ i ≤ q. Let H = {H1, . . . , Hq} be unitary related. Then H is
nondegenerate over Mero(C) if and only if there exist finitely many (n + 1) ×
(n+1) invertible matrices with holomorphic functions as entries such that every
holomorphic map omitting H(z) multiplied by one of the matrices is constant.
In addition, this set of matrices depends only on the hyperplanes and can be
determined effectively.

Proof. Since the proof is completely parallel to the proof of Theorem 1, we will
only reproduce the necessary parts. Let f0, . . . ,fn be holomorphic functions
on C without common zeroes and (f0, . . . , fn) represents a holomorphic map f
into Pn(C) omitting H(z). Let li = Li(f0, . . . , fn). From (19) we have (after
rearranging the index) the following unit equation

(20) 1 +
a2l2
a1l1

+ · · · + aulu
a1l1

= 0,

where no proper subsum vanishes. Then by the Unit Theorem, we have aili
a1l1

,
1 ≤ i ≤ u, is constant. The argument in the proof of Theorem 1 shows that
there exist (after rearranging the index) {L1, . . . , Lw} ⊂ L and holomorphic units
b1, . . . , bw, c1, . . . , cw such that dim(L1, . . . , Lw)K = n + 1, and bili

cil1
, 1 ≤ i ≤ w,

is a nonzero constant. In addition, bi and ci, 1 ≤ i ≤ w, are coefficients of some
minimal relations as (19). Therefore there are only finitely many such holomor-
phic units. After rearranging the index, we may assume that L1, . . . , Ln+1 are
linearly independent over Mero(C). Hence (f0(z), . . . , fn(z)) multiplied by

(21)




g10(z), b2
c2

g20(z), . . . bn+1
cn+1

gn+1,0(z)
...

. . . . . .
...

g1n(z), b2
c2

g2n(z), . . . bn+1
cn+1

gn+1,n(z)




is constant in Pn(Hol(C)). Since L1, . . . , Ln+1 are linearly independent over
Mero(C) and bi, ci are units, the matrix in (21) is invertible. It is also clear from
the proof that the matrices used in (21) can be determined effectively and the
number of the matrices is finite.
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Conversely, if H is not nondegenerate over Mero(C), we assume that there
exist finitely many (n+1)×(n+1) invertible matrices with holomorphic functions
as entries such that every holomorphic map omitting H(z) multiplied by one of
the matrices is constant. In the following proof, we refer to [Rub] for some basic
results and definitions of Nevanlinna theory. Let f(z) be a holomorphic function
such that its characteristic function grows much rapidly than the characteristic
function of the entries of the above matrices, i.e.

T (r, a) = o(T (r, f)),

for every entry a(z) of the above matrices. Since H is not nondegenerate
over Mero(C), there exists an H-admissible subspace V of Pn(Mero(C)) of
projective dimension greater than or equal to one such that H ∩ V does not
contain at least three distinct hyperplanes in Pn(Mero(C)) which are linearly
dependent over Mero(C). We may assume, without loss of generality, that
V = Pn(Mero(C)). Let H = {H1, . . . , Hq}. Then q ≤ n + 1 and H1, . . . , Hq

are linearly independent over Mero(C). We may assume that H1, . . . , Hq are
the first q coordinate planes. Let exp[n]f(z) is the function defined recursively
by exp[1]f(z) = ef(z) and exp[j+1]f(z) = eexp[j]f(z). Then the holomorphic map
represented by (1, exp[1]f(z), exp[2]f(z), . . . , exp[n]f(z)) omits H(z). If A = (aij)
is one of the above matrices such that the product with this holomorphic map
is constant, then

(22) mβ

n∑
j=0

aαj(z)exp[j]f(z) = mα

n∑
j=0

aβj(z)exp[j]f(z),

where 0 ≤ α, β ≤ n, mα and mβ are constant. Since T (r, aij) = o(T (r, f)) and
T (r, exp[j]f) = o(T (r, exp[j+1]f)), (22) implies that

(23) mβaαj = mαaβj ,

for 0 ≤ j ≤ n. Therefore, the determinant of the matrix A is zero which
contradicts the assumption that A is invertible. Therefore the proof is completed.
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