FIELDS GALOIS-EQUIVALENT TO A LOCAL FIELD OF POSITIVE CHARACTERISTIC

IDO EFRAT AND IVAN FESENKO

Introduction

A celebrated theorem of Artin and Schreier [AS] characterizes the fields K whose absolute Galois group G_K is isomorphic to that of \mathbb{R} as the real closed fields. In the present paper we consider the analogous problem for non-archimedean local fields of positive characteristic $F = \mathbb{F}_{p^n}(t)$. We show that a field K with absolute Galois group isomorphic to G_F possesses a Henselian valuation v such that:

- (1) the value group Γ of v satisfies $\Gamma/l \cong \mathbb{Z}/l$ for all prime numbers $l \neq p$;
- (2) the residue field \bar{K} of v has characteristic p;
- (3) the maximal prime to p Galois group $G_{\bar{K}}(p')$ of \bar{K} is $\hat{\mathbb{Z}}/\mathbb{Z}_p$;
- (4) if char K = 0 then $\Gamma = p\Gamma$ and \bar{K} is perfect.

For every positive integer r we construct such fields K of characteristic p with $\Gamma/p \cong (\mathbb{Z}/p)^r$. Likewise we construct examples with $\Gamma \cong \mathbb{Z}$, $G_{\bar{K}} \not\cong \hat{\mathbb{Z}}$ and \bar{K} imperfect.

The similar problem for p-adic fields was answered by Koenigsmann [Kn] and the first named author [E1] (for $p \neq 2$), extending earlier results by Neukirch [N2] and Pop [P1]: the fields K such that $G_K \cong G_F$ for some finite extension F of \mathbb{Q}_p are precisely the p-adically closed fields in the sense of [PR].

Notation

We denote the algebraic, separable, and inseparable closures of a field K by \tilde{K} , K_{sep} , and K_{ins} , respectively. For a positive integer m with char $K \nmid m$ let μ_m be the group of roots of unity of order dividing m in \tilde{K} . For a prime l with $l \neq \text{char } K$ let $\mu_{l^{\infty}} = \lim_{l \to r} \mu_{l^r}$. Given a profinite group G and a prime number l, denote the quotient $\lim_{l \to r} G/N$, where N ranges over all open normal subgroups of G with G/N abelian (resp., of l-power order, of order prime to l) by G(ab) (resp., G(l), G(l')). We define G(ab, l), G(ab, l') similarly. For a (Krull) valuation v on K let Γ_v , O_v , and \bar{K}_v be the corresponding value group, valuation ring, and residue field, respectively.

Received February 11, 1999.

Research supported by EPSRC grant GR/M08356.

¹⁹⁹¹ Mathematics Subject Classification: primary 11S20, secondary 12J10

1. Galois groups of Henselian fields

We first recall several basic facts about the structure of the decomposition group of (K, v) relative to K_{sep} (see e.g. [Ed], [P2, §1] or [E1, §1] for more details and proofs). For simplicity we assume here that v is Henselian, i.e., the decomposition group is G_K . Let K_{ur} and K_{tr} be the maximal unramified and maximal tamely ramified Galois extensions of (K, v), respectively. If $p = \text{char } \bar{K}_v > 0$ then $G_{K_{\text{tr}}}$ is the unique p-Sylow subgroup of $G_{K_{\text{ur}}}$. If $\text{char } \bar{K}_v = 0$ then $G_{K_{\text{tr}}} = 1$. There are natural short exact sequences

$$1 \to \operatorname{Gal}(K_{\operatorname{tr}}/K_{\operatorname{ur}}) \to \operatorname{Gal}(K_{\operatorname{tr}}/K) \to G_{\bar{K}_v} \to 1$$

$$1 \to G_{K_{\operatorname{tr}}} \to G_K \to \operatorname{Gal}(K_{\operatorname{tr}}/K) \to 1$$

which are split, by [N1] and [KPR], respectively. For a prime number l let $\delta_l = \dim_{\mathbb{F}_l} \Gamma_v/l$. Then $\operatorname{Gal}(K_{\operatorname{tr}}/K_{\operatorname{ur}}) \cong \prod_{l \neq \operatorname{char} \bar{K}_v} \left(\varprojlim_r \mu_{l^r} \right)^{\delta_l}$ as $G_{\bar{K}_v}$ -modules. In particular, if $\Gamma_v \cong \mathbb{Z}$ and $\operatorname{char} \bar{K}_v = p > 0$ then $\delta_l = 1$ for all primes l, so the $G_{\bar{K}_v}$ -module $\operatorname{Gal}(K_{\operatorname{tr}}/K_{\operatorname{ur}})$ is $\hat{\mu} = \lim_{\leftarrow (m,p)=1} \mu_m$, and $\operatorname{Gal}(K_{\operatorname{tr}}/K) \cong \hat{\mu} \rtimes G_{\bar{K}_v}$ with the Galois action.

The analogous result for the maximal pro-l Galois group $G_K(l)$ of K is the following: If $l \neq \operatorname{char} \bar{K}_v$ is prime and $\mu_l \subseteq K$ then $G_K(l) \cong \mathbb{Z}_l^{\delta_l} \rtimes G_{\bar{K}_v}(l)$, where $\sigma \in G_{\bar{K}_v}(l)$ acts on $\tau \in \mathbb{Z}_l^{\delta_l}$ according to $\sigma \tau \sigma^{-1} = \chi_{\bar{K}_v,l}(\sigma)\tau$; here $\chi_{\bar{K}_v,l} \colon G_{\bar{K}_v}(l) \to 1 + l\mathbb{Z}_l$ is the pro-l cyclotomic character of \bar{K}_v , induced by the restriction homomorphism $G_{\bar{K}_v}(l) \to \operatorname{Aut}(\mu_{l^{\infty}}) \cong \mathbb{Z}_l^{\times}$.

Now fix a prime number p. Given a pro-p group H and a cardinal number c let $F_p(H;c)$ be the free H-operator pro-p group on c generators, in the sense of [K1], [MSh]. The following is a modest generalization of the main result of [MSh] (which treats Laurent series fields).

Theorem 1.1. Let (K, v) be a Henselian discretely valued field of characteristic p and let $c = \max\{\aleph_0, |\bar{K}_v|\}$. Then $G_{K_{\mathrm{tr}}} \cong F_p(\mathrm{Gal}(K_{\mathrm{tr}}/K); c)$ as $\mathrm{Gal}(K_{\mathrm{tr}}/K)$ -operator pro-p groups; in particular, $G_K \cong F_p(\mathrm{Gal}(K_{\mathrm{tr}}/K); c) \rtimes \mathrm{Gal}(K_{\mathrm{tr}}/K)$ with the canonical action.

When $k = \bar{K}_v$ is perfect, this theorem can be proven using precisely the same argument as in [MSh, Th. 1]. We therefore omit the details. When k is not perfect, one can prove it as follows: Let u be the unique prolongation of v to $L = k_{\rm ins}K$. The restriction $G_L \to G_K$ is an isomorphism mapping $G_{L_{\rm ur}}$, $G_{L_{\rm tr}}$ onto $G_{K_{\rm ur}}$, $G_{K_{\rm tr}}$, respectively. By the result for perfect residue fields, $G_{L_{\rm tr}} \cong F_p({\rm Gal}(L_{\rm tr}/L); c)$ as ${\rm Gal}(L_{\rm tr}/L)$ -operator groups. It follows that $G_{K_{\rm tr}} \cong F_p({\rm Gal}(K_{\rm tr}/K); c)$ as ${\rm Gal}(K_{\rm tr}/K)$ -operator groups, as desired.

Corollary 1.2. Let $(K_1, v_1), (K_2, v_2)$ be Henselian discretely valued fields of characteristic p, and let \bar{K}_1, \bar{K}_2 be the corresponding residue fields. Suppose that

 $G_{\bar{K}_1} \cong G_{\bar{K}_2}$, that this isomorphism is compatible with the Galois actions on the roots of unity, and that $\max\{\aleph_0, |\bar{K}_1|\} = \max\{\aleph_0, |\bar{K}_2|\}$. Then $G_{K_1} \cong G_{K_2}$.

Proof. We have $\operatorname{Gal}(K_{1,\operatorname{tr}}/K_1) \cong \hat{\mu} \rtimes G_{\bar{K}_1} \cong \hat{\mu} \rtimes G_{\bar{K}_2} \cong \operatorname{Gal}(K_{2,\operatorname{tr}}/K_2)$ with the Galois actions. Now apply Theorem 1.1.

Proposition 1.3. Let (K, v) be a Henselian discretely valued field of characteristic p. Suppose that $|K| = \max\{\aleph_0, |\bar{K}_v|\}$. Let L be a maximal totally tamely ramified extension of (K, v). Let (E, u) be a Henselian discretely valued field of characteristic p with $\bar{E}_u = L$. Then $G_E \cong G_K$.

Proof. Let $c = |K| = \max\{\aleph_0, |\bar{K}_v|\}$, let $H = \hat{\mu} \rtimes G_{\bar{K}_v}$ with the Galois action, and let $V = F_p(H;c)$. By Theorem 1.1, $V \cong G_{K_{\mathrm{tr}}}$ and $G_K \cong V \rtimes H$. Since $\tilde{\mathbb{F}}_p \subseteq K_{\mathrm{tr}}$, the Galois action of V on $\hat{\mu}$ is trivial. Further, the unique prolongation of v to L has residue field \bar{K}_v . Hence $G_L \cong V \rtimes G_{\bar{K}_v}$, and this isomorphism is compatible with the Galois action on $\hat{\mu}$. Therefore

$$\operatorname{Gal}(E_{\operatorname{tr}}/E) \cong \hat{\mu} \rtimes G_L \cong \hat{\mu} \rtimes (V \rtimes G_{\bar{K}_v}) \cong V \rtimes (\hat{\mu} \rtimes G_{\bar{K}_v}) = V \rtimes H.$$

Now from [MSh, §1, Prop. 1] we deduce that

$$\begin{split} F_p(V \rtimes H; c) \rtimes (V \rtimes H) &\cong (F_p(H; c) * V) \rtimes H \\ &= (F_p(H; c) * F_p(H; c)) \rtimes H \cong F_p(H; c) \rtimes H = V \rtimes H, \end{split}$$

where * denotes free pro-p product. Since |L| = |K|, from Theorem 1.1 we deduce

$$G_E \cong F_p(\operatorname{Gal}(E_{\operatorname{tr}}/E); c) \rtimes \operatorname{Gal}(E_{\operatorname{tr}}/E) \cong$$

$$F_p(V \rtimes H; c) \rtimes (V \rtimes H) \cong V \rtimes H \cong G_K. \square$$

2. Existence of Henselian valuations

Let $K_2^M(E)$ be the second Milnor K-group of the field E, and let $\{\cdot,\cdot\}$: $E^{\times} \times E^{\times} \to K_2^M(E)$ be the natural symbolic map. The following theorem combines powerful constructions of Ware [Wr], Arason–Elman–Jacob [AEJ] (for l=2), and Hwang–Jacob [HJ] (for $l\neq 2$); see also [E3] and [Kn].

Theorem 2.1. Let l be a prime number, let E be a field of characteristic $\neq l$, let T be a subgroup of E^{\times} containing $(E^{\times})^l$ and -1. Suppose that:

- (i) For every $x, y \in E^{\times}$ which are \mathbb{F}_l -linearly independent in E^{\times}/T one has $\{x, y\} \neq 0$ in $K_2^M(E)$;
- (ii) For every $x \in E^{\times} \setminus T$ and $y \in T \setminus (E^{\times})^l$ one has $\{x, y\} \neq 0$ in $K_2^M(E)$. Then there exists a valuation u on E such that $(\Gamma_u : l\Gamma_u) \geq (E^{\times} : T)/l$ and $u(l) \neq 0$. Furthermore, if $\bar{E}_u = \bar{E}_u^l$ then $(\Gamma_u : l\Gamma_u) \geq (E^{\times} : T)$.

The **rank** of a profinite group is the minimal number (possibly ∞) of topological generators of it.

Proposition 2.2. [E1, Prop. 2.1] Let l be a prime number and let (E, u) be a valued field such that char $\bar{E}_u \neq l$ and $G_{\bar{E}_u}(l)$ is infinite. Suppose that

$$\sup_{M} \operatorname{rank} G_{M}(l) < \infty,$$

where M ranges over all finite separable extensions of E. Then (E, u) is Henselian

Combining the previous two facts, we obtain the following result (which is essentially proven in [E1] for l=2).

Proposition 2.3. Let l, p be distinct prime numbers and let K be a field of characteristic $\neq l$. Let E_0 be a finite extension of K containing μ_l and containing $\sqrt{-1}$ if l = 2. Suppose that for every finite separable extension E of E_0 one has

$$G_E(l) \cong \langle \sigma, \tau \mid \sigma \tau \sigma^{-1} = \tau^{p^s} \rangle_{\text{pro}-l},$$

for some $s = s(E) \ge 1$ such that $p^s \equiv 1 \mod l$. Then there exists a Henselian valuation v on K such that $\Gamma_v/l \cong \mathbb{Z}/l$, char $\bar{K}_v \ne l$, and \bar{K}_v is not algebraically closed.

Proof. For E as above denote $H^i(E) = H^i(G_E(l), \mathbb{Z}/l)$. We consider the cup product $H^1(E) \times H^1(E) \to H^2(E)$. Let φ_1, φ_2 be an \mathbb{F}_l -linear basis of $H^1(E)$ which is dual to the basis of $G_E(l)/G_E(l)^l[G_E(l), G_E(l)]$ consisting of the images of σ and τ . From the defining relation $\tau^{p^s-1}[\tau, \sigma] = 1$ of $G_E(l)$ we deduce that $\varphi_1 \cup \varphi_2 \neq 0$ [K2, §7.8]. Furthermore, when $l \neq 2$ one has $\varphi_1 \cup \varphi_1 = \varphi_2 \cup \varphi_2 = 0$ by the anti-commutativity of \cup . When l = 2 we may identify $\varphi_i \cup \varphi_i$ with the class of a quaternion algebra $(a_i, a_i/E)$ in the Brauer group $\operatorname{Br}(E)$; here $a_i(E^\times)^2$ corresponds to φ_i under the Kummer isomorphism $E^\times/(E^\times)^2 \cong H^1(E)$. Since $(a_i, a_i/E) = (a_i, -1/E)$ in $\operatorname{Br}(E)$ and $\sqrt{-1} \in E$ we obtain that $\varphi_i \cup \varphi_i = 0$, i = 1, 2, in this case as well. Consequently, $H^2(E) \cong \wedge^2 H^1(E)$.

By the Kummer theory and the Merkur'ev–Suslin theorem [MSu], this implies that $K_2^M(E)/l \cong \wedge^2(E^\times/l)$ naturally. Hence (i) and (ii) of Theorem 2.1 hold for $T = (E^\times)^l$. Since $\dim_{\mathbb{F}_l}(E^\times/(E^\times)^l) = \operatorname{rank} G_E(l) = 2$, Theorem 2.1 therefore gives rise to a valuation u on E such that $\dim_{\mathbb{F}_l}(\Gamma_u/l) \geq 1$ and $\operatorname{char} \bar{E}_u \neq l$.

Furthermore, if $\bar{E}_u = \bar{E}_u^l$ then $\delta_l = \dim_{\mathbb{F}_l}(\Gamma_u/l) \geq 2$ by the last statement of Theorem 2.1. From the discussion in §1 this would imply $\mathbb{Z}_l^2 \leq G_E(l)$, which is not the case [E1, Lemma 4.1]. We conclude that $G_{\bar{E}_u}(l) \neq 1$. This implies that the latter group is in fact infinite ([B]; note that when l = 2, $\sqrt{-1} \in \bar{E}_u$). Proposition 2.2 therefore shows that (E, u) is Henselian.

Now take $E = E_0$, let u be as above, and let $v = \operatorname{Res}_K u$. Then $\dim_{\mathbb{F}_l}(\Gamma_v/l) = \dim_{\mathbb{F}_l}(\Gamma_u/l) \geq 1$ [E1, Lemma 1.2] and $\operatorname{char} \bar{K}_v \neq l$. Since the finite extension \bar{E}_u of \bar{K}_v is not algebraically closed, neither is \bar{K}_v . Also, Henselianity goes down in finite extensions, provided that the upper residue field is not separably closed [Eg, Cor. 3.5]. Therefore (K, v) is Henselian.

Valuations v, v' are called **comparable** if one of $O_v, O_{v'}$ contains the other.

Proposition 2.4. (Endler–Engler [EE, Prop.]) Let v, v' be valuations on a field K. Suppose that v is Henselian and that $\bar{K}_{v'}$ is not algebraically closed. Then v, v' are comparable.

Lemma 2.5. Let (L, w)/(K, v) be a Galois extension of Henselian valued fields of degree n. Suppose that the norm homomorphism $N_{L/K}: L^{\times} \to K^{\times}$ is surjective. Then $(\Gamma_v : n\Gamma_v) = (\Gamma_w : \Gamma_v)$.

Proof. By the Henselianity, one has a well-defined commutative square

$$L^{\times} \xrightarrow{w} \Gamma_{w}$$

$$N_{L/K} \downarrow \qquad \qquad n \downarrow$$

$$K^{\times} \xrightarrow{v} \Gamma_{v}$$

By assumption, the left vertical map is surjective. Hence so is the right vertical map; i.e., $\Gamma_v = n\Gamma_w$. By [E1, Lemma 1.2] again,

$$(\Gamma_v : n\Gamma_v) = (\Gamma_w : n\Gamma_w) = (\Gamma_w : \Gamma_v).$$

3. The absolute Galois group of a local field of characteristic p

From now on we fix a local field $F = \mathbb{F}_q(t)$ of characteristic p > 0. Let $G = G_F$, $T = G_{F_{ur}}$, and $V = G_{F_{tr}}$, taken with respect to the canonical discrete valuation on F. The group structure of G was described by Koch [K1] (and follows from the general considerations in §1); namely:

- (i) $G = V \rtimes (G/V)$;
- (ii) $T/V \cong \hat{\mathbb{Z}}/\mathbb{Z}_p$;
- (iii) $G/T \cong \hat{\mathbb{Z}}$;
- (iv) $G/V \cong (T/V) \rtimes (G/T)$, where a generator σ of G/T acts on a generator τ of T/V according to the Hasse–Iwasawa relation $\sigma \tau \sigma^{-1} = \tau^q$;
- (v) $V \cong F_p(G/V;\aleph_0)$; in particular, V is a free pro-p group on countably many generators [MSh, §1, Lemma 4].

Proposition 3.1.

- (a) T/V intersects non-trivially every non-trivial normal closed subgroup of G/V.
- (b) T intersects non-trivially every non-trivial normal closed subgroup of G.

Proof. (a) We need to show that if L is a Galois extension of F such that $LF_{\rm ur} = F_{\rm tr}$ then $L = F_{\rm tr}$. To this end, denote $L' = L \cap F_{\rm ur}$. Then ${\rm Gal}(F_{\rm tr}/L') \cong {\rm Gal}(F_{\rm tr}/F_{\rm ur}) \times {\rm Gal}(F_{\rm ur}/L')$. In particular, ${\rm Gal}(F_{\rm tr}/L')$ is abelian, by (ii) and (iii) above. For each positive integer m which is prime to p choose $t_m \in F_{\rm tr}$ such that $t_m^m = t$. The abelianity implies that $L'(t_m)/L'$ is normal. Since L'/F is unramified it follows that $\mu_m \subseteq L'$. Conclude that $F_{\rm ur} = \bigcup_{(m,p)=1} F(\mu_m) \subseteq L'$, whence $L = LF_{\rm ur} = F_{\rm tr}$.

(b) follows from (a).
$$\Box$$

Lemma 3.2. Let E be a totally ramified extension of F of prime degree l and let σ be a generator of Gal(E/F). Let v be the canonical valuation on E and let π be a prime element of E. Let s be the maximal integer such that the sth ramification group of Gal(E/F) is non-trivial. Then:

- (a) $v((\sigma 1)(\pi^n)) = s + n$ for every integer n relatively prime to pl;
- (b) $E/(F + \wp(E))$ is infinite.

Proof. (a) When l = p this is proven in [FV, Ch. III, (1.4)]. Suppose $l \neq p$. Then s = 0 [FV, Ch. II, §4.4, Cor. 1] and $\sigma(\pi) = \zeta \pi$ for a primitive lth root of unity ζ . Hence $(\sigma - 1)(\pi^n) = (\zeta^n - 1)\pi^n$. It remains to observe that $v(\zeta^n - 1) = 0$.

(b) In all cases except l=p=2 let I be the set of all integers n such that n<-s and (pl,n(s+n))=1. When l=p=2 let I be the set of all integers n such that $2\nmid n$ and $4\nmid s+n<0$. Using again [FV, Ch. II, §4.4, Cor. 1] we see that I is always infinite.

We claim that the elements π^n , where $n \in I$, are distinct modulo $F + \wp(E)$. Indeed, suppose that $\pi^n - \pi^{n'} = y + \wp(x)$, with $y \in F$, $x \in E$, $n, n' \in I$, and n < n'. By (a),

$$0 > s + n = v((\sigma - 1)(\pi^n - \pi^{n'})) = v(\wp((\sigma - 1)(x))).$$

However, negative elements of $v(\wp(E))$ are divisible by p. Thus, we get a contradiction in all cases except l = p = 2.

In the remaining case l=p=2 we obtain v(x)<0 and hence $v((\sigma-1)(\wp(x)))=2v((\sigma-1)(x))$. Since π is a primitive element for the extension E/F, we can write $x=c_0+c_1\pi$ with $c_0,c_1\in F$. Then

$$v((\sigma - 1)(x)) = v(c_1) + v((\sigma - 1)(\pi)) = v(c_1) + s + 1,$$

by (a). But $2|v(c_1)$ and $2 \nmid s$ [FV, Ch. III, Prop. 2.3], so $v((\sigma - 1)(x))$ is even. We conclude that 4|s+n, a contradiction.

Proposition 3.3. V intersects non-trivially every non-trivial normal closed subgroup of G.

Proof. (Compare [P1, Satz 1.4].) Let H be a non-trivial normal closed subgroup of G and let L be its fixed field. It follows from Proposition 3.1(b) that $LF_{\rm ur} \neq F_{\rm sep}$. Hence we can take a finite Galois extension N of F such that $N \not\subseteq LF_{\rm ur}$. Denote the maximal elementary p-abelian Galois extension of N by N[p]. It is a Galois extension of F. Set $K = L \cap N$ and $M = L \cap N[p]$. Then $N \not\subseteq KF_{\rm ur}$, i.e., the extension N/K has a non-trivial inertia group. Since $\operatorname{Gal}(N/K)$ is solvable, we may therefore find an intermediate field $K \subseteq N_0 \subset N$ such that N/N_0 is a totally ramified extension of prime degree. By Lemma 3.2(b), $N/(N_0 + \wp(N))$ is infinite. Hence so is $N/(K + \wp(N))$.

By the Artin–Schreier theory, the dual of the natural homomorphism $K/\wp(K) \to N/\wp(N)$ may be canonically identified with the restriction homomorphism $\operatorname{Gal}(N[p]/N) \to \operatorname{Gal}(K[p]/K)$. Since the cokernel $N/(K + \wp(N))$ of

the former homomorphism is infinite, so is the kernel $\operatorname{Gal}(N[p]/K[p]N)$ of the latter homomorphism.

Now the group $\operatorname{Gal}(M/K) \cong \operatorname{Gal}(MN/N)$ is an epimorphic image of $\operatorname{Gal}(N[p]/N)$, hence $M \subseteq K[p]$. It follows that $\operatorname{Gal}(N[p]/MN)$ is infinite. Since it is an elementary abelian p-group, it is not cyclic. Therefore the p-Sylow subgroups of $\operatorname{Gal}(LN[p]/L) \cong \operatorname{Gal}(N[p]/M)$ are not cyclic (note that as N[p]/F is Galois, so are LN[p]/L and N[p]/M). It follows that $\operatorname{Syl}_p(G_L)$ is not cyclic. On the other hand, $G_L/(G_L \cap V)$ embeds in $G/V \cong (\hat{\mathbb{Z}}/\mathbb{Z}_p) \rtimes \hat{\mathbb{Z}}$, hence its p-Sylow subgroups are cyclic. Conclude that $H \cap V = G_L \cap V \neq 1$, as required.

4. The main results

We still fix a local field $F = \mathbb{F}_q((t))$ of characteristic p > 0.

Theorem 4.1. Let K be a field with $G_K \cong G_F$. There exists a Henselian valuation v on K such that:

- (a) $(\Gamma_v : l\Gamma_v) = l$ for all primes $l \neq p$;
- (b) char $\bar{K}_v = p$.

Proof. Fix an isomorphism $\sigma: G_K \to G_F$. For a separable extension E of K let E' denote the separable extension of F such that $\sigma G_E = G_{E'}$.

Let $l \neq p$ be a prime number. Then $\operatorname{cd}_l(G_K) = \operatorname{cd}_l(G_F) = 2$ [S, II-15, Prop. 12], so char $K \neq l$ [S, II-4, Prop. 3]. Fix a finite separable extension E_l of K such that E_l, E'_l contain μ_l , and contain $\sqrt{-1}$ if l = 2. Then for every finite separable extension E of E_l one has

$$G_E(l) \cong G_{E'}(l) \cong \langle \sigma, \tau \mid \sigma \tau \sigma^{-1} = \tau^{p^s} \rangle_{\text{pro}-l},$$

for some $s = s(E) \ge 1$ such that $p^s \equiv 1 \mod l$ (namely, p^s is the cardinality of the residue field of E'; see §1). Proposition 2.3 gives rise to a Henselian valuation v_l on K such that $\Gamma_{v_l}/l \cong \mathbb{Z}/l$, char $\bar{K}_{v_l} \ne l$, and \bar{K}_{v_l} is not algebraically closed.

By Proposition 2.4, the valuations v_l , $l \neq p$, are pairwise comparable. It follows that $\bigcap_{l\neq p} O_{v_l}$ is a Henselian valuation ring on K. Let v be the corresponding valuation on K. For every prime number $l \neq p$ the fact that $O_v \subseteq O_{v_l}$ implies that Γ_{v_l} is an epimorphic image of Γ_v ; hence $\dim_{\mathbb{F}_l}(\Gamma_v/l) \geq \dim_{\mathbb{F}_l}(\Gamma_{v_l}/l) = 1$. Moreover, $\mathbb{Z}_l^2 \not\leq G_{E_l}(l)$ [E1, Lemma 4.1]. We conclude as before using [E1, Lemma 1.2] and the considerations of §1 that $\dim_{\mathbb{F}_l}(\Gamma_v/l) = 1$, proving (a).

To prove (b), let T_v, V_v be the inertia and ramification groups, respectively, of v in K_{sep}/K . For every prime number $l \neq p$, char \bar{K}_v , part (a) gives $\text{Syl}_l(T_v/V_v) \cong \mathbb{Z}_l$. In particular, T_v/V_v is non-trivial. Now the closed normal subgroup $\sigma^{-1}(V)$ of G_K is free pro-p of infinite rank. According to Proposition 3.3 it intersects every non-trivial closed normal subgroup of G_K . Thus $T_v \cap \sigma^{-1}(V) \neq 1$. Since a free pro-p group of rank ≥ 2 does not have non-trivial abelian closed normal subgroups, $T_v \cap \sigma^{-1}(V)$ is non-abelian. Therefore $\text{Syl}_p(T_v)$ is non-abelian, which can happen only when char $\bar{K}_v = p$.

Lemma 4.2. Let H be a profinite group such that $\operatorname{cd}_p(H) \leq 1$ and such that $\operatorname{Syl}_l(H) \cong \mathbb{Z}_l$ for all primes $l \neq p$. Then $H(p') \cong \hat{\mathbb{Z}}/\mathbb{Z}_p$.

Proof. By [S, I-23, Prop. 16] and [FJ, Cor. 20.14], H embeds as a closed subgroup of a free profinite group \hat{F} . Now any closed subgroup of \hat{F} isomorphic to \mathbb{Z}_l , $l \neq p$, is mapped bijectively by the canonical projection $\hat{F} \to \hat{F}(ab, p')$. Since the induced homomorphism $H \to \hat{F}(ab, p')$ breaks through H(ab, p'), any l-Sylow subgroup of H is mapped bijectively onto an l-Sylow subgroup of H(ab, p'). It follows that $H(ab, p') \cong \prod_{l \neq p} \mathbb{Z}_l \cong \hat{\mathbb{Z}}/\mathbb{Z}_p$. Since $\operatorname{cd}(\hat{\mathbb{Z}}/\mathbb{Z}_p) \leq 1$, the projection $H(p') \to H(ab, p')$ has a continuous homomorphic section. Then H(p') and the image of this section have the same l-Sylow subgroups, hence they coincide. Thus $H(p') \cong \hat{\mathbb{Z}}/\mathbb{Z}_p$.

Proposition 4.3. Let K and v be as in Theorem 4.1 and let $l \neq p$ be a prime number. Then:

- (a) $G_{\bar{K}_v}(p') \cong \hat{\mathbb{Z}}/\mathbb{Z}_p$.
- (b) For $s \geq 0$, $\mu_{l^s} \subseteq \bar{K}_v(\mu_l)$ if and only if $\mu_{l^s} \subseteq \mathbb{F}_q(\mu_l)$.
- (c) If $\mu_l \subseteq \bar{K}_v$ then $\mu_l \subseteq \mathbb{F}_q$.
- (d) $\operatorname{Syl}_p(G_{\bar{K}_n})$ is a non-trivial free pro-p group.

Proof. Fix an l-Sylow extension (E_l, v_l) of (K, v) relative to K_{sep} . Denote its residue field by \bar{E}_l . Then $G_{\bar{E}_l} \cong \text{Syl}_l(G_{\bar{K}_v})$. One has $\mu_l \subseteq E_l$ and $\mu_l \subseteq \bar{E}_l$. Also, the l-primary component of Γ_{v_l}/Γ_v is trivial. Hence [E2, Lemma 2.4(b)] and Theorem 4.1(a) give $(\Gamma_{v_l} : l\Gamma_{v_l}) = (\Gamma_v : l\Gamma_v) = l$. Take $1 \leq s \leq \infty$ such that $\text{Im}(\chi_{\bar{E}_l,l}) = 1 + l^s \mathbb{Z}_l$ (where we make the convention $l^\infty = 0$). Then $G_{E_l} \cong \mathbb{Z}_l \rtimes G_{\bar{E}_l}$, where any $\sigma \in G_{\bar{E}_l}$ acts on the generator τ of \mathbb{Z}_l according to $\sigma \tau \sigma^{-1} = \chi_{\bar{E}_l,l}(\sigma)\tau$ (see §1). It follows that $G_{E_l}(\text{ab}) \cong (\mathbb{Z}_l/l^s) \times G_{\bar{E}_l}(\text{ab})$.

The same analysis holds for F, so we obtain that $G_{F_l}(ab) \cong (\mathbb{Z}_l/l^{s'}) \times \mathbb{Z}_l$, where F_l and s' are defined in a similar manner. Since the residue field \bar{F}_l of F_l is the l-Sylow extension of \mathbb{F}_q , it does not contain $\mu_{l^{\infty}}$. Hence $s' < \infty$. If $s = \infty$ then we would obtain that $G_{\bar{E}_l}(ab) \cong \mathbb{Z}_l/l^{s'}$, which is impossible at positive characteristic. We conclude that $s = s' < \infty$ and $G_{\bar{E}_l}(ab) \cong \mathbb{Z}_l$. It follows that \bar{E}_l, \bar{F}_l contain the same roots of unity of l-power order, and $G_{\bar{E}_l} \cong \mathbb{Z}_l$. As $\mathrm{cd}_p(G_{\bar{K}_p}) \leq 1$ [S, II-4, Prop. 3], (a) follows from Lemma 4.2.

To prove (b) it remains to observe that $\mu_{l^s} \subseteq K_v(\mu_l)$ if and only if $\mu_{l^s} \subseteq E_l$, and likewise for \mathbb{F}_q and \bar{F}_l .

To prove (c) assume that $\mu_l \subseteq \bar{K}_v$ and $\mu_l \not\subseteq \mathbb{F}_q$. Then $G_K(l) \cong \mathbb{Z}_l \rtimes \mathbb{Z}_l \not\cong \mathbb{Z}_l$ (§1). On the other hand, $G_F(l) \cong G_{\mathbb{F}_q}(l) \cong \mathbb{Z}_l$ [E2, Lemma 2.1], a contradiction.

Finally, we prove (d). By [S, I-37, Cor. 2], $\operatorname{Syl}_p(G_{\bar{K}_v})$ is indeed a free pro-p group. Suppose that it is trivial. Then the maximal pro-p Galois extension of \mathbb{F}_p is contained in $\tilde{\mathbb{F}}_p \cap \bar{K}_v$. However, (b) and (c) imply that $\tilde{\mathbb{F}}_p \cap \bar{K}_v \subseteq \mathbb{F}_q$, a contradiction.

Theorem 4.4. Let K and v be as in Theorem 4.1 and suppose that char K = 0. Then:

- (a) $\Gamma_v = p\Gamma_v$;
- (b) \bar{K}_v is perfect.

Proof. For any algebraic extension E of $K(\mu_p)$ the p-torsion part of $\operatorname{Br}(E)$ is isomorphic to $H^2(G_E, \mathbb{Z}/p) = H^2(G_{E'}, \mathbb{Z}/p) = 0$ ([S, II–4, Prop. 3]; here E' is as before the extension of F corresponding to E with respect to a fixed isomorphism $\sigma: G_K \to G_F$). It follows that for every Galois extension M of E of degree p, the norm homomorphism $N_{M/E}: M^{\times} \to E^{\times}$ is surjective (see e.g. [M, Th. 15.7]).

To prove (a), let $E = K(\mu_p)$ and let u be the unique extension of v to E. By Proposition 4.3, \bar{K}_v contains only finitely many roots of unity. Hence so does its finite extension \bar{E}_u . It follows that $\operatorname{Gal}(\tilde{\mathbb{F}}_p\bar{E}_u/\bar{E}_u) \cong \hat{\mathbb{Z}}$. Therefore there is an unramified extension (L,w) of (E,u) of degree p; thus $\Gamma_w = \Gamma_u$. By [E1, Lemma 1.2] and by Lemma 2.5 (for the extension L/E), $(\Gamma_v: p\Gamma_v) = (\Gamma_u: p\Gamma_u) = 1$, as required.

To prove (b), let T_v, V_v be again the inertia and ramification groups, respectively, of v in G_K . By Proposition 3.3, $T_v \cap \sigma^{-1}(V) \neq 1$. From Theorem 4.1(b) we get $p \nmid (T_v : V_v)$. Since V is pro-p, these two facts imply that the pro-p group V_v is non-trivial. Therefore we can take a tower of finite extensions $K(\mu_p) \subseteq E \subset M$ such that M/E is a wildly ramified extension of degree p. Then the residue field extension \bar{M}/\bar{E} is trivial. The surjectivity of $N_{M/E}: M^{\times} \to E^{\times}$ established above implies that $\bar{E} = \bar{M}^p = \bar{E}^p$; i.e., \bar{E} is perfect. Hence so is \bar{K}_v .

5. Constructions

We conclude by showing that various restrictions made in our main results in §4 are indeed necessary.

Example 5.1. For every positive integer r we construct a Henselian valued field (K_r, u_r) of characteristic p such that $G_{K_r} \cong G_F$ and $\Gamma_{u_r}/p \cong (\mathbb{Z}/p)^r$.

We first construct inductively countable Henselian discretely valued fields (K_r, v_r) as follows: Let (K_1, v_1) be a Henselization of $\mathbb{F}_q(t_1)$ with respect to the discrete valuation with uniformizer t_1 . Assuming that (K_r, v_r) has already been defined, let L_r be a maximal totally tamely ramified extension of it. Then the (supernatural) degree $[L_r:K_r]$ is prime to p. Let (K_{r+1}, v_{r+1}) be a Henselization of $L_r(t_{r+1})$ with respect to its discrete valuation with uniformizer t_{r+1} . Since both L_r and K_r are countable, Proposition 1.3 implies that $G_{K_{r+1}} \cong G_{K_r}$.

Next we construct the valuations u_r on K_r inductively as follows: Take $u_1 = v_1$. Assuming that u_r has already been defined, let w_r be its unique prolongation to L_r . Let u_{r+1} be the refinement of v_{r+1} such that the residue valuation u_{r+1}/v_{r+1} on L_r is w_r [R]. Since both w_r and v_{r+1} are Henselian, so is u_{r+1} [R, pp. 210–211]. One has an exact sequence

$$0 \rightarrow \Gamma_{w_r} \rightarrow \Gamma_{u_{r+1}} \rightarrow \Gamma_{v_{r+1}} \rightarrow 0$$

of ordered abelian groups, and Γ_{w_r} is convex in $\Gamma_{u_{r+1}}$. We obtain an exact sequence of abelian groups

$$0 \rightarrow \Gamma_{w_r}/p \rightarrow \Gamma_{u_{r+1}}/p \rightarrow \Gamma_{v_{r+1}}/p \rightarrow 0.$$

Since the *p*-primary part of $\Gamma_{w_r}/\Gamma_{u_r}$ is trivial, $\Gamma_{w_r}/p \cong \Gamma_{u_r}/p \cong (\mathbb{Z}/p)^r$ [E2, Lemma 2.4(b)]. Combining this with $\Gamma_{v_{r+1}}/p \cong \mathbb{Z}/p$, we conclude that $\Gamma_{u_{r+1}}/p \cong (\mathbb{Z}/p)^{r+1}$, as desired.

In fact, K_r , L_r embed in a maximal totally tamely ramified extension (M_r, w_r) of the r-dimensional local field $\mathbb{F}_q((t_1))\cdots((t_r))$ with its canonical discrete valuation of rank r (see [FV, Appendix B]). By considering the restrictions of w_r to these fields one can obtain an alternative proof that $\Gamma_{u_r}/p \cong (\mathbb{Z}/p)^r$.

Example 5.2. There exists a Henselian discretely valued field (K, v) of characteristic p such that $G_K \cong G_F$, \bar{K}_v is imperfect, and $G_{\bar{K}_v} \not\cong \hat{\mathbb{Z}}$. Indeed, take $(K, v) = (K_2, v_2)$ (with terminology as in Example 5.1). Then $\bar{K}_v = L_1$. Since K_1 is imperfect, so is its separable extension L_1 . According to $\S 1$, $G_{L_1} \cong F_p(\hat{\mu} \rtimes G_{\mathbb{F}_q}; \aleph_0) \rtimes G_{\mathbb{F}_q}$. In particular, $\operatorname{Syl}_p(G_{L_1})$ has infinite rank. Conclude that $G_{\bar{K}_v} = G_{L_1} \not\cong \hat{\mathbb{Z}}$.

Example 5.3. Let (K, v) be a complete discretely valued field. Suppose that char $\bar{K}_v = p$, $|\bar{K}_v| \leq \aleph_0$, $G_{\bar{K}_v} \cong \hat{\mathbb{Z}}$, and \bar{K}_v has the same group of roots of unity as \mathbb{F}_q (e.g., this happens when K is a finite extension of \mathbb{Q}_p with residue field \mathbb{F}_q). Let L/K be an arithmetically profinite totally ramified extension (for the definitions see [Wi] or [FV, Ch. III, §5]). In particular, if $[L:K] = \prod_l l^{n(l)}$, then $n(p) = \infty$ and $\sum_{l \neq p} n(l) < \infty$. The theory of fields of norms of Fontaine–Wintenberger [Wi, 3.2.3] implies that $G_L \cong G_{\bar{K}_v((X))}$. By Corollary 1.2, the latter group is isomorphic to G_F . If u is the extension of v to L, then $\Gamma_u = p\Gamma_u$ and $\Gamma_u/l \cong \mathbb{Z}/l$ for $l \neq p$ prime.

Remark 5.4. Let M be an n-dimensional local field such that its canonical valuation of rank n has residue characteristic p (cf. [FV, Appendix B]). From the discussion in §1 it follows that for every prime number $l \neq p$ one has

$$G_M(l) \cong \langle \sigma, \tau_1, \dots, \tau_n \mid \sigma \tau_i \sigma^{-1} = \tau_i^q, \tau_i \tau_j = \tau_j \tau_i \rangle_{\text{pro}-l}.$$

Now let K be a field such that $G_K \cong G_M$. Similarly to the proof of Theorem 4.1 one can show that there is a Henselian valuation v on K such that $(\Gamma_v : l\Gamma_v) = l^n$ for all primes $l \neq p$ and such that char $\bar{K}_v = p$ or 0.

Acknowledgement

This research was partly carried out during the first author's visit in the University of Nottingham in July 1998. He thanks the university for its hospitality.

References

- [AS] E. Artin and O. Schreier, Eine Kennzeichnung der reell abgeschlossenen Körper, Abh. Math. Sem. Univ. Hamburg 5 (1927), 225–231.
- [AEJ] J.K. Arason, R. Elman and B. Jacob, Rigid elements, valuations, and realization of Witt rings, J. Algebra 110 (1987), 449–467.
- [B] E. Becker, Euklidische Körper und euklidische Hüllen von Körpern, J. Reine Angew. Math. 268–269 (1974), 41–52.
- [E1] I. Efrat, A Galois-theoretic characterization of p-adically closed fields, Isr. J. Math. 91 (1995), 273–284.
- [E2] _____, Pro-p Galois groups of algebraic extensions of \mathbb{Q} , J. Number Theory **64** (1997), 84–99.
- [E3] _____, Construction of valuations from K-theory, Math. Res. Lett., to appear.
- [Ed] O. Endler, Valuation Theory, Springer-Verlag, New York-Heidelberg, 1972.
- [EE] O. Endler and A.J. Engler, Fields with Henselian valuation rings, Math. Z. 152 (1977), 191–193.
- [Eg] A. Engler, Fields with two incomparable Henselian valuation rings, Manuscripta Math. 23 (1978), 373–385.
- [FV] I. Fesenko and S. Vostokov, Local fields and their extensions: A Constructive Approach, Translations of Mathematical Monographs, 121, American Mathematical Society, Providence, RI, 1993.
- [FJ] M. Fried and M. Jarden, Field Arithmetic, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 11, Springer-Verlag, Berlin-New York, 1986.
- [HJ] Y.S. Hwang and B. Jacob, Brauer group analogues of results relating the Witt ring to valuations and Galois theory, Canad. J. Math. 47 (1995), 527–543.
- [K1] H. Koch, Über die Galoissche Gruppe der algebraischen Abschliessung eines Potenzreihenkörpers mit endlichem konstantenkörper, Math. Nachr. 35 (1967), 323–327. (German)
- [K2] _____, Galoissche Theorie der p-Erweiterungen, VEB Deutscher Verlag der Wissenschaften, Berlin, 1970.
- [Kn] J. Koenigsmann, From p-rigid elements to valuations (with a Galois-characterisation of p-adic fields), with an Appendix by F. Pop, J. Reine Angew. Math. 465 (1995), 165–182.
- [KPR] F.-V. Kuhlmann, M. Pank, and P. Roquette, Immediate and purely wild extensions of valued fields, Manuscripta Math. 55 (1986), 39–67.
- [MSh] O.V. Mel'nikov and A.A. Sharomet, *The Galois group of a multidimensional local field of positive characteristic*, Matem. Sb. **180** (1989), 1132–1147 (Russian); English translation in Math. USSR-Sb. **67** (1990), 595–610.
- [MSu] A.S. Merkur'ev and A.A. Suslin, K-cohomology of Brauer-Severi varieties and the norm residue homomorphism, Izv. Akad. Nauk USSR. Ser. Mat. 46 (1982), 1011–1046 (Russian); English translation in Math. USSR Izv. 21 (1983), 307–340.
- [M] J. Milnor, Introduction to algebraic K-theory, Annals of Mathematics Studies, No. 72,
 Princeton University Press, Princeton, N.J, University of Tokyo Press, Tokyo, 1971.
- [N1] J. Neukirch, Zur Verzweigungstheorie der allgemeinen Krullschen Bewertungen, Abh. Math. Sem. Univ. Hamburg 32 (1968), 207–215.
- [N2] _____, Kennzeichnung der p-adischen und endlichen algebraischen Zahlkörper, Invent. Math. 6 (1969), 269–314.
- [P1] F. Pop, Galoissche Kennzeichnung p-adisch abgeschlossener Körper, J. Reine Angew. Math. 392 (1988), 145–175.
- [P2] F. Pop, On Grothendieck's conjecture of birational anabelian geometry, Ann. Math. 139 (1994), 145–182.

- [PR] A. Prestel and P. Roquette, Formally p-adic fields, Lect. Notes Math., 1050, Springer-Verlag, Berlin-New York, 1984.
- [R] P. Ribenboim, Théorie des Valuations, Séminaire de Mathématiques Supérieures, No. 9 (Été, 1964), Les presses de l'Université de Montréal, Montréal, 1968.
- [S] J.-P. Serre, Cohomologie Galoisienne, Lecture Notes in Mathematics, No. 5, Springer-Verlag, Berlin-New York, 1965.
- [Wi] J.-P. Wintenberger, Le corps des normes de certaines extensions infinies des corps locaux, applications, Ann. Sci. École Norm. Sup. (4) 16 (1983), 59–89.
- [Wr] R. Ware, Valuation rings and rigid elements in fields, Canad. J. Math. 33 (1981), 1338–1355.

Department of Mathematics and Computer Science, Ben Gurion University of the Negev, P.O. Box 653, Be'er-Sheva 84105, ISRAEL

E-mail address: efrat@math.bgu.ac.il

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF NOTTINGHAM, NG7 2RD NOTTINGHAM, ENGLAND

E-mail address: I.Fesenko@maths.nott.ac.uk