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FIELDS GALOIS-EQUIVALENT TO A LOCAL

FIELD OF POSITIVE CHARACTERISTIC

Ido Efrat and Ivan Fesenko

Introduction

A celebrated theorem of Artin and Schreier [AS] characterizes the fields
K whose absolute Galois group GK is isomorphic to that of R as the real
closed fields. In the present paper we consider the analogous problem for non-
archimedean local fields of positive characteristic F = Fpn((t)). We show that
a field K with absolute Galois group isomorphic to GF possesses a Henselian
valuation v such that:

(1) the value group Γ of v satisfies Γ/l ∼= Z/l for all prime numbers l �= p;
(2) the residue field K̄ of v has characteristic p;
(3) the maximal prime to p Galois group GK̄(p′) of K̄ is Ẑ/Zp;
(4) if charK = 0 then Γ = pΓ and K̄ is perfect.

For every positive integer r we construct such fields K of characteristic p with
Γ/p ∼= (Z/p)r. Likewise we construct examples with Γ ∼= Z, GK̄ �∼= Ẑ and K̄
imperfect.

The similar problem for p-adic fields was answered by Koenigsmann [Kn] and
the first named author [E1] (for p �= 2), extending earlier results by Neukirch
[N2] and Pop [P1]: the fields K such that GK

∼= GF for some finite extension F
of Qp are precisely the p-adically closed fields in the sense of [PR].

Notation

We denote the algebraic, separable, and inseparable closures of a field K by
K̃, Ksep, and Kins, respectively. For a positive integer m with charK � m let
µm be the group of roots of unity of order dividing m in K̃. For a prime l with
l �= charK let µl∞ = lim→ r

µlr . Given a profinite group G and a prime number l,

denote the quotient lim← G/N , where N ranges over all open normal subgroups of

G with G/N abelian (resp., of l-power order, of order prime to l) by G(ab) (resp.,
G(l), G(l′)). We define G(ab, l), G(ab, l′) similarly. For a (Krull) valuation v
on K let Γv, Ov, and K̄v be the corresponding value group, valuation ring, and
residue field, respectively.
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1. Galois groups of Henselian fields

We first recall several basic facts about the structure of the decomposition
group of (K, v) relative to Ksep (see e.g. [Ed], [P2, §1] or [E1, §1] for more
details and proofs). For simplicity we assume here that v is Henselian, i.e.,
the decomposition group is GK . Let Kur and Ktr be the maximal unramified
and maximal tamely ramified Galois extensions of (K, v), respectively. If p =
char K̄v > 0 then GKtr is the unique p-Sylow subgroup of GKur . If char K̄v = 0
then GKtr = 1. There are natural short exact sequences

1 → Gal(Ktr/Kur) → Gal(Ktr/K) → GK̄v
→ 1

1 → GKtr → GK → Gal(Ktr/K) → 1

which are split, by [N1] and [KPR], respectively. For a prime number l let
δl = dimFl

Γv/l. Then Gal(Ktr/Kur) ∼=
∏

l �=char K̄v

(
lim← r

µlr
)δl as GK̄v

-modules.

In particular, if Γv
∼= Z and char K̄v = p > 0 then δl = 1 for all primes l, so

the GK̄v
-module Gal(Ktr/Kur) is µ̂ = lim← (m,p)=1

µm, and Gal(Ktr/K) ∼= µ̂×|GK̄v

with the Galois action.
The analogous result for the maximal pro-l Galois group GK(l) of K is the

following: If l �= char K̄v is prime and µl ⊆ K then GK(l) ∼= Zδl

l ×|GK̄v
(l),

where σ ∈ GK̄v
(l) acts on τ ∈ Zδl

l according to στσ−1 = χK̄v,l(σ)τ ; here
χK̄v,l: GK̄v

(l) → 1 + lZl is the pro-l cyclotomic character of K̄v, induced by
the restriction homomorphism GK̄v

(l)→ Aut(µl∞) ∼= Z×
l .

Now fix a prime number p. Given a pro-p group H and a cardinal number
c let Fp(H; c) be the free H-operator pro-p group on c generators, in the sense
of [K1], [MSh]. The following is a modest generalization of the main result of
[MSh] (which treats Laurent series fields).

Theorem 1.1. Let (K, v) be a Henselian discretely valued field of characteristic
p and let c = max{ℵ0, |K̄v|}. Then GKtr

∼= Fp(Gal(Ktr/K); c) as Gal(Ktr/K)-
operator pro-p groups; in particular, GK

∼= Fp(Gal(Ktr/K); c)×|Gal(Ktr/K)
with the canonical action.

When k = K̄v is perfect, this theorem can be proven using precisely the same
argument as in [MSh, Th. 1]. We therefore omit the details. When k is not
perfect, one can prove it as follows: Let u be the unique prolongation of v
to L = kinsK. The restriction GL → GK is an isomorphism mapping GLur ,
GLtr onto GKur , GKtr , respectively. By the result for perfect residue fields,
GLtr

∼= Fp(Gal(Ltr/L); c) as Gal(Ltr/L)-operator groups. It follows that GKtr
∼=

Fp(Gal(Ktr/K); c) as Gal(Ktr/K)-operator groups, as desired.

Corollary 1.2. Let (K1, v1), (K2, v2) be Henselian discretely valued fields of
characteristic p, and let K̄1, K̄2 be the corresponding residue fields. Suppose that
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GK̄1
∼= GK̄2

, that this isomorphism is compatible with the Galois actions on the
roots of unity, and that max{ℵ0, |K̄1|} = max{ℵ0, |K̄2|}. Then GK1

∼= GK2 .

Proof. We have Gal(K1,tr/K1) ∼= µ̂×|GK̄1
∼= µ̂×|GK̄2

∼= Gal(K2,tr/K2) with the
Galois actions. Now apply Theorem 1.1. 
�
Proposition 1.3. Let (K, v) be a Henselian discretely valued field of character-
istic p. Suppose that |K| = max{ℵ0, |K̄v|}. Let L be a maximal totally tamely
ramified extension of (K, v). Let (E, u) be a Henselian discretely valued field of
characteristic p with Ēu = L. Then GE

∼= GK .

Proof. Let c = |K| = max{ℵ0, |K̄v|}, let H = µ̂×|GK̄v
with the Galois action,

and let V = Fp(H; c). By Theorem 1.1, V ∼= GKtr and GK
∼= V×|H. Since

F̃p ⊆ Ktr, the Galois action of V on µ̂ is trivial. Further, the unique prolongation
of v to L has residue field K̄v. Hence GL

∼= V×|GK̄v
, and this isomorphism is

compatible with the Galois action on µ̂. Therefore

Gal(Etr/E) ∼= µ̂×|GL
∼= µ̂×|(V×|GK̄v

) ∼= V×|(µ̂×|GK̄v
) = V×|H.

Now from [MSh, §1, Prop. 1] we deduce that

Fp(V×|H; c)×|(V×|H) ∼= (Fp(H; c) ∗ V )×|H
= (Fp(H; c) ∗ Fp(H; c))×|H ∼= Fp(H; c)×|H = V×|H,

where ∗ denotes free pro-p product. Since |L| = |K|, from Theorem 1.1 we
deduce

GE
∼= Fp(Gal(Etr/E); c)×|Gal(Etr/E) ∼=

Fp(V×|H; c)×|(V×|H) ∼= V×|H ∼= GK . 
�

2. Existence of Henselian valuations

Let KM
2 (E) be the second Milnor K-group of the field E, and let {·, ·}: E××

E× → KM
2 (E) be the natural symbolic map. The following theorem combines

powerful constructions of Ware [Wr], Arason–Elman–Jacob [AEJ] (for l = 2),
and Hwang–Jacob [HJ] (for l �= 2); see also [E3] and [Kn].

Theorem 2.1. Let l be a prime number, let E be a field of characteristic �= l,
let T be a subgroup of E× containing (E×)l and −1. Suppose that:

(i) For every x, y ∈ E× which are Fl-linearly independent in E×/T one has
{x, y} �= 0 in KM

2 (E);
(ii) For every x ∈ E× \ T and y ∈ T \ (E×)l one has {x, y} �= 0 in KM

2 (E).
Then there exists a valuation u on E such that (Γu : lΓu) ≥ (E× : T )/l and
u(l) �= 0. Furthermore, if Ēu = Ēl

u then (Γu : lΓu) ≥ (E× : T ).

The rank of a profinite group is the minimal number (possibly ∞) of topo-
logical generators of it.



348 IDO EFRAT AND IVAN FESENKO

Proposition 2.2. [E1, Prop. 2.1] Let l be a prime number and let (E, u) be a
valued field such that char Ēu �= l and GĒu

(l) is infinite. Suppose that

sup
M

rankGM (l) <∞ ,

where M ranges over all finite separable extensions of E. Then (E, u) is Hense-
lian.

Combining the previous two facts, we obtain the following result (which is
essentially proven in [E1] for l = 2).

Proposition 2.3. Let l, p be distinct prime numbers and let K be a field of
characteristic �= l. Let E0 be a finite extension of K containing µl and containing√
−1 if l = 2. Suppose that for every finite separable extension E of E0 one has

GE(l) ∼= 〈σ, τ | στσ−1 = τps〉pro−l,

for some s = s(E) ≥ 1 such that ps ≡ 1 mod l. Then there exists a Henselian
valuation v on K such that Γv/l ∼= Z/l, char K̄v �= l, and K̄v is not algebraically
closed.

Proof. For E as above denote Hi(E) = Hi(GE(l), Z/l). We consider the cup
product H1(E) ×H1(E) → H2(E). Let ϕ1, ϕ2 be an Fl-linear basis of H1(E)
which is dual to the basis of GE(l)/GE(l)l[GE(l), GE(l)] consisting of the images
of σ and τ . From the defining relation τps−1[τ, σ] = 1 of GE(l) we deduce that
ϕ1 ∪ϕ2 �= 0 [K2, §7.8]. Furthermore, when l �= 2 one has ϕ1 ∪ϕ1 = ϕ2 ∪ϕ2 = 0
by the anti-commutativity of ∪. When l = 2 we may identify ϕi ∪ ϕi with the
class of a quaternion algebra (ai, ai/E) in the Brauer group Br(E); here ai(E×)2

corresponds to ϕi under the Kummer isomorphism E×/(E×)2 ∼= H1(E). Since
(ai, ai/E) = (ai,−1/E) in Br(E) and

√
−1 ∈ E we obtain that ϕi ∪ ϕi = 0,

i = 1, 2, in this case as well. Consequently, H2(E) ∼= ∧2H1(E).
By the Kummer theory and the Merkur’ev–Suslin theorem [MSu], this implies

that KM
2 (E)/l ∼= ∧2(E×/l) naturally. Hence (i) and (ii) of Theorem 2.1 hold for

T = (E×)l. Since dimFl
(E×/(E×)l) = rankGE(l) = 2, Theorem 2.1 therefore

gives rise to a valuation u on E such that dimFl
(Γu/l) ≥ 1 and char Ēu �= l.

Furthermore, if Ēu = Ēl
u then δl = dimFl

(Γu/l) ≥ 2 by the last statement of
Theorem 2.1. From the discussion in §1 this would imply Z2

l ≤ GE(l), which
is not the case [E1, Lemma 4.1]. We conclude that GĒu

(l) �= 1. This implies
that the latter group is in fact infinite ([B]; note that when l = 2,

√
−1 ∈ Ēu).

Proposition 2.2 therefore shows that (E, u) is Henselian.
Now take E = E0, let u be as above, and let v = ResKu. Then dimFl

(Γv/l) =
dimFl

(Γu/l) ≥ 1 [E1, Lemma 1.2] and char K̄v �= l. Since the finite extension Ēu

of K̄v is not algebraically closed, neither is K̄v. Also, Henselianity goes down in
finite extensions, provided that the upper residue field is not separably closed
[Eg, Cor. 3.5]. Therefore (K, v) is Henselian. 
�
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Valuations v, v′ are called comparable if one of Ov, Ov′ contains the other.

Proposition 2.4. (Endler–Engler [EE, Prop.]) Let v, v′ be valuations on a field
K. Suppose that v is Henselian and that K̄v′ is not algebraically closed. Then
v, v′ are comparable.

Lemma 2.5. Let (L, w)/(K, v) be a Galois extension of Henselian valued fields
of degree n. Suppose that the norm homomorphism NL/K : L× → K× is surjec-
tive. Then (Γv : nΓv) = (Γw : Γv).

Proof. By the Henselianity, one has a well-defined commutative square

L× w−−−−→ Γw

NL/K



� n



�

K× v−−−−→ Γv

By assumption, the left vertical map is surjective. Hence so is the right vertical
map; i.e., Γv = nΓw. By [E1, Lemma 1.2] again,

(Γv : nΓv) = (Γw : nΓw) = (Γw : Γv).

�

3. The absolute Galois group of a local field of characteristic p

From now on we fix a local field F = Fq((t)) of characteristic p > 0. Let
G = GF , T = GFur , and V = GFtr , taken with respect to the canonical discrete
valuation on F . The group structure of G was described by Koch [K1] (and
follows from the general considerations in §1); namely:

(i) G = V×|(G/V );
(ii) T/V ∼= Ẑ/Zp;
(iii) G/T ∼= Ẑ;
(iv) G/V ∼= (T/V )×|(G/T ), where a generator σ of G/T acts on a generator

τ of T/V according to the Hasse–Iwasawa relation στσ−1 = τ q;
(v) V ∼= Fp(G/V ;ℵ0); in particular, V is a free pro-p group on countably

many generators [MSh, §1, Lemma 4].

Proposition 3.1.
(a) T/V intersects non-trivially every non-trivial normal closed subgroup of

G/V .
(b) T intersects non-trivially every non-trivial normal closed subgroup of G.

Proof. (a) We need to show that if L is a Galois extension of F such that
LFur = Ftr then L = Ftr. To this end, denote L′ = L∩Fur. Then Gal(Ftr/L′) ∼=
Gal(Ftr/Fur) × Gal(Fur/L′). In particular, Gal(Ftr/L′) is abelian, by (ii) and
(iii) above. For each positive integer m which is prime to p choose tm ∈ Ftr such
that tmm = t. The abelianity implies that L′(tm)/L′ is normal. Since L′/F is
unramified it follows that µm ⊆ L′. Conclude that Fur =

⋃
(m,p)=1 F (µm) ⊆ L′,

whence L = LFur = Ftr.
(b) follows from (a). 
�
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Lemma 3.2. Let E be a totally ramified extension of F of prime degree l and
let σ be a generator of Gal(E/F ). Let v be the canonical valuation on E and
let π be a prime element of E. Let s be the maximal integer such that the sth
ramification group of Gal(E/F ) is non-trivial. Then:

(a) v((σ − 1)(πn)) = s + n for every integer n relatively prime to pl;
(b) E/(F + ℘(E)) is infinite.

Proof. (a) When l = p this is proven in [FV, Ch. III, (1.4)]. Suppose l �= p. Then
s = 0 [FV, Ch. II, §4.4, Cor. 1] and σ(π) = ζπ for a primitive lth root of unity
ζ. Hence (σ − 1)(πn) = (ζn − 1)πn. It remains to observe that v(ζn − 1) = 0.

(b) In all cases except l = p = 2 let I be the set of all integers n such that
n < −s and (pl, n(s + n)) = 1. When l = p = 2 let I be the set of all integers n
such that 2 � n and 4 � s + n < 0. Using again [FV, Ch. II, §4.4, Cor. 1] we see
that I is always infinite.

We claim that the elements πn, where n ∈ I, are distinct modulo F + ℘(E).
Indeed, suppose that πn − πn′

= y + ℘(x), with y ∈ F , x ∈ E, n, n′ ∈ I, and
n < n′. By (a),

0 > s + n = v((σ − 1)(πn − πn′
)) = v(℘((σ − 1)(x))).

However, negative elements of v(℘(E)) are divisible by p. Thus, we get a con-
tradiction in all cases except l = p = 2.

In the remaining case l = p = 2 we obtain v(x) < 0 and hence v((σ −
1)(℘(x))) = 2v((σ − 1)(x)). Since π is a primitive element for the extension
E/F , we can write x = c0 + c1π with c0, c1 ∈ F . Then

v((σ − 1)(x)) = v(c1) + v((σ − 1)(π)) = v(c1) + s + 1,

by (a). But 2|v(c1) and 2 � s [FV, Ch. III, Prop. 2.3], so v((σ − 1)(x)) is even.
We conclude that 4|s + n, a contradiction. 
�
Proposition 3.3. V intersects non-trivially every non-trivial normal closed
subgroup of G.

Proof. (Compare [P1, Satz 1.4].) Let H be a non-trivial normal closed subgroup
of G and let L be its fixed field. It follows from Proposition 3.1(b) that LFur �=
Fsep. Hence we can take a finite Galois extension N of F such that N �⊆ LFur.
Denote the maximal elementary p-abelian Galois extension of N by N [p]. It is a
Galois extension of F . Set K = L∩N and M = L∩N [p]. Then N �⊆ KFur, i.e.,
the extension N/K has a non-trivial inertia group. Since Gal(N/K) is solvable,
we may therefore find an intermediate field K ⊆ N0 ⊂ N such that N/N0 is a
totally ramified extension of prime degree. By Lemma 3.2(b), N/(N0 + ℘(N))
is infinite. Hence so is N/(K + ℘(N)).

By the Artin–Schreier theory, the dual of the natural homomorphism
K/℘(K) → N/℘(N) may be canonically identified with the restriction homo-
morphism Gal(N [p]/N) → Gal(K[p]/K). Since the cokernel N/(K + ℘(N)) of
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the former homomorphism is infinite, so is the kernel Gal(N [p]/K[p]N) of the
latter homomorphism.

Now the group Gal(M/K) ∼= Gal(MN/N) is an epimorphic image of
Gal(N [p]/N), hence M ⊆ K[p]. It follows that Gal(N [p]/MN) is infinite. Since
it is an elementary abelian p-group, it is not cyclic. Therefore the p-Sylow sub-
groups of Gal(LN [p]/L) ∼= Gal(N [p]/M) are not cyclic (note that as N [p]/F is
Galois, so are LN [p]/L and N [p]/M). It follows that Sylp(GL) is not cyclic. On
the other hand, GL/(GL ∩ V ) embeds in G/V ∼= (Ẑ/Zp)×|Ẑ, hence its p-Sylow
subgroups are cyclic. Conclude that H ∩ V = GL ∩ V �= 1, as required. 
�

4. The main results

We still fix a local field F = Fq((t)) of characteristic p > 0.

Theorem 4.1. Let K be a field with GK
∼= GF . There exists a Henselian

valuation v on K such that:
(a) (Γv : lΓv) = l for all primes l �= p;
(b) char K̄v = p.

Proof. Fix an isomorphism σ: GK → GF . For a separable extension E of K let
E′ denote the separable extension of F such that σGE = GE′ .

Let l �= p be a prime number. Then cdl(GK) = cdl(GF ) = 2 [S, II-15, Prop.
12], so charK �= l [S, II–4, Prop. 3]. Fix a finite separable extension El of K
such that El, E

′
l contain µl, and contain

√
−1 if l = 2. Then for every finite

separable extension E of El one has

GE(l) ∼= GE′(l) ∼= 〈σ, τ | στσ−1 = τps〉pro−l,

for some s = s(E) ≥ 1 such that ps ≡ 1 mod l (namely, ps is the cardinality of
the residue field of E′; see §1). Proposition 2.3 gives rise to a Henselian valuation
vl on K such that Γvl

/l ∼= Z/l, char K̄vl
�= l, and K̄vl

is not algebraically closed.
By Proposition 2.4, the valuations vl, l �= p, are pairwise comparable. It fol-

lows that
⋂

l �=p Ovl
is a Henselian valuation ring on K. Let v be the corresponding

valuation on K. For every prime number l �= p the fact that Ov ⊆ Ovl
implies

that Γvl
is an epimorphic image of Γv; hence dimFl

(Γv/l) ≥ dimFl
(Γvl

/l) = 1.
Moreover, Z2

l �≤ GEl
(l) [E1, Lemma 4.1]. We conclude as before using [E1,

Lemma 1.2] and the considerations of §1 that dimFl
(Γv/l) = 1, proving (a).

To prove (b), let Tv, Vv be the inertia and ramification groups, respectively,
of v in Ksep/K. For every prime number l �= p, char K̄v, part (a) gives
Syll(Tv/Vv) ∼= Zl. In particular, Tv/Vv is non-trivial. Now the closed normal
subgroup σ−1(V ) of GK is free pro-p of infinite rank. According to Proposi-
tion 3.3 it intersects every non-trivial closed normal subgroup of GK . Thus
Tv ∩ σ−1(V ) �= 1. Since a free pro-p group of rank ≥ 2 does not have non-trivial
abelian closed normal subgroups, Tv∩σ−1(V ) is non-abelian. Therefore Sylp(Tv)
is non-abelian, which can happen only when char K̄v = p. 
�
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Lemma 4.2. Let H be a profinite group such that cdp(H) ≤ 1 and such that
Syll(H) ∼= Zl for all primes l �= p. Then H(p′) ∼= Ẑ/Zp.

Proof. By [S, I-23, Prop. 16] and [FJ, Cor. 20.14], H embeds as a closed subgroup
of a free profinite group F̂ . Now any closed subgroup of F̂ isomorphic to Zl,
l �= p, is mapped bijectively by the canonical projection F̂ → F̂ (ab, p′). Since the
induced homomorphism H → F̂ (ab, p′) breaks through H(ab, p′), any l-Sylow
subgroup of H is mapped bijectively onto an l-Sylow subgroup of H(ab, p′). It
follows that H(ab, p′) ∼=

∏
l �=p Zl

∼= Ẑ/Zp. Since cd(Ẑ/Zp) ≤ 1, the projection
H(p′) → H(ab, p′) has a continuous homomorphic section. Then H(p′) and
the image of this section have the same l-Sylow subgroups, hence they coincide.
Thus H(p′) ∼= Ẑ/Zp. 
�

Proposition 4.3. Let K and v be as in Theorem 4.1 and let l �= p be a prime
number. Then:

(a) GK̄v
(p′) ∼= Ẑ/Zp.

(b) For s ≥ 0, µls ⊆ K̄v(µl) if and only if µls ⊆ Fq(µl).
(c) If µl ⊆ K̄v then µl ⊆ Fq.
(d) Sylp(GK̄v

) is a non-trivial free pro-p group.

Proof. Fix an l-Sylow extension (El, vl) of (K, v) relative to Ksep. Denote its
residue field by Ēl. Then GĒl

∼= Syll(GK̄v
). One has µl ⊆ El and µl ⊆ Ēl.

Also, the l-primary component of Γvl
/Γv is trivial. Hence [E2, Lemma 2.4(b)]

and Theorem 4.1(a) give (Γvl
: lΓvl

) = (Γv : lΓv) = l. Take 1 ≤ s ≤ ∞
such that Im(χĒl,l) = 1 + lsZl (where we make the convention l∞ = 0). Then
GEl

∼= Zl×|GĒl
, where any σ ∈ GĒl

acts on the generator τ of Zl according to
στσ−1 = χĒl,l(σ)τ (see §1). It follows that GEl

(ab) ∼= (Zl/ls)×GĒl
(ab).

The same analysis holds for F , so we obtain that GFl
(ab) ∼= (Zl/ls

′
) × Zl,

where Fl and s′ are defined in a similar manner. Since the residue field F̄l of Fl

is the l-Sylow extension of Fq, it does not contain µl∞ . Hence s′ <∞. If s =∞
then we would obtain that GĒl

(ab) ∼= Zl/ls
′
, which is impossible at positive

characteristic. We conclude that s = s′ < ∞ and GĒl
(ab) ∼= Zl. It follows

that Ēl, F̄l contain the same roots of unity of l-power order, and GĒl
∼= Zl. As

cdp(GK̄v
) ≤ 1 [S, II-4, Prop. 3], (a) follows from Lemma 4.2.

To prove (b) it remains to observe that µls ⊆ K̄v(µl) if and only if µls ⊆ Ēl,
and likewise for Fq and F̄l.

To prove (c) assume that µl ⊆ K̄v and µl �⊆ Fq. Then GK(l) ∼= Zl×|Zl �∼= Zl

(§1). On the other hand, GF (l) ∼= GFq (l) ∼= Zl [E2, Lemma 2.1], a contradiction.
Finally, we prove (d). By [S, I-37, Cor. 2], Sylp(GK̄v

) is indeed a free pro-p
group. Suppose that it is trivial. Then the maximal pro-p Galois extension of
Fp is contained in F̃p ∩ K̄v. However, (b) and (c) imply that F̃p ∩ K̄v ⊆ Fq, a
contradiction. 
�
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Theorem 4.4. Let K and v be as in Theorem 4.1 and suppose that charK = 0.
Then:

(a) Γv = pΓv;
(b) K̄v is perfect.

Proof. For any algebraic extension E of K(µp) the p-torsion part of Br(E) is
isomorphic to H2(GE , Z/p) = H2(GE′ , Z/p) = 0 ([S, II–4, Prop. 3]; here E′ is as
before the extension of F corresponding to E with respect to a fixed isomorphism
σ: GK → GF ). It follows that for every Galois extension M of E of degree p, the
norm homomorphism NM/E : M× → E× is surjective (see e.g. [M, Th. 15.7]).

To prove (a), let E = K(µp) and let u be the unique extension of v to E. By
Proposition 4.3, K̄v contains only finitely many roots of unity. Hence so does its
finite extension Ēu. It follows that Gal(F̃pĒu/Ēu) ∼= Ẑ. Therefore there is an
unramified extension (L, w) of (E, u) of degree p; thus Γw = Γu. By [E1, Lemma
1.2] and by Lemma 2.5 (for the extension L/E), (Γv : pΓv) = (Γu : pΓu) = 1, as
required.

To prove (b), let Tv, Vv be again the inertia and ramification groups, respec-
tively, of v in GK . By Proposition 3.3, Tv ∩ σ−1(V ) �= 1. From Theorem
4.1(b) we get p � (Tv : Vv). Since V is pro-p, these two facts imply that the
pro-p group Vv is non-trivial. Therefore we can take a tower of finite extensions
K(µp) ⊆ E ⊂M such that M/E is a wildly ramified extension of degree p. Then
the residue field extension M̄/Ē is trivial. The surjectivity of NM/E : M× → E×

established above implies that Ē = M̄p = Ēp; i.e., Ē is perfect. Hence so is
K̄v. 
�

5. Constructions

We conclude by showing that various restrictions made in our main results in
§4 are indeed necessary.

Example 5.1. For every positive integer r we construct a Henselian valued field
(Kr, ur) of characteristic p such that GKr

∼= GF and Γur/p ∼= (Z/p)r.
We first construct inductively countable Henselian discretely valued fields

(Kr, vr) as follows: Let (K1, v1) be a Henselization of Fq(t1) with respect to the
discrete valuation with uniformizer t1. Assuming that (Kr, vr) has already been
defined, let Lr be a maximal totally tamely ramified extension of it. Then the
(supernatural) degree [Lr : Kr] is prime to p. Let (Kr+1, vr+1) be a Henselization
of Lr(tr+1) with respect to its discrete valuation with uniformizer tr+1. Since
both Lr and Kr are countable, Proposition 1.3 implies that GKr+1

∼= GKr .
Next we construct the valuations ur on Kr inductively as follows: Take u1 =

v1. Assuming that ur has already been defined, let wr be its unique prolongation
to Lr. Let ur+1 be the refinement of vr+1 such that the residue valuation
ur+1/vr+1 on Lr is wr [R]. Since both wr and vr+1 are Henselian, so is ur+1 [R,
pp. 210–211]. One has an exact sequence

0 → Γwr → Γur+1 → Γvr+1 → 0
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of ordered abelian groups, and Γwr is convex in Γur+1 . We obtain an exact
sequence of abelian groups

0 → Γwr/p → Γur+1/p → Γvr+1/p → 0.

Since the p-primary part of Γwr/Γur is trivial, Γwr/p ∼= Γur/p ∼= (Z/p)r [E2,
Lemma 2.4(b)]. Combining this with Γvr+1/p ∼= Z/p, we conclude that
Γur+1/p ∼= (Z/p)r+1, as desired.

In fact, Kr, Lr embed in a maximal totally tamely ramified extension (Mr, wr)
of the r-dimensional local field Fq((t1)) · · · ((tr)) with its canonical discrete val-
uation of rank r (see [FV, Appendix B]). By considering the restrictions of wr

to these fields one can obtain an alternative proof that Γur/p ∼= (Z/p)r.

Example 5.2. There exists a Henselian discretely valued field (K, v) of char-
acteristic p such that GK

∼= GF , K̄v is imperfect, and GK̄v
�∼= Ẑ. Indeed,

take (K, v) = (K2, v2) (with terminology as in Example 5.1). Then K̄v = L1.
Since K1 is imperfect, so is its separable extension L1. According to §1, GL1

∼=
Fp(µ̂×|GFq ;ℵ0)×|GFq . In particular, Sylp(GL1) has infinite rank. Conclude that
GK̄v

= GL1 �∼= Ẑ.

Example 5.3. Let (K, v) be a complete discretely valued field. Suppose that
char K̄v = p, |K̄v| ≤ ℵ0, GK̄v

∼= Ẑ, and K̄v has the same group of roots of unity
as Fq (e.g., this happens when K is a finite extension of Qp with residue field
Fq). Let L/K be an arithmetically profinite totally ramified extension (for the
definitions see [Wi] or [FV, Ch. III, §5]). In particular, if [L : K] =

∏
l l

n(l),
then n(p) =∞ and

∑
l �=p n(l) <∞. The theory of fields of norms of Fontaine–

Wintenberger [Wi, 3.2.3] implies that GL
∼= GK̄v((X)). By Corollary 1.2, the

latter group is isomorphic to GF . If u is the extension of v to L, then Γu = pΓu

and Γu/l ∼= Z/l for l �= p prime.

Remark 5.4. Let M be an n-dimensional local field such that its canonical
valuation of rank n has residue characteristic p (cf. [FV, Appendix B]). From
the discussion in §1 it follows that for every prime number l �= p one has

GM (l) ∼= 〈σ, τ1, . . . , τn | στiσ
−1 = τ q

i , τiτj = τjτi〉pro−l.

Now let K be a field such that GK
∼= GM . Similarly to the proof of Theorem 4.1

one can show that there is a Henselian valuation v on K such that (Γv : lΓv) = ln

for all primes l �= p and such that char K̄v = p or 0.
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