
Mathematical Research Letters 6, 335–343 (1999)

CONSTRUCTION OF VALUATIONS FROM K-THEORY

Ido Efrat

Abstract. In this expository paper we describe and simplify results of Arason,
Elman, Hwang, Jacob, and Ware on the construction of valuations on a field using
K-theoretic data.

Introduction

Several recent developments in arithmetic geometry are based on the con-
struction of valuations on a field just from the knowledge of its absolute Galois
group. For instance, this is a main ingredient in Pop’s proof of the 0-dimensional
case of Grothendieck’s “anabelian conjecture”, saying that any two fields which
are finitely generated over Q and which have isomorphic absolute Galois groups
are necessarily isomorphic; see [P2]–[P4], [S]. Other examples are the character-
ization of the fields with a p-adic absolute Galois group as the p-adically closed
fields ([E], [K]; see also [N], [P1]), and the analogous result for local fields of
positive characteristic [EF].

In the earlier approaches to such results, valuations were detected by means of
various local-global principles for Brauer groups (or higher cohomology groups)
— often in combination with model-theoretic tools (c.f., [N], [P1]–[P3], [S]). A
different approach is introduced in [E]: there one uses an explicit and elementary
construction of valuations which emerged in the mid-1970’s in the theory of
quadratic forms. It originates from Bröcker’s “trivialization of fans” theorem on
strictly-pythagorean fields [Br], i.e., real fields K such that K2+aK2 ⊆ K2∪aK2

for all a ∈ K \ (−K2). By Bröcker’s result, such a field has a valuation with very
special properties: e.g., its value group is non-2-divisible, its residue field is real,
and its principal units are squares. An explicit construction of these valuations
was given by Jacob [J] (in the more general context of fans on pythagorean fields).
This construction was extended to arbitrary fields by Ware [Wr], and later by
Arason, Elman, and Jacob [AEJ]; see [En] for a related result. Roughly speaking,
all these results show that if the quadratic forms over the field “behave” as if
it possesses a valuation with non-2-divisible value group, residue characteristic
�= 2, and such that its principal units are squares, then (apart from a few obvious
exceptions) such a valuation actually exists.
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In the case of an odd prime number p and a field K of characteristic �= p con-
taining a primitive pth root of unity, Hwang and Jacob [HJ] give an analogous
construction of valuations with non-p-divisible value group, residue character-
istic �= p, and for which the principal units are pth powers. Here the role of
quadratic forms is played by certain cohomological structures: the symbolic
pairings K×/p ⊗Z K×/p → pBr(K), where pBr(K) is the p-torsion part of the
Brauer group of K (see also [Bo] and [K] for related constructions).

In this expository paper we give a unified and somewhat simplified presenta-
tion of these important constructions. Our approach is completely elementary;
in particular, we do not use cohomology, nor non-commutative division rings.
Further, we do not assume the existence of primitive pth roots of unity in the
field. The cohomological structures above are replaced here by the second Mil-
nor K-group KM

2 (K) of K, i.e., the quotient of the Z-algebra K×⊗Z K× by the
ideal generated by all elements of the form x⊗ (1− x), where 0, 1 �= x ∈ K, and
the natural projection K× ⊗Z K× → KM

2 (K), x ⊗ y 	→ {x, y}.
Main Theorem. Let p be a prime number, let K be a field of characteristic
�= p, and let T be a subgroup of K× containing (K×)p and −1. Suppose that:

(i) if x ∈ K× \ T and y ∈ T \ Kp then {x, y} �= 0;
(ii) if the cosets of x, y ∈ K× in K×/T are Fp-linearly independent then

{x, y} �= 0.
Then there exists a valuation ring O on K with value group Γ, maximal ideal
m, and residue field K̄ such that (Γ : pΓ) ≥ (K× : T )/p, 1 − m ⊆ Kp, and
char K̄ �= p. Furthermore, if K̄ = K̄p then (Γ : pΓ) ≥ (K× : T ).

For a somewhat stronger result see Theorem 4.1.
Needless to say, most ingredients of the proof herein presented already appear

in the above-mentioned works. The novelty of this note is mainly in the different
organization of the material. We hope that it will make this powerful construc-
tion more easily accessible to Galois-theorists. In particular, the construction in
this form is already used in [EF].

I thank Ivan Fesenko for the encouragement to publish this manuscript, and
for his helpful remarks.

1. The sets O+, O−

From now on we fix a field K and a subgroup T of K×. Let

A =
{
x ∈ K× | T − xT �⊆ T ∪ −xT

}
,

and let B = 〈−1, A〉 be the subgroup of K× generated by −1 and A.

Remark 1.1.
(i) If x ∈ T then 0 ∈ T − xT while 0 �∈ T ∪ −xT . Thus T ⊆ A.
(ii) For x ∈ K× one has x ∈ A if and only if x−1 ∈ A.
(iii) If x ∈ K×\T and 1−x �∈ T∪−xT then 1−x ∈ A: indeed, x ∈ T−(1−x)T

but x �∈ T ∪ −(1 − x)T .
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Given a subgroup S of K× we denote O−(S) = (1 − T ) \ S.

Lemma 1.2. If z, w ∈ O−(B) then either zw ∈ 1 − T or 1 − zw ∈ zT = wT .

Proof. One has −z,−w �∈ B, so

1 − zw = (1 − z) + z(1 − w) ∈ T + zT ⊆ T ∪ zT

1 − zw = (1 − w) + w(1 − z) ∈ T + wT ⊆ T ∪ wT. �

Proposition 1.3. Suppose that there exist a, b ∈ O−(B) with 1−ab �∈ T . Then:
(a) O−(〈B, a〉)O−(〈B, a〉) ⊆ 1 − T ;
(b) A = T ;
(c) T − a2T �⊆ T ∪ a2T .

Proof. (a) Let H = 〈B, a〉. Lemma 1.2 implies that 1− ab ∈ aT = bT , whence
b ∈ H. Suppose that 0 �= x, y ∈ O−(H) but xy �∈ 1 − T . As a, b ∈ H, x, y �∈ H,
and T ≤ H, Lemma 1.2 implies that ax, by ∈ 1 − T . Furthermore, ax, by �∈ H,
so ax, by ∈ O−(B). As ay−1 �∈ H, also ay−1 �∈ A. Hence one of the following
cases holds:

Case (i): ay−1 ∈ 1− T . Then ay−1 ∈ O−(B) and (ay−1)(by) = ab �∈ 1− T .
By Lemma 1.2, 1 − ab ∈ ay−1T , contrary to 1 − ab ∈ aT and y �∈ H.

Case (ii): a−1y ∈ 1−T . Then a−1y ∈ O−(B) and xy = (ax)(a−1y) �∈ 1−T .
By applying Lemma 1.2 twice we obtain 1− xy ∈ xT ∩ axT , contrary to a �∈ B.

(b) By Remark 1.1 (i), T ⊆ A. Conversely, take x ∈ A. Suppose x �∈ T .
After replacing x by an appropriate element of xT , we may assume that 1−x �∈
T ∪ −xT .

By Remark 1.1 (iii), 1 − x ∈ A ⊆ B. Since x ∈ B and a �∈ B we have
xa,−(1 − x)a �∈ B. In particular, xa,−(1 − x)a �∈ A. Therefore

1 − xa ∈ T − xaT ⊆ T ∪ −xaT

1 − xa ∈ T + (1 − x)aT ⊆ T ∪ (1 − x)aT .

By the choice of x, the cosets −xaT and (1−x)aT are disjoint. Hence 1−xa ∈ T ,
so xa ∈ O−(B).

Since also x−1 ∈ A (Remark 1.1 (ii)) and since 1 − x−1 �∈ T ∪ −x−1T , the
same argument (with x, a replaced by x−1, b) shows that x−1b ∈ O−(B). As
ab = (xa)(x−1b) �∈ 1 − T , Lemma 1.2 implies that 1 − ab ∈ aT ∩ xaT . This
contradicts x �∈ T .

(c) As already noted, 1 − ab ∈ aT = bT and a �∈ T . Hence 1 − ab ∈ T − a2T
but 1 − ab �∈ T ∪ a2T . �

Next we define a group H as follows:
• If O−(B)O−(B) ⊆ 1 − T then we take H = B;
• If O−(B)O−(B) �⊆ 1−T then we choose a ∈ O−(B) such that aO−(B) �⊆

1 − T and set H = 〈B, a〉.
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Thus ±T ≤ ±A ≤ B ≤ H. We abbreviate O− = O−(H), and let

O+ = {x ∈ H | xO− ⊆ O−}.

Proposition 1.4.

(a) O−O− ⊆ 1 − T .
(b) 1 − O− ⊆ O+.
(c) O−O− ⊆ 1 − O+.
(d) (1 − O+) ∩ H ⊆ O+.
(e) (1 − O+) \ H ⊆ O−.

Proof. (a) follows from Proposition 1.3 (a). For 1 �= y ∈ K let ỹ = y/(y − 1).
Then y 	→ ỹ maps K \{0, 1} onto itself. Moreover, y ∈ O− if and only if ỹ ∈ O−.
We use the identity

1 − xy = (1 − (1 − x)ỹ)(1 − y), (∗)

for y �= 1.

(b) Take x ∈ 1 − O− and y ∈ O−. By (∗) and (a), 1 − xy ∈ (1 − O−O−)T ⊆
TT = T . Since x ∈ T ≤ H and y �∈ H this implies xy ∈ O−. Conclude that
x ∈ O+.

(c) Let x, y ∈ O−. By (∗) and (b),

1 − xy ∈ (1 − (1 − O−)O−)(1 − O−) ⊆ (1 − O+O−)O+

⊆ (1 − O−)O+ ⊆ O+O+ ⊆ O+.

(d) Suppose that x ∈ (1 − O+) ∩ H and y ∈ O−. By (∗),

1 − xy ∈ (1 − O+O−)(1 − O−) ⊆ (1 − O−)(1 − O−) ⊆ TT = T.

As xy �∈ H, this shows that xy ∈ O−, whence x ∈ O+.

(e) If x ∈ (1 − O+) \ H then x �∈ A, so 1 − x ∈ H ∩ (T ∪−xT ) = T . Conlcude
that x ∈ O−. �

2. The valuation O

Let A, H, O−, O+ be as in §1, and let O = O− ∪ O+.

Proposition 2.1. O is a valuation ring on K.

Proof. We apply (a)–(e) of Proposition 1.4.
By definition, O+O− ⊆ O− and O+O+ ⊆ O+. As O−O− ⊆ 1 − T also

O−O− \ H ⊆ O−. Finally, O−O− ∩ H ⊆ (1 − O+) ∩ H ⊆ O+. Conclude that
OO ⊆ O.
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Next we show that for every 0 �= x ∈ K either x ∈ O or x−1 ∈ O. Indeed,
if x �∈ H then x �∈ A, so either 1 − x ∈ T or 1 − x−1 ∈ T . Thus either
x ∈ O− or x−1 ∈ O− in this case. If x ∈ H\ ∈ O+ then there exists y ∈ O−

such that xy �∈ O−. By what we have just seen, (xy)−1 ∈ O−. Consequently,
x−1 = (xy)−1y ∈ O−O− ⊆ OO ⊆ O, as desired. In particular, ±1 ∈ O.

As 1 − O− ⊆ O+, (1 − O+) ∩ H ⊆ O+, and (1 − O+) \ H ⊆ O−, we have
1 − O ⊆ O.

For 0 �= x, y ∈ O we show that x + y ∈ O. By symmetry we may assume that
−x−1y ∈ O. Then 1 + x−1y ∈ 1 − O ⊆ O. Therefore x + y = x(1 + x−1y) ∈
OO ⊆ O.

The assertion follows. �

Proposition 2.2. O× ≤ H.

Proof. Otherwise there exists x ∈ O× \ H. In particular, x ∈ O−, so 1 − x ∈ T .
Hence 1 − x−1 ∈ −x−1T , and therefore 1 − x−1 �∈ T . Conclude that x−1 �∈ O−,
contrary to x ∈ O× \ H. �

We denote the maximal ideal of the valuation O by m.

Proposition 2.3. 1 − m ≤ T .

Proof. By definition, 1 − O− ⊆ T . So let x ∈ O+ ∩ m; we show that x ∈ 1 − T .
As x−1 ∈ H \ O+ we have x−1y �∈ O− for some y ∈ O−. Since x−1y �∈ H
this implies x−1y �∈ O. Hence xy−1 ∈ O \ H = O−. By Proposition 1.4 (a),
x = (xy−1)y ∈ O−O− ⊆ 1 − T . �

Fix a prime number p.

Lemma 2.4. If 1 − (m \ H) ⊆ (K×)p then 1 − m ⊆ (K×)p.

Proof. Take m ∈ m∩H. Since m−1 �∈ O+ there exists y ∈ O− such that m−1y �∈
O−. As m−1y �∈ H this means that m−1y �∈ O. Then y, y−1m ∈ O \H ⊆ m, by
Proposition 2.2. By Proposition 2.3, 1 + y−1m − m ∈ 1 − m ≤ T ≤ H. Since
y ∈ m \ H this implies y + m − ym ∈ m \ H. By assumption, (1 − y)(1 − m) =
1 − (y + m − ym) ∈ (K×)p. Also, 1 − y ∈ 1 − (m \ H) ⊆ (K×)p. Hence
1 − m ∈ (K×)p. �

Corollary 2.5. Suppose that for every x ∈ K× \ H and every y ∈ T \ (K×)p

one has {x, y} �= 0. Then 1 − m ⊆ (K×)p.

Proof. Let x ∈ m \ H. Then x ∈ O−, so 1 − x ∈ T . As {x, 1 − x} = 0 we have
1 − x ∈ (K×)p. Now apply Lemma 2.4. �

Lemma 2.6. Suppose that p ∈ m and 1−m ⊆ (K×)p. Then m \ pm ⊆ (K×)p.

Proof. Given x ∈ 1 − m, we may write x = yp with y ∈ O×. The residues x̄, ȳ
then satisfy 1̄ = x̄ = ȳp. Since charO/m = p, necessarily ȳ = 1̄, i.e., y ∈ 1 − m.
Thus 1 − m = (1 − m)p.
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Now let a ∈ m \ pm. By what we have just seen, there exists b ∈ m such that
1+a = (1+b)p ∈ 1+bp−pm. Since a �∈ pm this implies a ∈ bp(1−m) ⊆ (K×)p.

�
From now on we assume that (K×)p ≤ T .

Corollary 2.7. If 1 − m ⊆ (K×)p and charK �= p then p �∈ m.

Proof. Suppose p ∈ m. Lemma 2.6 then shows that p ∈ m \ pm ⊆ (K×)p ≤ H.
Since p−1 �∈ O+, there exists a ∈ O− such that p−1a �∈ O. By Proposition 2.2,
O× ≤ H, so a ∈ m \ pm. Lemma 2.6 once again gives a ∈ (K×)p ≤ H, a
contradiction. �

3. The size of H

In order to prove the non-triviality of O in various situations one needs an
estimate on the size of (H : T ). This is obtained in Corollary 3.3 below. For its
proof we need two technical facts.

Lemma 3.1. Let ∆ be an elementary abelian p-group and let ω: ∆ → Z/p be a
map such that:

(i) if a, b ∈ ∆ are Fp-linearly independent and at least one of ω(a), ω(b) is
non-zero then ω(ab) = ω(a)ω(b);

(ii) there exist Fp-linearly independent a, b ∈ ∆ such that ω(a), ω(b) �= 0.
Then 1 ∈ Im(ω).

Proof. Take a, b as in (ii). From (i) we obtain inductively that

ω(aib) = ω(a)iω(b) �= 0,

i = 1, . . . , p−1. Since (Z/p)× has order p−1 this gives in particular ω(ap−1b) =
ω(b). Moreover, ω(ap−1)ω(b) = ω(ap−1b) by (i). Hence ω(ap−1) = 1. �
Proposition 3.2. Assume that for every x ∈ K× \T one has 1−x ∈

⋃p−1
i=0 xiT .

Suppose that the cosets of a, b ∈ K× in K×/T are Fp-linearly independent. Then
1 − a ∈ T ∪ aT or 1 − b ∈ T ∪ bT .

Proof. For every x ∈ K× \ T there exists by assumption a unique 0 ≤ i ≤ p − 1
such that 1 − x ∈ xiT . When i �= 0 let 0 ≤ ω(x) ≤ p − 1 be the unique integer
such that w(x) ≡ 1 − i−1 (mod p). When i = 0 we set ω(x) = 0. Note that
ω(x) = 0 if and only if 1 − x ∈ T ∪ xT . Also, 1 �∈ Im(ω).

We apply Lemma 3.1 with ∆ = K×/T . It suffices to show that if the cosets
of a, b ∈ K× in K×/T are Fp-linearly independent and at least one of ω(a), ω(b)
is non-zero then ω(ab) ≡ ω(a)ω(b) (mod p).

Take 0 ≤ i, j, r ≤ p − 1 such that 1 − a ∈ aiT , 1 − b ∈ bjT , 1 − ab ∈ (ab)rT .
The assumptions imply that i �= 1 or j �= 0. Hence

1 − ab = (1 − a) + a(1 − b) ∈ ai(T − a1−ibjT ) ⊆
p−1⋃

k=0

ai(a1−ibj)kT.
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Therefore, (ab)rT ∩ ai(a1−ibj)kT �= ∅ for some 0 ≤ k ≤ p − 1. Since a, b
are independent modulo T one has r ≡ i + (1 − i)k ≡ jk (mod p). Then
r(i + j − 1) ≡ jk(i + j − 1) ≡ ij (mod p).

If r �= 0 then also i, j �= 0 and 1 − r−1 ≡ (1 − i−1)(1 − j−1) (mod p); i.e.,
ω(ab) ≡ ω(a)ω(b) (mod p), as required.

If r = 0 then either i = 0 or j = 0, so either ω(ab) = ω(a) = 0 or ω(ab) =
ω(b) = 0, and we are done again. �

Corollary 3.3. Suppose that −1 ∈ T and that for every x ∈ K× \ T one has
1 − x ∈

⋃p−1
i=0 xiT . Then (H : T )|p.

Proof. By Proposition 3.2, (B : T )|p. Now if O−(B)O−(B) ⊆ 1−T then H = B,
so (H : T )|p. If O−(B)O−(B) �⊆ 1−T then A = T , by Proposition 2.2(b); hence
B = T , so (H : T ) = (H : B) = p. �

4. The main result

By combining the previous results we now obtain:

Theorem 4.1. Let K be a field and let (K×)p ≤ T ≤ K× be an intermediate
group. Suppose that:

(i) if x ∈ K× \ T and y ∈ T \ Kp then {x, y} �= 0;
(ii) if −1 ∈ T and if the cosets of x, y ∈ K× in K×/T are Fp-linearly

independent then {x, y} �= 0.

Then O above is a valuation ring. Furthermore, let m, K̄, and Γ, be its maximal
ideal, residue field, and value group, respectively. Then:

(a) 1 − m ⊆ (K×)p;
(b) if charK �= p then also char K̄ �= p;
(c) if −1 ∈ T then (O×T : T ) ≤ p;
(d) if −1 �∈ T then (O×B : B) ≤ 2;
(e) if −1 ∈ T then (Γ : pΓ) ≥ (K× : T )/p;
(f) if −1 �∈ T then (Γ : 2Γ) ≥ (K× : B)/2;
(g) if K̄ = K̄p and −1 ∈ T then (Γ : pΓ) ≥ (K× : T );
(h) if K̄ = K̄p and −1 �∈ T then (Γ : 2Γ) ≥ (K× : B).

Proof. By Proposition 2.1, O is a valuation ring. Assumption (i) and Corollary
2.5 prove (a). Corollary 2.7 proves (b). By Proposition 2.2, O× ⊆ H.

Suppose that −1 ∈ T . For every x ∈ K× \T one has {x, 1−x} = 0, so by (ii),
1 − x ∈

⋃p−1
i=0 xiT . Corollary 3.3 now gives (H : T )|p, whence (c). Furthermore,

(Γ : pΓ) = (K× : O×(K×)p) ≥ (K× : H) ≥ (K× : T )/p,

proving (e).
To prove (g), suppose that K̄ = K̄p. By Lemma 2.3, O× = (1−m)(O×)p ≤ T .

If H = O×(K×)p then H ≤ T ; hence H = T , so (Γ : pΓ) = (K× : T ), and we
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are done in this case. On the other hand, if H > O×(K×)p then the inequalities
above show that (Γ : pΓ) > (K× : T )/p. Thus (g) holds in this case as well.

When −1 �∈ T we have p = 2 and (H : B) ≤ 2. Assertions (d),(f), and (h)
are then proven similarly to (c), (e), and (g). �

Remark 4.2. If p = 2 and −1 ∈ T then assumption (ii) of Theorem 4.1 implies
that for every x ∈ K× \ T one has 1 − x ∈ T ∪ xT . Hence T = A = B. This
shows that the Main Theorem as stated in the introduction is a special case of
Theorem 4.1.

Example 4.3. Let p be a prime number and let K be a field. Suppose that
the canonical symbolic map induces an isomorphism ∧2(K×/p) ∼= KM

2 (K)/p.
Then (i) and (ii) of Theorem 4.1 hold with T = (K×)p. Hence K possesses a
valuation satisfying (a)–(g) above.

In particular, this happens for K = Fl((t1)) · · · ((tn)), where l is a prime
number such that p|l − 1 and such that 4|l − 1 if p = 2 [Wd, §2]. Then Fl

contains a primitive pth root of unity, and (K× : (K×)p) = pn+1 [Wd, Lemma
1.4]. Moreover, the value group Γ of every valuation on K satisfies (Γ : pΓ) ≤
pn. This shows that condition (e) of Theorem 4.1 cannot be strengthened to
(Γ : pΓ) ≥ (K× : T ).

We conclude by proving a criterion for the existence of valuations having
arbitrary residue characteristic:

Theorem 4.4. Let p be an odd prime and let K be a field. The following
conditions are equivalent:

(a) There exists a valuation v on K with non-p-divisible value group;
(b) There exists an intermediate group (K×)p ≤ T < K× such that for every

x ∈ K× \ T one has 1 − x ∈ T ∪ xT .

Proof. (a)⇒(b): Let T = v−1(pΓ) and take x ∈ K×. When v(x) = 0 (resp.,
v(x) > 0, v(x) < 0) we have x ∈ T (resp., 1 − x ∈ T , 1 − x ∈ xT ).

(b)⇒(a): We take T as in (b). Since p �= 2 we have −1 ∈ T , so B = A = T .
Moreover, if a �∈ T then a2 �∈ T , so T − a2T ⊆ T ∪ a2T . By Proposition 1.3(c),
O−(T )O−(T ) ⊆ 1 − T , whence H = T . Propositions 2.1 and 2.2 give rise to a
valuation ring O such that O× ≤ T . Its value group Γ satisfies (Γ : pΓ) = (K× :
O×(K×)p) ≥ (K× : T ) > 1. �
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