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CONSTRUCTION OF VALUATIONS FROM K-THEORY

IDO EFRAT

ABSTRACT. In this expository paper we describe and simplify results of Arason,
Elman, Hwang, Jacob, and Ware on the construction of valuations on a field using
K-theoretic data.

Introduction

Several recent developments in arithmetic geometry are based on the con-
struction of valuations on a field just from the knowledge of its absolute Galois
group. For instance, this is a main ingredient in Pop’s proof of the 0-dimensional
case of Grothendieck’s “anabelian conjecture”, saying that any two fields which
are finitely generated over Q and which have isomorphic absolute Galois groups
are necessarily isomorphic; see [P2]-[P4], [S]. Other examples are the character-
ization of the fields with a p-adic absolute Galois group as the p-adically closed
fields ([E], [K]; see also [N], [P1]), and the analogous result for local fields of
positive characteristic [EF].

In the earlier approaches to such results, valuations were detected by means of
various local-global principles for Brauer groups (or higher cohomology groups)
— often in combination with model-theoretic tools (c.f., [N], [P1]-[P3], [S]). A
different approach is introduced in [E]: there one uses an explicit and elementary
construction of valuations which emerged in the mid-1970’s in the theory of
quadratic forms. It originates from Brocker’s “trivialization of fans” theorem on
strictly-pythagorean fields [Br], i.e., real fields K such that K2+aK? C K2UaK?
for all a € K\ (—K?). By Brocker’s result, such a field has a valuation with very
special properties: e.g., its value group is non-2-divisible, its residue field is real,
and its principal units are squares. An explicit construction of these valuations
was given by Jacob [J] (in the more general context of fans on pythagorean fields).
This construction was extended to arbitrary fields by Ware [Wr], and later by
Arason, Elman, and Jacob [AEJ]; see [En] for a related result. Roughly speaking,
all these results show that if the quadratic forms over the field “behave” as if
it possesses a valuation with non-2-divisible value group, residue characteristic
# 2, and such that its principal units are squares, then (apart from a few obvious
exceptions) such a valuation actually exists.
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In the case of an odd prime number p and a field K of characteristic # p con-
taining a primitive pth root of unity, Hwang and Jacob [HJ] give an analogous
construction of valuations with non-p-divisible value group, residue character-
istic # p, and for which the principal units are pth powers. Here the role of
quadratic forms is played by certain cohomological structures: the symbolic
pairings K*/p ®z K*/p — ,Br(K), where ,Br(K) is the p-torsion part of the
Brauer group of K (see also [Bo] and [K] for related constructions).

In this expository paper we give a unified and somewhat simplified presenta-
tion of these important constructions. Our approach is completely elementary;
in particular, we do not use cohomology, nor non-commutative division rings.
Further, we do not assume the existence of primitive pth roots of unity in the
field. The cohomological structures above are replaced here by the second Mil-
nor K-group KM (K) of K, i.e., the quotient of the Z-algebra K* ®z K* by the
ideal generated by all elements of the form x ® (1 — ), where 0,1 # x € K, and
the natural projection K* @z K* — KM(K), 2 ® y — {z,y}.

Main Theorem. Let p be a prime number, let K be a field of characteristic
# p, and let T' be a subgroup of K* containing (K*)P and —1. Suppose that:
(i) ife e K*\T andy € T\ K? then {z,y} #0;
(i) of the cosets of xz,y € K* in K*/T are F,-linearly independent then
{z,y} #0.
Then there exists a valuation ring O on K with value group I', maximal ideal
m, and residue field K such that (T : pI') > (K* : T)/p, 1 — m C KP, and
char K # p. Furthermore, if K = KP then (I : pI') > (K> : T).

For a somewhat stronger result see Theorem 4.1.

Needless to say, most ingredients of the proof herein presented already appear
in the above-mentioned works. The novelty of this note is mainly in the different
organization of the material. We hope that it will make this powerful construc-
tion more easily accessible to Galois-theorists. In particular, the construction in
this form is already used in [EF].

I thank Ivan Fesenko for the encouragement to publish this manuscript, and
for his helpful remarks.

1. The sets O, 0~
From now on we fix a field K and a subgroup 7" of K*. Let

A={zeK*|T—2T ¢ TU-zT},
and let B = (—1, A) be the subgroup of K* generated by —1 and A.

Remark 1.1.
(i) If x € T then 0 € T'— 2T while 0 ¢ TU —2T'. Thus T' C A.
(i) For z € K* one has x € A if and only if 27! € A.
(ii) Ifx € K*\T and 1—z ¢ TU—2T then 1—x € A: indeed, z € T—(1—2)T
but x ¢ TU—(1—2x)T.
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Given a subgroup S of K* we denote O~ (S)=(1-T)\ S.
Lemma 1.2. If z,w € O~ (B) then either zw € 1 =T or 1 — zw € 2T = wT.
Proof. One has —z, —w & B, so

l—zw=(1-2)+21-w)eT+2T CTUT

l—z2zw=(_1-w)+w(l—2)eT+wl CTUwWT. U

Proposition 1.3. Suppose that there exist a,b € O~ (B) with 1—ab & T'. Then:
(a) O ((B,a))O~ ({B,a)) C 1 —T;
(b) A=T;
(¢) T —a®T € T UaT.

Proof. (a) Let H = (B,a). Lemma 1.2 implies that 1 —ab € aT = bT', whence
b€ H. Suppose that 0 # x,y € O"(H) but zy ¢ 1 —-T. Asa,be H, z,y ¢ H,
and T < H, Lemma 1.2 implies that ax,by € 1 — T. Furthermore, az,by ¢ H,
so ax,by € O~ (B). Asay~! ¢ H, also ay~! ¢ A. Hence one of the following
cases holds:

CASE (1): ay ' €1—-T. Thenay '€ O (B)and (ay~')(by) =abg 1-T.
By Lemma 1.2, 1 — ab € ay~'T, contrary to 1 —ab € aT and y ¢ H.

Case (11): a 'ye1-T. Thena 'ye O (B)andzy = (az)(a"ty) ¢ 1-T.
By applying Lemma 1.2 twice we obtain 1 — zy € T NaxT, contrary to a &€ B.

(b) By Remark 1.1 (i), 7' € A. Conversely, take x € A. Suppose z ¢ T.
After replacing x by an appropriate element of 21", we may assume that 1 —x &
TU—2T.

By Remark 1.1 (iii), 1 —x € A C B. Since z € B and a ¢ B we have
za,—(1 —x)a ¢ B. In particular, za, —(1 — x)a ¢ A. Therefore

l—xza€eT —xal CTU—xal
l—zaceT+(1—z)aT CTU(1—2xz)aT

By the choice of x, the cosets —zaT and (1—x)aT are disjoint. Hence 1—za € T,
so za € O~ (B).

Since also 27! € A (Remark 1.1 (ii)) and since 1 — =1 ¢ T U —27'T, the
same argument (with z,a replaced by 7!, b) shows that x7'b € O~ (B). As
ab = (za)(z7'b) ¢ 1 — T, Lemma 1.2 implies that 1 — ab € aT N xaT. This
contradicts z & T'.

(c) As already noted, 1 —ab € aT = bT and a ¢ T. Hence 1 —ab € T — T
but 1 —ab ¢ T Ua?T. ]

Next we define a group H as follows:
o If O7(B)O™ (B) C1—T then we take H = B;
o If O~ (B)O™ (B) € 1-T then we choose a € O~ (B) such that aO~ (B) €
1 —T and set H = (B, a).
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Thus £7 < +A < B < H. We abbreviate O~ = O~ (H), and let
Of={zreH |20 CO}.

Proposition 1.4.

(a) OO~ C1-T.
(b) 1-O~ CO™.
(c) OTO~ C1-0".
(d) 1-0T)NnHCO".
(e) (

1-O"\HCO" .
Proof. (a) follows from Proposition 1.3 (a). For 1 #y € K let g =y/(y — 1).
Then y — ¢ maps K\ {0, 1} onto itself. Moreover, y € O~ if and only if § € O~
We use the identity

L—ay=(1-1-2)y)(1-y), (%)
for y # 1.

(b) Takezx €1 -0~ andy € O~. By (x) and (a), 1l —zy € (1-0~07)T C
TT =T. Since x € T < H and y ¢ H this implies xy € O~. Conclude that
zeOT.

(c) Letx,y € O". By (*) and (b),
l-2yc(1-(1-07)0O)1-0")C(1-0T0")O"
C(1-07)0t cotot cot.
(d) Suppose that 2 € (1 —OF)N H and y € O~. By (%),
l-2ye(1-0T07)1-0")C(1-0")1-0")CTT=T.
As xy ¢ H, this shows that zy € O™, whence z € O™

(e) fze(l1—O")\Hthenzg A, sol—xe€ HN(TU—2T)=T. Conlcude
that z € O~. O
2. The valuation O

Let A,H,O~,0" be asin §1, and let O = O~ UO™.
Proposition 2.1. O is a valuation ring on K.

Proof. We apply (a)—(e) of Proposition 1.4.

By definition, OTO~ C O~ and OTOT C O". As OO~ C 1 —T also
O~0~\H C O~. Finally, 0O~ NH C (1— O*)n H C O*. Conclude that
00 C O.
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Next we show that for every 0 # z € K either # € O or z7! € O. Indeed,
if ¢ H then o ¢ A, so either 1 —2 € T or 1 —2~! € T. Thus either
r € O” or x7! € O~ in this case. If € H\ € O% then there exists y € O~
such that zy € O~. By what we have just seen, (zy)~! € O~. Consequently,
! = (zy)"ly € OO~ C OO C O, as desired. In particular, 1 € O.

As1-0"CO",1-0")NH CO",and (1-0T")\ H C O, we have
1-0CO.

For 0 # x,y € O we show that x +y € O. By symmetry we may assume that
—2 'y € 0. Then1+27'y € 1 -0 C O. Therefore z +y = (1 + 27 1y) €
00 C 0.

The assertion follows. 0

Proposition 2.2. O* < H.

Proof. Otherwise there exists x € O* \ H. In particular, z € O~,s0 1 —z € T.
Hence 1 — 2~ ! € —27!T, and therefore 1 —2=! ¢ T. Conclude that 271 ¢ O~
contrary to x € O* \ H. O

We denote the maximal ideal of the valuation O by m.
Proposition 2.3. 1—m <T.

Proof. By definition, 1 — O~ CT. So let x € O N m; we show that z € 1 —T.
As 27! € H\ OF we have 271y ¢ O~ for some y € O~. Since 2ty ¢ H
this implies 27!y € O. Hence 2y~ € O\ H = O~. By Proposition 1.4 (a),
r=(zy )ye OO~ C1-T. O

Fix a prime number p.
Lemma 2.4. If1—(m\ H) C (K*)P then 1 —m C (K*)P.

Proof. Take m € mNH. Since m™' ¢ O there exists y € O~ such that m™'y &
O~. As m~'y ¢ H this means that m~'y € O. Then y,y~'m € O\ H C m, by
Proposition 2.2. By Proposition 2.3, 1 +y 'm —-m €1 —-m < T < H. Since
y € m \ H this implies y +m — ym € m \ H. By assumption, (1 —y)(1 —m) =
l1—(y+m—ym) € (K*)?. Also, 1 —y € 1 —(m\ H) C (K*)P. Hence
1—me (K*)P. O

Corollary 2.5. Suppose that for every v € K* \ H and everyy € T \ (K*)P
one has {z,y} #0. Then 1 —m C (K*)P.

Proof. Let x € m\ H. Thenz € O",s01—z € T. As {z,1 —x} = 0 we have
1 —z e (K*)P. Now apply Lemma 2.4. O

Lemma 2.6. Suppose thatp € m and 1 —m C (K*)P. Then m\ pm C (K*)P.

Proof. Given x € 1 — m, we may write x = yP with y € O*. The residues Z,y
then satisfy 1 = = yP. Since char O/m = p, necessarily j = 1, i.e., y € 1 — m.
Thus 1 — m = (1 — m)P.
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Now let a € m \ pm. By what we have just seen, there exists b € m such that
14+a=(14b)? € 140 —pm. Since a ¢ pm this implies a € b*(1—m) C (K*)P.
O

From now on we assume that (K*)? <T.
Corollary 2.7. If1 —m C (K*)? and char K # p then p € m.

Proof. Suppose p € m. Lemma 2.6 then shows that p € m \ pm C (K*)? < H.
Since p~! € OT, there exists a € O~ such that p~ta ¢ O. By Proposition 2.2,
O* < H,soa € m)\ pm. Lemma 2.6 once again gives a € (K*)? < H, a
contradiction. O

3. The size of H

In order to prove the non-triviality of O in various situations one needs an
estimate on the size of (H : T'). This is obtained in Corollary 3.3 below. For its
proof we need two technical facts.

Lemma 3.1. Let A be an elementary abelian p-group and let w: A — Z/p be a
map such that:

(i) if a,b € A are Fp-linearly independent and at least one of w(a), w(b) is
non-zero then w(ab) = w(a)w(b);
(i) there exist Fp-linearly independent a,b € A such that w(a),w(b) # 0.
Then 1 € Im(w).

Proof. Take a,b as in (ii). From (i) we obtain inductively that
w(a'd) = w(a)'w(b) # 0,

i=1,...,p—1. Since (Z/p)* has order p—1 this gives in particular w(a?~1b) =
w(b). Moreover, w(a?~1)w(b) = w(a?~'b) by (i). Hence w(aP~!) = 1. O
Proposition 3.2. Assume that for every x € K*\T one has 1 —x € Uf:_ol 2'T.
Suppose that the cosets of a,b € K* in K* /T are [F,-linearly independent. Then
l—aceTUal or1—-beTUHT.

Proof. For every x € K* \ T there exists by assumption a unique 0 < <p—1
such that 1 — 2z € 2°T. When i # 0 let 0 < w(x) < p — 1 be the unique integer
such that w(z) = 1 — i~ (mod p). When i = 0 we set w(z) = 0. Note that
w(z) =0if and only if 1 —2x € TUzT. Also, 1 ¢ Im(w).

We apply Lemma 3.1 with A = K*/T. It suffices to show that if the cosets
ofa,b € K* in K* /T are F)-linearly independent and at least one of w(a), w(b)
is non-zero then w(ab) = w(a)w(b) (mod p).

Take 0 < 4,5, 7 <p—1suchthat 1 —a € a'T,1-be€bT,1—abc (ab)T.
The assumptions imply that ¢ # 1 or j # 0. Hence

p—1
l—ab=(1-a)+a(l —b) € (T —a'""WT) C U al(a' =W )ET,
k=0
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Therefore, (ab)"™T N a(a'~W)*T # () for some 0 < k < p — 1. Since a,b
are independent modulo T one has r = i + (1 — i)k = jk (mod p). Then
ri+j—1)=jk(i+j—1)=1j (modp)

If r # 0 then also i,j # 0 and 1 —r~! = (1 —i71)(1 —j71) (mod p); i.e
w(ab) = w(a)w(b) (mod p), as required.

If = 0 then either i = 0 or j = 0, so either w(ab) = w(a) = 0 or w(ab) =
w(b) =0, and we are done again. O

Corollary 3 3. Suppose that —1 € T and that for every x € K> \'T one has
1-zelU, Y 2T, Then (H : T)|p.

Proof. By Proposition 3.2, (B : T')|p. Now if O~ (B)O~(B) C 1-T then H = B,
so(H:T)|p. fO~(B)O~(B) € 1T then A =T, by Proposition 2.2(b); hence
B=T,so(H:T)=(H:B)=np. O

4. The main result
By combining the previous results we now obtain:

Theorem 4.1. Let K be a field and let (K*)P < T < K* be an intermediate
group. Suppose that:
(i) if e € K*\T andy € T\ K? then {z,y} # 0,
(ii) if =1 € T and if the cosets of x,y € K* in K*/T are Fy-linearly
independent then {x,y} # 0.

Then O above is a valuation ring. Furthermore, let m, K, and T, be its maximal
ideal, residue field, and value group, respectively. Then:

1—m C(K*)P;

if char K # p then also char K # p;

c) if =1 €T then (O*T :T) < p;

d) if =1 €T then (O*B:B) <2;

a)
b)
0 <
(e) if =1 €T then (T': pF) > (KX :T)/p;
() r
)
)

(
(
(

f) if =1 ¢ T then 2I') > (K* : B)/2;
(g) if K = K? and 1 € T then (F pI') > (K> : T);
(h) if K = K? and —1 ¢ T then (T : 2T) > (K* : B).
Proof. By Proposition 2.1, O is a valuation ring. Assumption (i) and Corollary
2.5 prove (a). Corollary 2.7 proves (b). By Proposition 2.2, O* C H.
Suppose that —1eT. Forevery . € K*\T one has {z,1—z} = 0, so by (ii),
1-zelU, ' 24T, Corollary 3.3 now gives (H : T)|p, whence (c). Furthermore,

(T:pl) = (K7 - O(K*)P) = (K™ - H) = (K™ : T)/p,
proving (e).

To prove (g), suppose that K = K?. By Lemma 2.3, 0% = (1—-m)(O*)? < T.
If H=0*(K*)P then H < T; hence H=T,so (I': pI') = (K* : T), and we
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are done in this case. On the other hand, if H > O* (K *)P then the inequalities

above show that (I' : pI') > (K* : T')/p. Thus (g) holds in this case as well.
When —1 ¢ T we have p = 2 and (H : B) < 2. Assertions (d),(f), and (h)

are then proven similarly to (c), (e), and (g). O

Remark 4.2. If p =2 and —1 € T then assumption (ii) of Theorem 4.1 implies
that for every € K* \ T one has 1 —2 € TUzT. Hence T = A = B. This
shows that the Main Theorem as stated in the introduction is a special case of
Theorem 4.1.

Example 4.3. Let p be a prime number and let K be a field. Suppose that
the canonical symbolic map induces an isomorphism A?(K*/p) = KM (K)/p.
Then (i) and (ii) of Theorem 4.1 hold with T" = (K *)P. Hence K possesses a
valuation satisfying (a)—(g) above.

In particular, this happens for K = F;((t1))---((¢ts)), where [ is a prime
number such that p|l — 1 and such that 4|l — 1 if p = 2 [Wd, §2]. Then F;
contains a primitive pth root of unity, and (K* : (K*)P) = p"*! [Wd, Lemma
1.4]. Moreover, the value group I' of every valuation on K satisfies (I : pI') <
p™. This shows that condition (e) of Theorem 4.1 cannot be strengthened to
(T:pl) > (K*:T).

We conclude by proving a criterion for the existence of valuations having
arbitrary residue characteristic:

Theorem 4.4. Let p be an odd prime and let K be a field. The following
conditions are equivalent:

(a) There exists a valuation v on K with non-p-divisible value group;
(b) There exists an intermediate group (K*)P < T < K* such that for every
x€ K*\T one has1 —xz € TUzT.

Proof. (a)=(b): Let T = v=1(pI') and take x € K*. When v(z) = 0 (resp.,
v(z) >0, v(x) <0) we have x € T (resp.,, l —z €T, 1 —z € zT).

(b)=(a): We take T as in (b). Since p # 2 we have -1 € T, so B=A=T.
Moreover, if a € T then a®> € T, so T — a*T C T U a?T. By Proposition 1.3(c),
O~ (T)O~(T) € 1—1T, whence H = T. Propositions 2.1 and 2.2 give rise to a
valuation ring O such that O* < T'. Its value group I satisfies (I" : pI') = (K * :
O (K*)P)>(K*:T)>1. O
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