CONSTRUCTION OF VALUATIONS FROM K-THEORY

IDO EFRAT

ABSTRACT. In this expository paper we describe and simplify results of Arason, Elman, Hwang, Jacob, and Ware on the construction of valuations on a field using K-theoretic data.

Introduction

Several recent developments in arithmetic geometry are based on the construction of valuations on a field just from the knowledge of its absolute Galois group. For instance, this is a main ingredient in Pop's proof of the 0-dimensional case of Grothendieck's "anabelian conjecture", saying that any two fields which are finitely generated over \mathbb{Q} and which have isomorphic absolute Galois groups are necessarily isomorphic; see [P2]–[P4], [S]. Other examples are the characterization of the fields with a *p*-adic absolute Galois group as the *p*-adically closed fields ([E], [K]; see also [N], [P1]), and the analogous result for local fields of positive characteristic [EF].

In the earlier approaches to such results, valuations were detected by means of various local-global principles for Brauer groups (or higher cohomology groups) — often in combination with model-theoretic tools (c.f., [N], [P1]–[P3], [S]). A different approach is introduced in [E]: there one uses an explicit and elementary construction of valuations which emerged in the mid-1970's in the theory of quadratic forms. It originates from Bröcker's "trivialization of fans" theorem on strictly-pythagorean fields [Br], i.e., real fields K such that $K^2 + aK^2 \subseteq K^2 \cup aK^2$ for all $a \in K \setminus (-K^2)$. By Bröcker's result, such a field has a valuation with very special properties: e.g., its value group is non-2-divisible, its residue field is real, and its principal units are squares. An explicit construction of these valuations was given by Jacob [J] (in the more general context of fans on pythagorean fields). This construction was extended to arbitrary fields by Ware [Wr], and later by Arason, Elman, and Jacob [AEJ]; see [En] for a related result. Roughly speaking, all these results show that if the quadratic forms over the field "behave" as if it possesses a valuation with non-2-divisible value group, residue characteristic $\neq 2$, and such that its principal units are squares, then (apart from a few obvious exceptions) such a valuation actually exists.

Received February 11, 1999.

Mathematics Subject Classification: 12J10

IDO EFRAT

In the case of an odd prime number p and a field K of characteristic $\neq p$ containing a primitive pth root of unity, Hwang and Jacob [HJ] give an analogous construction of valuations with non-p-divisible value group, residue characteristic $\neq p$, and for which the principal units are pth powers. Here the role of quadratic forms is played by certain cohomological structures: the symbolic pairings $K^{\times}/p \otimes_{\mathbb{Z}} K^{\times}/p \to {}_{p}\text{Br}(K)$, where ${}_{p}\text{Br}(K)$ is the p-torsion part of the Brauer group of K (see also [Bo] and [K] for related constructions).

In this expository paper we give a unified and somewhat simplified presentation of these important constructions. Our approach is completely elementary; in particular, we do not use cohomology, nor non-commutative division rings. Further, we do not assume the existence of primitive *p*th roots of unity in the field. The cohomological structures above are replaced here by the second Milnor *K*-group $K_2^M(K)$ of *K*, i.e., the quotient of the \mathbb{Z} -algebra $K^{\times} \otimes_{\mathbb{Z}} K^{\times}$ by the ideal generated by all elements of the form $x \otimes (1-x)$, where $0, 1 \neq x \in K$, and the natural projection $K^{\times} \otimes_{\mathbb{Z}} K^{\times} \to K_2^M(K), x \otimes y \mapsto \{x, y\}$.

Main Theorem. Let p be a prime number, let K be a field of characteristic $\neq p$, and let T be a subgroup of K^{\times} containing $(K^{\times})^p$ and -1. Suppose that:

- (i) if $x \in K^{\times} \setminus T$ and $y \in T \setminus K^p$ then $\{x, y\} \neq 0$;
- (ii) if the cosets of $x, y \in K^{\times}$ in K^{\times}/T are \mathbb{F}_p -linearly independent then $\{x, y\} \neq 0$.

Then there exists a valuation ring O on K with value group Γ , maximal ideal m, and residue field \overline{K} such that $(\Gamma : p\Gamma) \ge (K^{\times} : T)/p, 1 - m \subseteq K^p$, and char $\overline{K} \ne p$. Furthermore, if $\overline{K} = \overline{K}^p$ then $(\Gamma : p\Gamma) \ge (K^{\times} : T)$.

For a somewhat stronger result see Theorem 4.1.

Needless to say, most ingredients of the proof herein presented already appear in the above-mentioned works. The novelty of this note is mainly in the different organization of the material. We hope that it will make this powerful construction more easily accessible to Galois-theorists. In particular, the construction in this form is already used in [EF].

I thank Ivan Fesenko for the encouragement to publish this manuscript, and for his helpful remarks.

1. The sets O^+, O^-

From now on we fix a field K and a subgroup T of K^{\times} . Let

$$A = \{ x \in K^{\times} \mid T - xT \not\subseteq T \cup -xT \},\$$

and let $B = \langle -1, A \rangle$ be the subgroup of K^{\times} generated by -1 and A.

Remark 1.1.

- (i) If $x \in T$ then $0 \in T xT$ while $0 \notin T \cup -xT$. Thus $T \subseteq A$.
- (ii) For $x \in K^{\times}$ one has $x \in A$ if and only if $x^{-1} \in A$.
- (iii) If $x \in K^{\times} \setminus T$ and $1-x \notin T \cup -xT$ then $1-x \in A$: indeed, $x \in T-(1-x)T$ but $x \notin T \cup -(1-x)T$.

Given a subgroup S of K^{\times} we denote $O^{-}(S) = (1 - T) \setminus S$.

Lemma 1.2. If $z, w \in O^-(B)$ then either $zw \in 1 - T$ or $1 - zw \in zT = wT$. *Proof.* One has $-z, -w \notin B$, so

$$1 - zw = (1 - z) + z(1 - w) \in T + zT \subseteq T \cup zT$$

$$1 - zw = (1 - w) + w(1 - z) \in T + wT \subseteq T \cup wT.$$

Proposition 1.3. Suppose that there exist $a, b \in O^{-}(B)$ with $1-ab \notin T$. Then:

- (a) $O^{-}(\langle B, a \rangle)O^{-}(\langle B, a \rangle) \subseteq 1 T;$
- (b) A = T;
- (c) $T a^2T \not\subseteq T \cup a^2T$.

Proof. (a) Let $H = \langle B, a \rangle$. Lemma 1.2 implies that $1 - ab \in aT = bT$, whence $b \in H$. Suppose that $0 \neq x, y \in O^-(H)$ but $xy \notin 1 - T$. As $a, b \in H, x, y \notin H$, and $T \leq H$, Lemma 1.2 implies that $ax, by \in 1 - T$. Furthermore, $ax, by \notin H$, so $ax, by \in O^-(B)$. As $ay^{-1} \notin H$, also $ay^{-1} \notin A$. Hence one of the following cases holds:

CASE (I): $ay^{-1} \in 1 - T$. Then $ay^{-1} \in O^{-}(B)$ and $(ay^{-1})(by) = ab \notin 1 - T$. By Lemma 1.2, $1 - ab \in ay^{-1}T$, contrary to $1 - ab \in aT$ and $y \notin H$.

CASE (II): $a^{-1}y \in 1-T$. Then $a^{-1}y \in O^{-}(B)$ and $xy = (ax)(a^{-1}y) \notin 1-T$. By applying Lemma 1.2 twice we obtain $1 - xy \in xT \cap axT$, contrary to $a \notin B$.

(b) By Remark 1.1 (i), $T \subseteq A$. Conversely, take $x \in A$. Suppose $x \notin T$. After replacing x by an appropriate element of xT, we may assume that $1 - x \notin T \cup -xT$.

By Remark 1.1 (iii), $1 - x \in A \subseteq B$. Since $x \in B$ and $a \notin B$ we have $xa, -(1-x)a \notin B$. In particular, $xa, -(1-x)a \notin A$. Therefore

$$1 - xa \in T - xaT \subseteq T \cup -xaT$$
$$1 - xa \in T + (1 - x)aT \subseteq T \cup (1 - x)aT$$

By the choice of x, the cosets -xaT and (1-x)aT are disjoint. Hence $1-xa \in T$, so $xa \in O^{-}(B)$.

Since also $x^{-1} \in A$ (Remark 1.1 (ii)) and since $1 - x^{-1} \notin T \cup -x^{-1}T$, the same argument (with x, a replaced by x^{-1}, b) shows that $x^{-1}b \in O^{-}(B)$. As $ab = (xa)(x^{-1}b) \notin 1 - T$, Lemma 1.2 implies that $1 - ab \in aT \cap xaT$. This contradicts $x \notin T$.

(c) As already noted, $1 - ab \in aT = bT$ and $a \notin T$. Hence $1 - ab \in T - a^2T$ but $1 - ab \notin T \cup a^2T$.

Next we define a group H as follows:

- If $O^{-}(B)O^{-}(B) \subseteq 1 T$ then we take H = B;
- If $O^{-}(B)O^{-}(B) \not\subseteq 1-T$ then we choose $a \in O^{-}(B)$ such that $aO^{-}(B) \not\subseteq 1-T$ and set $H = \langle B, a \rangle$.

Thus $\pm T \leq \pm A \leq B \leq H$. We abbreviate $O^- = O^-(H)$, and let

$$O^+ = \{ x \in H \mid xO^- \subseteq O^- \}.$$

Proposition 1.4.

- $\begin{array}{ll} ({\rm a}) & O^-O^- \subseteq 1-T. \\ ({\rm b}) & 1-O^- \subseteq O^+. \\ ({\rm c}) & O^-O^- \subseteq 1-O^+. \\ ({\rm d}) & (1-O^+) \cap H \subseteq O^+. \end{array}$
- (e) $(1 O^+) \setminus H \subseteq O^-$.

Proof. (a) follows from Proposition 1.3 (a). For $1 \neq y \in K$ let $\tilde{y} = y/(y-1)$. Then $y \mapsto \tilde{y}$ maps $K \setminus \{0, 1\}$ onto itself. Moreover, $y \in O^-$ if and only if $\tilde{y} \in O^-$. We use the identity

$$1 - xy = (1 - (1 - x)\tilde{y})(1 - y), \qquad (*)$$

for $y \neq 1$.

(b) Take $x \in 1 - O^-$ and $y \in O^-$. By (*) and (a), $1 - xy \in (1 - O^-O^-)T \subseteq TT = T$. Since $x \in T \leq H$ and $y \notin H$ this implies $xy \in O^-$. Conclude that $x \in O^+$.

(c) Let $x, y \in O^-$. By (*) and (b),

$$1 - xy \in (1 - (1 - O^{-})O^{-})(1 - O^{-}) \subseteq (1 - O^{+}O^{-})O^{+}$$
$$\subseteq (1 - O^{-})O^{+} \subseteq O^{+}O^{+} \subseteq O^{+}.$$

(d) Suppose that $x \in (1 - O^+) \cap H$ and $y \in O^-$. By (*),

$$1 - xy \in (1 - O^+O^-)(1 - O^-) \subseteq (1 - O^-)(1 - O^-) \subseteq TT = T.$$

As $xy \notin H$, this shows that $xy \in O^-$, whence $x \in O^+$.

(e) If $x \in (1 - O^+) \setminus H$ then $x \notin A$, so $1 - x \in H \cap (T \cup -xT) = T$. Conclude that $x \in O^-$.

2. The valuation O

Let A, H, O^-, O^+ be as in §1, and let $O = O^- \cup O^+$.

Proposition 2.1. O is a valuation ring on K.

Proof. We apply (a)–(e) of Proposition 1.4.

By definition, $O^+O^- \subseteq O^-$ and $O^+O^+ \subseteq O^+$. As $O^-O^- \subseteq 1 - T$ also $O^-O^- \setminus H \subseteq O^-$. Finally, $O^-O^- \cap H \subseteq (1 - O^+) \cap H \subseteq O^+$. Conclude that $OO \subseteq O$.

338

Next we show that for every $0 \neq x \in K$ either $x \in O$ or $x^{-1} \in O$. Indeed, if $x \notin H$ then $x \notin A$, so either $1 - x \in T$ or $1 - x^{-1} \in T$. Thus either $x \in O^-$ or $x^{-1} \in O^-$ in this case. If $x \in H \setminus O^+$ then there exists $y \in O^$ such that $xy \notin O^-$. By what we have just seen, $(xy)^{-1} \in O^-$. Consequently, $x^{-1} = (xy)^{-1}y \in O^-O^- \subseteq OO \subseteq O$, as desired. In particular, $\pm 1 \in O$.

As $1 - O^- \subseteq O^+$, $(1 - O^+) \cap H \subseteq O^+$, and $(1 - O^+) \setminus H \subseteq O^-$, we have $1 - O \subseteq O$.

For $0 \neq x, y \in O$ we show that $x + y \in O$. By symmetry we may assume that $-x^{-1}y \in O$. Then $1 + x^{-1}y \in 1 - O \subseteq O$. Therefore $x + y = x(1 + x^{-1}y) \in OO \subseteq O$.

The assertion follows.

Proposition 2.2. $O^{\times} \leq H$.

Proof. Otherwise there exists $x \in O^{\times} \setminus H$. In particular, $x \in O^{-}$, so $1 - x \in T$. Hence $1 - x^{-1} \in -x^{-1}T$, and therefore $1 - x^{-1} \notin T$. Conclude that $x^{-1} \notin O^{-}$, contrary to $x \in O^{\times} \setminus H$.

We denote the maximal ideal of the valuation O by m.

Proposition 2.3. $1-m \leq T$.

Proof. By definition, $1 - O^- \subseteq T$. So let $x \in O^+ \cap m$; we show that $x \in 1 - T$. As $x^{-1} \in H \setminus O^+$ we have $x^{-1}y \notin O^-$ for some $y \in O^-$. Since $x^{-1}y \notin H$ this implies $x^{-1}y \notin O$. Hence $xy^{-1} \in O \setminus H = O^-$. By Proposition 1.4 (a), $x = (xy^{-1})y \in O^-O^- \subseteq 1 - T$.

Fix a prime number p.

Lemma 2.4. If $1 - (m \setminus H) \subseteq (K^{\times})^p$ then $1 - m \subseteq (K^{\times})^p$.

Proof. Take $m \in m \cap H$. Since $m^{-1} \notin O^+$ there exists $y \in O^-$ such that $m^{-1}y \notin O^-$. As $m^{-1}y \notin H$ this means that $m^{-1}y \notin O$. Then $y, y^{-1}m \in O \setminus H \subseteq m$, by Proposition 2.2. By Proposition 2.3, $1 + y^{-1}m - m \in 1 - m \leq T \leq H$. Since $y \in m \setminus H$ this implies $y + m - ym \in m \setminus H$. By assumption, $(1 - y)(1 - m) = 1 - (y + m - ym) \in (K^{\times})^p$. Also, $1 - y \in 1 - (m \setminus H) \subseteq (K^{\times})^p$. Hence $1 - m \in (K^{\times})^p$.

Corollary 2.5. Suppose that for every $x \in K^{\times} \setminus H$ and every $y \in T \setminus (K^{\times})^p$ one has $\{x, y\} \neq 0$. Then $1 - m \subseteq (K^{\times})^p$.

Proof. Let $x \in m \setminus H$. Then $x \in O^-$, so $1 - x \in T$. As $\{x, 1 - x\} = 0$ we have $1 - x \in (K^{\times})^p$. Now apply Lemma 2.4.

Lemma 2.6. Suppose that $p \in m$ and $1 - m \subseteq (K^{\times})^p$. Then $m \setminus pm \subseteq (K^{\times})^p$.

Proof. Given $x \in 1 - m$, we may write $x = y^p$ with $y \in O^{\times}$. The residues \bar{x}, \bar{y} then satisfy $\bar{1} = \bar{x} = \bar{y}^p$. Since char O/m = p, necessarily $\bar{y} = \bar{1}$, i.e., $y \in 1 - m$. Thus $1 - m = (1 - m)^p$.

Now let $a \in m \setminus pm$. By what we have just seen, there exists $b \in m$ such that $1+a = (1+b)^p \in 1+b^p-pm$. Since $a \notin pm$ this implies $a \in b^p(1-m) \subseteq (K^{\times})^p$.

From now on we assume that $(K^{\times})^p \leq T$.

Corollary 2.7. If $1 - m \subseteq (K^{\times})^p$ and char $K \neq p$ then $p \notin m$.

Proof. Suppose $p \in m$. Lemma 2.6 then shows that $p \in m \setminus pm \subseteq (K^{\times})^p \leq H$. Since $p^{-1} \notin O^+$, there exists $a \in O^-$ such that $p^{-1}a \notin O$. By Proposition 2.2, $O^{\times} \leq H$, so $a \in m \setminus pm$. Lemma 2.6 once again gives $a \in (K^{\times})^p \leq H$, a contradiction.

3. The size of H

In order to prove the non-triviality of O in various situations one needs an estimate on the size of (H:T). This is obtained in Corollary 3.3 below. For its proof we need two technical facts.

Lemma 3.1. Let Δ be an elementary abelian p-group and let $\omega: \Delta \to \mathbb{Z}/p$ be a map such that:

- (i) if $a, b \in \Delta$ are \mathbb{F}_p -linearly independent and at least one of $\omega(a)$, $\omega(b)$ is non-zero then $\omega(ab) = \omega(a)\omega(b)$;
- (ii) there exist \mathbb{F}_p -linearly independent $a, b \in \Delta$ such that $\omega(a), \omega(b) \neq 0$.

Then $1 \in Im(\omega)$.

Proof. Take a, b as in (ii). From (i) we obtain inductively that

$$\omega(a^i b) = \omega(a)^i \omega(b) \neq 0,$$

 $i = 1, \ldots, p-1$. Since $(\mathbb{Z}/p)^{\times}$ has order p-1 this gives in particular $\omega(a^{p-1}b) = \omega(b)$. Moreover, $\omega(a^{p-1})\omega(b) = \omega(a^{p-1}b)$ by (i). Hence $\omega(a^{p-1}) = 1$. \Box

Proposition 3.2. Assume that for every $x \in K^{\times} \setminus T$ one has $1 - x \in \bigcup_{i=0}^{p-1} x^{i}T$. Suppose that the cosets of $a, b \in K^{\times}$ in K^{\times}/T are \mathbb{F}_{p} -linearly independent. Then $1 - a \in T \cup aT$ or $1 - b \in T \cup bT$.

Proof. For every $x \in K^{\times} \setminus T$ there exists by assumption a unique $0 \le i \le p-1$ such that $1 - x \in x^i T$. When $i \ne 0$ let $0 \le \omega(x) \le p-1$ be the unique integer such that $w(x) \equiv 1 - i^{-1} \pmod{p}$. When i = 0 we set $\omega(x) = 0$. Note that $\omega(x) = 0$ if and only if $1 - x \in T \cup xT$. Also, $1 \notin \operatorname{Im}(\omega)$.

We apply Lemma 3.1 with $\Delta = K^{\times}/T$. It suffices to show that if the cosets of $a, b \in K^{\times}$ in K^{\times}/T are \mathbb{F}_p -linearly independent and at least one of $\omega(a), \omega(b)$ is non-zero then $\omega(ab) \equiv \omega(a)\omega(b) \pmod{p}$.

Take $0 \le i, j, r \le p-1$ such that $1-a \in a^iT$, $1-b \in b^jT$, $1-ab \in (ab)^rT$. The assumptions imply that $i \ne 1$ or $j \ne 0$. Hence

$$1 - ab = (1 - a) + a(1 - b) \in a^{i}(T - a^{1 - i}b^{j}T) \subseteq \bigcup_{k=0}^{p-1} a^{i}(a^{1 - i}b^{j})^{k}T.$$

Therefore, $(ab)^r T \cap a^i (a^{1-i}b^j)^k T \neq \emptyset$ for some $0 \leq k \leq p-1$. Since a, b are independent modulo T one has $r \equiv i + (1-i)k \equiv jk \pmod{p}$. Then $r(i+j-1) \equiv jk(i+j-1) \equiv ij \pmod{p}$.

If $r \neq 0$ then also $i, j \neq 0$ and $1 - r^{-1} \equiv (1 - i^{-1})(1 - j^{-1}) \pmod{p}$; i.e., $\omega(ab) \equiv \omega(a)\omega(b) \pmod{p}$, as required.

If r = 0 then either i = 0 or j = 0, so either $\omega(ab) = \omega(a) = 0$ or $\omega(ab) = \omega(b) = 0$, and we are done again.

Corollary 3.3. Suppose that $-1 \in T$ and that for every $x \in K^{\times} \setminus T$ one has $1 - x \in \bigcup_{i=0}^{p-1} x^i T$. Then (H:T)|p.

Proof. By Proposition 3.2, (B:T)|p. Now if $O^-(B)O^-(B) \subseteq 1-T$ then H = B, so (H:T)|p. If $O^-(B)O^-(B) \not\subseteq 1-T$ then A = T, by Proposition 2.2(b); hence B = T, so (H:T) = (H:B) = p. □

4. The main result

By combining the previous results we now obtain:

Theorem 4.1. Let K be a field and let $(K^{\times})^p \leq T \leq K^{\times}$ be an intermediate group. Suppose that:

- (i) if $x \in K^{\times} \setminus T$ and $y \in T \setminus K^p$ then $\{x, y\} \neq 0$;
- (ii) if $-1 \in T$ and if the cosets of $x, y \in K^{\times}$ in K^{\times}/T are \mathbb{F}_p -linearly independent then $\{x, y\} \neq 0$.

Then O above is a valuation ring. Furthermore, let m, \overline{K} , and Γ , be its maximal ideal, residue field, and value group, respectively. Then:

- (a) $1-m \subseteq (K^{\times})^p$;
- (b) if $char K \neq p$ then also $char \overline{K} \neq p$;
- (c) if $-1 \in T$ then $(O^{\times}T:T) \leq p$;
- (d) if $-1 \notin T$ then $(O^{\times}B : B) \leq 2$;
- (e) if $-1 \in T$ then $(\Gamma : p\Gamma) \ge (K^{\times} : T)/p$;
- (f) if $-1 \notin T$ then $(\Gamma : 2\Gamma) \ge (K^{\times} : B)/2;$
- (g) if $\overline{K} = \overline{K}^p$ and $-1 \in T$ then $(\Gamma : p\Gamma) \ge (K^{\times} : T);$
- (h) if $\overline{K} = \overline{K}^p$ and $-1 \notin T$ then $(\Gamma : 2\Gamma) \ge (K^{\times} : B)$.

Proof. By Proposition 2.1, O is a valuation ring. Assumption (i) and Corollary 2.5 prove (a). Corollary 2.7 proves (b). By Proposition 2.2, $O^{\times} \subseteq H$.

Suppose that $-1 \in T$. For every $x \in K^{\times} \setminus T$ one has $\{x, 1-x\} = 0$, so by (ii), $1-x \in \bigcup_{i=0}^{p-1} x^i T$. Corollary 3.3 now gives (H:T)|p, whence (c). Furthermore,

$$(\Gamma:p\Gamma)=(K^{\times}:O^{\times}(K^{\times})^p)\geq (K^{\times}:H)\geq (K^{\times}:T)/p,$$

proving (e).

To prove (g), suppose that $\overline{K} = \overline{K}^p$. By Lemma 2.3, $O^{\times} = (1-m)(O^{\times})^p \leq T$. If $H = O^{\times}(K^{\times})^p$ then $H \leq T$; hence H = T, so $(\Gamma : p\Gamma) = (K^{\times} : T)$, and we are done in this case. On the other hand, if $H > O^{\times}(K^{\times})^p$ then the inequalities above show that $(\Gamma : p\Gamma) > (K^{\times} : T)/p$. Thus (g) holds in this case as well.

When $-1 \notin T$ we have p = 2 and $(H : B) \leq 2$. Assertions (d),(f), and (h) are then proven similarly to (c), (e), and (g).

Remark 4.2. If p = 2 and $-1 \in T$ then assumption (ii) of Theorem 4.1 implies that for every $x \in K^{\times} \setminus T$ one has $1 - x \in T \cup xT$. Hence T = A = B. This shows that the Main Theorem as stated in the introduction is a special case of Theorem 4.1.

Example 4.3. Let p be a prime number and let K be a field. Suppose that the canonical symbolic map induces an isomorphism $\wedge^2(K^{\times}/p) \cong K_2^M(K)/p$. Then (i) and (ii) of Theorem 4.1 hold with $T = (K^{\times})^p$. Hence K possesses a valuation satisfying (a)–(g) above.

In particular, this happens for $K = \mathbb{F}_l((t_1))\cdots((t_n))$, where l is a prime number such that p|l-1 and such that 4|l-1 if p=2 [Wd, §2]. Then \mathbb{F}_l contains a primitive pth root of unity, and $(K^{\times}:(K^{\times})^p) = p^{n+1}$ [Wd, Lemma 1.4]. Moreover, the value group Γ of every valuation on K satisfies $(\Gamma:p\Gamma) \leq p^n$. This shows that condition (e) of Theorem 4.1 cannot be strengthened to $(\Gamma:p\Gamma) \geq (K^{\times}:T)$.

We conclude by proving a criterion for the existence of valuations having arbitrary residue characteristic:

Theorem 4.4. Let p be an odd prime and let K be a field. The following conditions are equivalent:

- (a) There exists a valuation v on K with non-p-divisible value group;
- (b) There exists an intermediate group $(K^{\times})^p \leq T < K^{\times}$ such that for every $x \in K^{\times} \setminus T$ one has $1 x \in T \cup xT$.

Proof. (a) \Rightarrow (b): Let $T = v^{-1}(p\Gamma)$ and take $x \in K^{\times}$. When v(x) = 0 (resp., v(x) > 0, v(x) < 0) we have $x \in T$ (resp., $1 - x \in T, 1 - x \in xT$).

(b) \Rightarrow (a): We take T as in (b). Since $p \neq 2$ we have $-1 \in T$, so B = A = T. Moreover, if $a \notin T$ then $a^2 \notin T$, so $T - a^2T \subseteq T \cup a^2T$. By Proposition 1.3(c), $O^-(T)O^-(T) \subseteq 1 - T$, whence H = T. Propositions 2.1 and 2.2 give rise to a valuation ring O such that $O^{\times} \leq T$. Its value group Γ satisfies $(\Gamma : p\Gamma) = (K^{\times} : O^{\times}(K^{\times})^p) \geq (K^{\times} : T) > 1$.

References

- [AEJ] J.K. Arason, R. Elman and B. Jacob, Rigid elements, valuations, and realization of Witt rings, J. Algebra 110 (1987), 449–467.
- [Bo] F.A. Bogomolov, Abelian subgroups of Galois groups, Izv. Akad. Nauk SSSR Ser. Mat. 55 (1991), 32–67 (Russian); translation in Math. USSR Izv. 38 (1992), 27–67.
- [Br] L. Bröcker, Characterization of fans and hereditarily pythagorean fields, Math. Z. 151 (1976), 149–163.
- [E] I. Efrat, A Galois-theoretic characterization of p-adically closed fields, Isr. J. Math. 91 (1995), 273–284.

- [EF] I. Efrat and I. Fesenko, Fields Galois–equivalent to a local field of positive characteristic, Math. Res. Lett., to appear.
- [En] A.J. Engler, Totally real rigid elements and F_{π} -henselian valuation rings, Comm. Algebra **25** (1997), 3673–3697.
- [HJ] Y.S. Hwang and B. Jacob, Brauer group analogues of results relating the Witt ring to valuations and Galois theory, Canad. J. Math. 47 (1995), 527–543.
- [J] B. Jacob, On the structure of pythagorean fields, J. Algebra 68 (1981), 247–267.
- [K] J. Koenigsmann, From p-rigid elements to valuations (with a Galois-characterisation of p-adic fields), With an appendix by F. Pop, J. Reine Angew. Math. 465 (1995), 165–182.
- [N] J. Neukirch, Kennzeichnung der p-adischen und endlichen algebraischen Zahlkörper, Invent. Math. 6 (1969), 269–314.
- [P1] F. Pop, Galoissche Kennzeichnung p-adisch abgeschlossener Körper, J. Reine Angew. Math. 392 (1988), 145–175.
- [P2] _____, On Grothendieck's conjecture of birational anabelian geometry, Ann. Math. 139 (1994), 145–182.
- [P3] _____, On Grothendieck's conjecture of birational anabelian geometry II, preprint, Heidelberg 1995.
- [P4] _____, Glimpses of Grothedieck's anabelian geometry, Geometric Galois actions. 1 (L. Schneps et al., ed.), Lond. Math. Soc. Lect. Note Ser., vol. 242, Cambridge University Press, Cambridge, 1997, pp. 113–126.
- M. Spiess, An arithmetic proof of Pop's Theorem concerning Galois groups of function fields over number fields, J. Reine Angew. Math. 478 (1996), 107–126.
- [Wd] A.R. Wadsworth, p-henselian fields: K-theory, Galois cohomology, and graded Witt rings, Pac. J. Math. 105 (1983), 473–496.
- [Wr] R. Ware, Valuation rings and rigid elements in fields, Canad. J. Math. 33 (1981), 1338–1355.

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE, BEN GURION UNIVERSITY OF THE NEGEV, P.O. BOX 653, BE'ER-SHEVA 84105, ISRAEL

E-mail address: efrat@math.bgu.ac.il