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SCALING RATIOS AND TRIANGLES IN SIEGEL DISKS

Xavier Buff and Christian Henriksen

Abstract. Let f(z) = e2iπθz + z2, where θ is a quadratic irrational. McMullen
proved that the Siegel disk for f is self-similar about the critical point. We give
a lower bound for the ratio of self-similarity, and we show that if θ = (

√
5− 1)/2

is the golden mean, then there exists a triangle contained in the Siegel disk, and
with one vertex at the critical point. This answers a 15 years old conjecture.

1. Introduction

Definition 1. The polynomial Pθ is defined by

Pθ(z) = e2iπθz + z2,

where θ has continued fraction expansion

θ = [a1, a2, a3, . . . ] =
1

a1 +
1

a2 +
1

a3 +
. . .

.

In the following, for x ∈ R/Z, {x} denotes the unique real number represent-
ing x in [−1/2, 1/2], and

pn

qn
= [a1, . . . , an],

denote the rational approximation to θ obtained by truncating its continued
fraction.

In 1942, Siegel [Si] proved that when θ is a diophantine number, the poly-
nomial Pθ is conformally conjugate to a rotation near the origin. The maximal
domain D on which this conjugacy is defined is called the Siegel disk for Pθ. It
is the Fatou component of Pθ containing 0. In particular, this result holds when
θ is of bounded type, i.e., sup ai < ∞.

In 1986, Herman [H] and Świa̧tek [Sw] proved that when θ is of bounded type,
the boundary ∂D of the Siegel disk is a quasi-circle containing the critical point
ωθ = −e2iπθ/2. The proof is based on a quasi-conformal surgery due to Ghys
and Douady (see [D]). In 1993, Petersen [P] proved that the Julia set J(Pθ) has
Lebesgue measure zero, and is locally connected.
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In 1997, McMullen [McM2] obtained results concerning the geometry of the
Julia set J(Pθ). In particular, he proved that if θ is a quadratic irrational, then
the boundary of the Siegel disk for Pθ is self-similar about the critical point.
This result was conjectured and observed numerically more than a decade ago
by Manton, Nauenberg and Widom [MN] [W].

The number θ is a quadratic irrational if and only if the continued fraction
of θ is preperiodic. In that case, the rotation x �→ x + θ, x ∈ R/Z is self-similar
(see [McM2] Theorem 2.1). More precisely, if θ = [a1, a2, . . . ], where an+s = an

for n ≥ N , we can set
α = θN+1θN+2 . . . θN+s,

where θi = [ai, ai+1, ai+2, . . . ]. Then for n ≥ N ,

{qn+sθ} = (−1)sα · {qnθ}.
Our first goal is to prove the following result.

Theorem 1. Let θ = [a1, a2, . . . ], where an+s = an for n ≥ N , be a quadratic
irrational and λ ∈ D

∗ be the scaling ratio for the self-similarity of the Siegel disk
of Pθ about the critical point. Besides, let α be defined as above. Then

0 < α < |λ| < 1.

McMullen mentioned to us that this bound on λ in terms of α via a modulus
estimate is very similar to Bers’ inequality for quasifuchsian groups; there one
knows that the length of a hyperbolic geodesic in Q(X, Y ) is bounded by the
hyperbolic length of the corresponding geodesic on X or Y (see [B] Theorem 3
and [McM3] Prop. 6.4).

In [McM2] (corollary 7.5), McMullen also shows that when the continued
fraction expansion of θ has odd period, then the boundary of the Siegel disk
does not spiral about the critical point. This means that any continuous branch
of arg(z − ωθ) defined along ∂D \ {ωθ} is bounded. In particular, this result
holds for the golden mean Siegel disk, where θ = (

√
5− 1)/2 = [1, 1, 1, . . . ]. Our

second result is the following.

Theorem 2. Using the same notations, if −π/ log(α2) > 1/2, then the Siegel
disk of the polynomial Pθ, contains a triangle with one vertex at ωθ.

Corollary 1. The Siegel disk of the polynomial Pθ, θ = (
√

5− 1)/2, contains a
triangle with one vertex at ωθ.

The corollary is immediate since for θ = (
√

5 − 1)/2 = [1, 1, 1, . . . ] we have
α = θ = (

√
5 − 1)/2, and

− π

log(α2)
∼ 3.264251306 >

1
2
.

On Figure 1, we have drawn the filled-in Julia set of the polynomial Pθ, θ =
(
√

5 − 1)/2. We have also zoomed near the critical point ωθ to show the self-
similarity of the boundary of the Siegel disk.
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Figure 1. The filled-in Julia set of the polynomial Pθ,
θ = (

√
5 − 1)/2.

2. The scaling ratio

In the following, θ = [a1, a2, . . . ], where an+s = an for n ≥ N , will always
be a quadratic irrational. We denote by Rθ(z) = e2iπθz the rotation of angle θ.
The polynomial Pθ has a Siegel disk D, and the conformal mapping φ : D → D,
linearizes Pθ, i.e. conjugates Pθ to the rotation Rθ. By results of Herman and
Świa̧tek, this conjugacy extends to a quasi-symmetric conjugacy φ : ∂D → S1.
Since φ is unique up to rotation, we can normalize it so that it maps ωθ ∈ ∂D
to 1 ∈ S1 (see Figure 2).

Pθ

D

ωθ

D 1

φ

Rθ

Figure 2. The linearizing map φ : D → D sending ωθ to 1.

Now, recall that

• pn/qn = [a1, . . . , an] is the rational approximation to θ obtained by
truncating its continued fraction,

• θi = [ai, ai+1, ai+2, . . . ], and
• α = θN+1θN+2 . . . θN+s.
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In [McM2], McMullen proves that for n ≥ N ,

{qn+sθ} = (−1)sα{qnθ}.

It follows that in a neighborhood of z = 1, the contraction

z �→ zα, for s even, and
z �→ z̄α, for s odd,

conjugates Rqn

θ to R
qn+s

θ , for n ≥ N . Let us prove it for s odd. For z in a
sufficiently small neighborhood of 1, we have

Rqn

θ (z)
α

= e2πiqnθz
α

=
(
e−2πi{qnθ}z̄

)α

= e−2πiα{qnθ}z̄α = R
qn+s

θ (z̄α).

In [McM2] (Theorem 7.1), McMullen proves that there is a neighborhood U
of ωθ and a constant ε > 0 such that for all z ∈ U ∩ D, the mapping ψ defined
by

ψ(z) =

{
φ−1 ([φ(z)]α) , for s even, and

φ−1
(
[φ(z)]α

)
, for s odd,

• is well defined,
• satisfies the expansion

ψ(z) =
{

ωθ + λ(z − ωθ) + O
(
|z − ωθ|1+ε

)
, for s even, or

ωθ + λ(z − ωθ) + O
(
|z − ωθ|1+ε

)
, for s odd,

with 0 < |λ| < 1, and,
• conjugates P qn

θ to P
qn+s

θ .

The main difficulty is to prove that ψ is C1+ε at ωθ.
Now let us define the scaling map

Λ(z) =
{

ωθ + λ(z − ωθ), for s even, or

ωθ + λ(z − ωθ), for s odd,

For conveniency, we will use the spherical metric

dσ(z) =
|dz|

1 + |z − ωθ|2

(instead of the usual |dz|/(1 + |z|2)). Then the distance between two points x
and y in P

1 satisfy

σ(x, y) ≤ inf
(
|x − y|, 1

|x − ωθ|
+

1
|y − ωθ|

)
.

This spherical metric enables us to define a Hausdorff distance dH between
compact subsets of the sphere. McMullen shows the following theorem.
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Theorem 3. McMullen ([McM2], corollary 7.3) The blow-ups
Sn = Λ−n(∂D) of the boundary of the Siegel disk converge to a Λ-invariant
quasi-circle through ∞, for the Hausdorff topology on compact subsets of the
sphere.

Proof. Indeed, there exists constants C1 and δ > 0 such that for all n large
enough

dH(Sn, Sn+1) < C1|λ|nδ.

To see that, we need to prove that
• for any x ∈ Sn there exists a y in Sn+1 with σ(x, y) < C1|λ|nδ, and
• for any y in Sn+1 there exists a x ∈ Sn with σ(x, y) < C1|λ|nδ.

We will only prove the first point; a similar argument works for the second
one. We first choose a constant C and an open neighborhood U ′ of ωθ sufficiently
small so that ψ(U ′) ⊂ U ′, and so that for any z ∈ U ′,

|ψ(z) − Λ(z)| < C|z − ωθ|1+ε.

We then set

δ =
1
2

(
1 − 1

1 + ε

)
,

which is positive. Observe that for all n large enough, the ball Bn centered at
ωθ with radius |λ|n(1−δ) is contained in U ′. Then, for any x ∈ Sn, Λn(x) belongs
to ∂D and

• either Λn(x) ∈ Bn, ψ(Λn(x)) ∈ ∂D and y = Λ−(n+1) (ψ(Λn(x)) belongs
to Sn+1; then a simple computation gives

σ(x, y) <
C

|λ| |λ|
nδ,

• or Λn(x) �∈ Bn and y = Λ−1(x) belongs to Sn+1; moreover

σ(x, y) ≤ 1
|x − ωθ|

+
1

|y − ωθ|
≤ 2|λ|nδ.

Hence dH(Sn, Sn+1) is decreasing geometrically and the sequence Sn is converg-
ing for the Hausdorff topology to a limit S which has to be Λ-invariant. Since
the sets Sn are all K quasi-circles with the same K (they are mapped onto each
other by the scaling map Λ), the limit is also a K quasi-circle.

Since Pθ is a quadratic polynomial, the Siegel disk D has one preimage D′ �= D
which is symmetric to D with respect to ωθ. The blow-ups Λ−n(D′) and Λ−n(D)
both converge, for the Hausdorff topology on compact subsets of the sphere, to Λ-
invariant quasi-disks D (bounded by the quasi-circle S) and D′ passing through
∞ and ωθ (see Figure 1). In particular, observe that D/Λ2 and D′/Λ2 are two
annuli in the torus (C \ {ωθ})/Λ2. We consider Λ2 instead of Λ, because when
s is odd, Λ is orientation reversing. Notice that when s is even, this torus is
conformally equivalent to C

∗/λ2, and when s is odd, this torus is conformally
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equivalent to the torus C
∗/(λλ̄). Besides, the annuli are conformally equivalent.

Let
M = mod(D/Λ2) = mod(D′/Λ2)

be their modulus.
The key-point in this paper is that we can compute the exact value of the

modulus M .

Lemma 1. The modulus M is equal to −π/ log(α2).

Proof. Indeed, we can define the scaling map

A(z) =
{

1 + α(z − 1), for s even, and

1 + α(z − 1), for s odd.

It is the differential at 1 of the contraction which conjugates Rqn

θ to R
qn+s

θ , for
n ≥ N . Then

φn = A−n ◦ φ ◦ Λn

is a conformal equivalence between Λ−n(D) and A−n(D), which extends quasi-
symmetrically to a map φn : Λ−n(∂D) → A−n(∂D). Besides, φn(ωθ) = 1,
and

A ◦ φn+1 = φn ◦ Λ.

By Caratheodory’s convergence theorem, the sequence φn converges when n
tends to infinity, to a conformal map

φ∞ : D → H = {z ∈ C | Re(z) < 1},
such that A◦φ∞ = φ∞◦Λ (see [McM2] Theorem 8.1, statement 7). In particular,
we see that the annulus D/Λ2 is isomorphic to the annulus H/A2. This last
annulus has a modulus M = −π/ log(α2).

We will now use a classical inequality on annuli embedded in a torus.

Lemma 2. Let Ai ⊂ T, be disjoint annuli embedded in a torus

T = C/(2πiZ + τZ), Re(τ) > 0.

The segment [0, τ ] projects to a simple closed curve γ on T. If the annuli Ai are
homotopic to γ, then

n∑
i=1

modAi ≤
2πRe(τ)

|τ |2 .

Proof. Let Bi be the annulus

{z | 0 < Im(z) < hi}/Z,

where Z acts by translations, with hi = modBi = modAi, so that Ai and Bi are
conformally equivalent. And let fi : Bi → Ai be a conformal mapping. We can
endow the torus T with the Euclidean metric; then the simple closed curve

x �→ fi(x, y), 0 ≤ x ≤ 1
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has length at least |τ |. Hence, we find

2πRe(τ) = Area(T)

≥
∑

i

Area(Ai)

=
∑

i

∫
Bi

|f ′
i(x, y)|2dxdy

=
∑

i

∫ hi

0

(∫ 1

0

|f ′
i(x, y)|2dx

)
dy

≥
∑

i

∫ hi

0

(∫ 1

0

|f ′
i(x, y)|dx

)2

dy

≥
∑

i

∫ hi

0

|τ |2dy

=
∑

i

hi|τ |2.

This is the required inequality.

In our case, τ is a branch of log(λ2) when s is even and of log(λλ̄) when n is
odd. Using

|Re(τ)| = − log(|λ|2),
we get

2M ≤ − 2π

log(|λ|2) .

Combining this with the exact value of the modulus M gives

− 2π

log(α2)
≤ − 2π

log(|λ|2) ,

which is equivalent to
α < |λ|.

This proves Theorem 1.

3. Triangle in the golden Siegel disk

We will now show that if θ = (
√

5 − 1)/2 is the golden mean, then the Siegel
disk of Pθ contains a triangle with vertex at the critical point ωθ. It is enough
to show that the quasi-disk D contains a sector with vertex at ωθ .

McMullen has already done the main step in that direction (see [McM2] corol-
lary 7.5). He proved that when s is odd (and in our case s = 1), the boundary of
the Siegel disk does not spiral about the critical point. That means that there
exists a continuous branch of χ(z) = log(z − ωθ) defined on D with bounded
imaginary part. Indeed, the condition that D is Λ-invariant implies that D is
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Λ2-invariant. Now the scaling ratio of Λ2 is λλ̄ and consequently the strip χ(D)
is invariant by the translation T (z) = z + log(λλ̄). This translation being real,
the imaginary part of χ(z) is bounded when z ∈ D.

To prove the existence of a sector in D, it is enough to show that the strip
χ(D) contains a horizontal band

B = {z ∈ C | y1 < Im(z) < y2},
for some y1 < y2 in R (see Figure 3).

On Figure 3, we have drawn the Julia set of the polynomial Pθ, θ = (
√

5−1)/2
and its image under the map χ(z) = log(z − ωθ). It is very difficult to get a
good picture of the Julia set J(Pθ) near the critical point ωθ. However, it is
possible to get a good idea of the boundary of the Siegel disk since the orbit of
the critical point is dense in ∂D.

Figure 3. The filled-in Julia set of the polynomial Pθ,
θ = (

√
5 − 1)/2 and its image under the map χ(z) = log(z − ωθ).

To prove that the strip χ(D) contains a horizontal band, recall that the
quotient χ(D)/T is an annulus of modulus −π/ log(α2), where in our case
α = θ = (

√
5 − 1)/2. Since

− π

log(α2)
∼ 3.264251306 >

1
2
,

the existence of a sector in D is a consequence of the following lemma (see
[McM1], Thm 2.1).

Lemma 3. Assume S is a periodic strip of period τ ∈ R, i.e., S + τ = τ . If
S/τ is an annulus of modulus

mod(S/τ) >
1
2
,
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then S contains a horizontal band

B = {z ∈ C | y1 < Im(z) < y2},
for some y1 < y2 in R.

Proof. We will proceed by contradiction. If we cannot put a horizontal band in
S, then there is a horizontal line which intersects both the upper boundary of
S and the lower boundary of S. We can assume without loss of generality that
this line is the real axis. Under the mapping z �→ e2iπz/τ , the strip projects to
an annulus A ∈ C

∗, and the real axis projects to the unit circle S1 = {|z| = 1}.
Hence, the bounded component of C

∗ \A contains a point z1 of modulus 1, and
the unbounded component of C

∗ \ A contains a point z2 of modulus 1.
It is known (see [LV] page 56-65) that the modulus of an annulus separating

the points 0 and z1 from the points z2 and ∞, with |z1| = |z2| = 1 is bounded
from above by the modulus of the annulus

Amax = C \ (] −∞,−1] ∪ [0, 1]) .

In particular, when mod(S/τ) > mod(Amax), we see that we get a contradiction.
Douady indicated to us that this modulus is equal to 1/2. Indeed, let us first
consider a square pillow with side-length 1. This pillow is isomorphic to P

1. We
can map two opposite corners to 0 and ∞, and a third corner to 1. By symmetry
of the square pillow, the remaining corner is mapped to −1. The annulus Amax

is then isomorphic to the pillow cut along two opposite sides. This is a cylinder
with height 1 and circumference 2. Hence the modulus of this cylinder is 1/2.

Remark. We would like to mention that for the angle θ = [2, 2, 2, 2, . . . ] =√
2 − 1, the modulus of the corresponding annulus is

−π/ log(α2) ∼ 1.782213977 >
1
2
.

Hence, our proof enables us to conclude that there is still a triangle in the Siegel
disk with vertex at the critical point (see Figure 4).

In fact we can conclude that there is an angle in the Siegel disk as long as θ =
[a, a, a, a, . . . ], with a ≤ 23. Indeed, for a = 23, we have α = θ = (

√
533− 23)/2,

and
−π/ log(α2) ∼ .5006714845 >

1
2
.

On the other hand, when a = 24, we get α = θ = (
√

580 − 24)/2, and

−π/ log(α2) ∼ .4939944446 <
1
2
.

In this case, our proof does not enable us to conclude anything. We have drawn
the corresponding Julia set on Figure 5. We have also drawn its image under the
map χ(z) = log(z−ωθ) to show that the boundary of the Siegel disk “oscillates”.
It is a reason why our proof does not enable us to conclude anything, whereas
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Figure 4. The filled-in Julia set of the polynomial Pθ,
θ =

√
2 − 1.

it seems that one can put a triangle in the Siegel disk with vertex at the critical
point.

Figure 5. The filled-in Julia set of the polynomial Pθ,
θ = [24, 24, 24, . . . ] and its image under the map χ(z) = log(z−ωθ).

4. Questions

We have seen that when the period of a quadratic irrational is odd, then the
boundary of the corresponding Siegel disk does not spiral around the critical
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point.

Question 1. Is there a quadratic irrational θ such that the boundary of the
Siegel disk of Pθ spirals?

Question 2. Does the boundary of the Siegel disk always spiral when the period
of θ is even?

To answer those two questions, one has to show that the scaling ratio λ ∈ D
∗ is

not a real number. Computer experiments suggests that for θ =
[2, 1, 2, 1, 2, 1, . . . ], the ratio λ is not real. Hence, the boundary of the Siegel disk
spirals. We have drawn the Julia set of the polynomial Pθ for θ =
[2, 1, 2, 1, 2, 1, . . . ], and its image under the map χ(z) = log(z − ωθ) (see Fig-
ure 6). It should be clear that the strip corresponding to the Siegel disk is not
horizontal.

Figure 6. The filled-in Julia set of the polynomial Pθ,
θ = [2, 1, 2, 1, 2, 1 . . . ] and its image under the map
χ(z) = log(z − ωθ).

Question 3. Is there a quadratic irrational θ with odd period, but for which
there is no triangle with vertex at ωθ contained in the Siegel disk?

This problem seems to be related to question 1. Indeed, if there is a quadratic
irrational such that the boundary of the Siegel disk of Pθ spirals, then the period
s of θ is even. Let us write θ = [a1, . . . , as, a1, . . . , as, . . . ]. Now consider the
quadratic irrational θ′ = [a′

1, . . . , a′
ks+1, . . . ] of period ks + 1, where k is a large

integer, and where

a′
1 = a1, and

a′
i = ai−1, if 2 ≤ i ≤ ks + 1.
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Then, one can expect that the boundary of the Siegel disk of Pθ′ will oscillate.
On Figure 7, we have drawn the filled-in Julia set of the polynomial Pθ, θ =
[50, 50, 1, 50, 50, 1, 50, 50, 1, . . . ] and its image under the map χ(z) = log(z−ωθ).
It is very difficult to obtain a good picture of the boundary of the Siegel disk
near the critical point. The dark region on Figure 7 corresponds to something
we extrapolated.

Figure 7. The filled-in Julia set of the polynomial Pθ,
θ = [50, 50, 1, 50, 50, 1, 50, 50, 1, . . . ] and its image
under the map χ(z) = log(z − ωθ).

Finally, we know that |λ| < 1 for every quadratic irrational θ. When we show
that there is a triangle in the Siegel disk, we don’t get any lower bound on the
angle of the vertex which is at the critical point. We could get one if we knew
that |λ| is not too close to 1.

Question 4. Is there a constant δ < 1 such that |λ| < δ for any quadratic
irrational θ?

We can even be more optimistic.

Question 5. Is there a constant δ < 1 such that |λ| < δs, where s is the period
of the quadratic irrational θ?

Finally, we would like to ask a last question, which seems to be a analog of
Świa̧tek’s a-priori bounds for Blaschke fractions having an irrational rotation
number:

Question 6. Are there constants δ1 < δ2 < 1 such that (δ1)s < |λ| < (δ2)s,
where s is the period of the quadratic irrational θ?
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Denmark and at Université Paul Sabatier in Toulouse for hospitality during the
research that went into this paper.

References

[B] L. Bers, On Boundaries of Teichmüller spaces and on Kleinian groups, Annals of
Math. (2) 91 (1970), 570–600.

[D] A. Douady, Disques de Siegel et anneaux de Herman, Séminaire Bourbaki, Astérisque
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