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QUANTIZATION OF GEOMETRIC CLASSICAL r-MATRICES

Pavel Etingof and Alexandre Soloviev

In this note we define geometric classical r-matrices and quantum R-matrices,
and show how any geometric classical r-matrix can be quantized to a geometric
quantum R-matrix. This is one of the simplest nontrivial examples of quantiza-
tion of solutions of the classical Yang-Baxter equation, which can be explicitly
computed. The idea of the above quantization was inspired by the results in
[ESS]. We note that a construction similar to ours was obtained in [KLM].

1. Geometric classical r-matrices and quantum R-matrices

Let X be a smooth, affine algebraic variety over C.

Definition 1. A geometric classical r-matrix on X is a derivation
r : C[X × X] → C[X × X] (i.e. a vector field on X × X), which satisfies
the classical Yang-Baxter equation

[r12, r13] + [r12, r23] + [r13, r23] = 0 in C[X × X × X],(1.1)

and the unitarity condition

r + r21 = 0 in C[X × X].(1.2)

Example 1. Let X be any variety as above, and v a vector field on X. Define
rv(x, y) = (v(x),−v(y)). Then r is a geometric classical r-matrix. We call it a
permutation r-matrix, since it corresponds to an “infinitesimal permutation” of
X given by v.

Example 2. Let X be a finite dimensional algebra over C (e.g. a matrix
algebra), and the vector field r be given by rc(x, y) = (xcy,−ycx), where c ∈ X.
It can be checked that rc is a geometric classical r-matrix.

Definition 2. A formal diffeomorphism g of a smooth affine variety Y is an
algebra homomorphism g : C[Y ] → C[Y ][[�]] such that g = 1 + O(�).

In particular, if v is a vector field on Y , then one can define a formal diffeo-
morphism g = e�v of Y by (gF )(x) =

∑
m≥0

�
mvm

m! F (x). The last expression
can be written as F (e�vx), where e�vx is a regular map from the formal disk to
Y .
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Definition 3. A geometric quantum R-matrix on X is a formal diffeomorphism
of X × X, which satisfies the quantum Yang-Baxter equation

R12R13R23 = R23R13R12,(1.3)

and the unitarity condition

RR21 = 1.(1.4)

This definition is a modification of Drinfeld’s definition of a (unitary) set-
theoretical solution of the quantum Yang-Baxter equation (see [Dr]), in the case
when X is an algebraic variety. The term “geometric” is used because the map
R : C[X2] → C[X2][[�]] is not an arbitrary linear map, but a map of geometric
origin, i.e. coming from a formal diffeomorphism of X2.

Example 3. Let X be as in Example 1. For any formal diffeomorphism g,
define Rg(x, y) = (g(x), g−1(y)). This is a geometric quantum R-matrix. We
call it a permutation R-matrix, since it corresponds to a “formal permutation”
of X given by g.

Example 4. Let X be a finite dimensional algebra over C, and the formal
diffeomorphism R be given by Rc(x, y) = (x(1 + �cy), y(1 + �cx + �

2cxcy)−1),
where c ∈ X. It was checked in [ESS] (see formula (A5)) that R is a geometric
quantum R-matrix.

Suppose that R is a geometric quantum R-matrix on X, and its �-expansion
looks like R = 1 + �r + O(�2). Then it is easy to check that r is a geometric
classical r-matrix.

Definition 4. R is said to be a quantization of r.

Example 5. It is easy to see that Rg is a quantization of rv if g = e�v, and Rc

is a quantization of rc.

Our main result is the following quantization theorem.

Theorem 1.1. Any geometric classical r-matrix admits a quantization.

Remark. It was proved in [EK] that any classical r-matrix can be quantized.
In the unitary case, this was proved earlier by Drinfeld. However, these results
don’t automatically guarantee that if the r-matrix r is geometric then it has a
quantization which is also geometric. So the main theorem does not obviously
follow from the general quantization results. Also, the main theorem has the
advantage that its proof gives an easy way to compute the quantization.
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2. Proof of the main theorem

2.1. The Lie algebra with a bijective 1-cocycle associated to a geo-
metric classical r-matrix.

Let r be a geometric classical r-matrix on X. Then r is a vector field on
X2, so it is an element of VectX ⊗ C[X] ⊕ C[X] ⊗ Vect(X), where Vect(X) is
the Lie algebra of vector fields on X. Consider the space g = {(1 ⊗ f)(r)|f ∈
(Vect(X))∗⊕(C[X])∗}. It follows from (1.1) – (1.2) that g is a finite dimensional
Lie subalgebra in the Lie algebra Vect(X) � C[X] of differential operators of
order ≤ 1 on X. Moreover, g = g+ ⊕ g− as a vector space, where g+ = {(1 ⊗
f)(r)|f ∈ (C[X])∗}, g− = {(f ⊗ 1)(r)|f ∈ (Vect[X])∗} are Lie subalgebras, and
r ∈ g+ ⊗ g− ⊕ g− ⊗ g+. Since [g+, g−] ⊂ g−, the space V = g− has a g+-
module structure. We introduce a bijective map φr : V ∗ → g+ by the formula
φr(f) = (1⊗ f)(r) (here f is extended by 0 to g+). Denote π = φ−1

r : g+ → V ∗.

Lemma 1. π : g+ → V ∗ is a bijective 1-cocycle. That is, for any a, b ∈ g+,
π([a, b]) = a ∗ π(b) − b ∗ π(a), where ∗ denotes the g+ action on V ∗.

Proof of the Lemma. Let f, g ∈ V ∗, x ∈ g∗+, then

[φr(f), φr(g)](x) = (x ⊗ f ⊗ g)([r12, r13])
= −(x ⊗ f ⊗ g)([r12, r23] + [r13, r23])
= −f([(x ⊗ 1)(r), (1 ⊗ g)(r)]) + g([(x ⊗ 1)(r), (1 ⊗ f)(r)])
= −(φr(g) ∗ f)(x) + (φr(f) ∗ g)(x),

which proves the Lemma.

2.2. Exponentiation of the bijective cocycle.
Recall some basic facts about formal groups. Let L be any Lie algebra over

C. We denote by E(L) the group of formal expressions of the form e�b, where
b ∈ L[[�]], which are multiplied by the Campbell-Hausdorff formula. This is the
group of C[[�]]-rational points of the formal group associated to the Lie algebra
L.

It is clear that E is a functor from the category of Lie algebras to the category
of groups. That is, to any homomorphism φ : L → L′ of Lie algebras there
corresponds a homomorphism of groups E(φ) : E(L) → E(L′).

Let ψ : L → V ect(X) be a homomorphism of Lie algebras. Then the formal
group E(L) acts on X on the right by formal diffeomeorphisms, via ehb → ehψ(b).
We stress that this is a right, and not left, action, i.e. the above assignment is
an antihomomorphism, rather than homomorphism, of groups.

Now let us come back to the proof of the theorem. Define a linear map
π̄ : g+ → g+�V ∗ by π̄(a) = (a, π(a)). Lemma 1 states that π̄ is a homomorphism
of Lie algebras.

Let G+ = E(g+). Since g+ is a Lie algebra of vector fields on X, the group
G+ acts on X on the right by formal diffeomorphisms. We denote this action by
ρ, i.e. F (ρ(ehb)x) = ehbF (x) for b ∈ g+, F ∈ C[X].
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Also, it is clear that G+ acts naturally on V ∗[[�]]. Consider the group G+ �

V ∗[[�]] with multiplication (a, b)(a′, b′) = (aa′, b + a ∗ b′). It is easy to see that
this group is naturally isomorphic to E(g+ � V ∗) (here � is the semidirect
product). Therefore, the Lie algebra homomorphism π̄ can be lifted to a group
homomorphism Π̄ : G+ → G+ � V ∗[[�]]. Let p : G+ � V ∗[[�]] → V ∗[[�]] be the
projection map. The bijective map Π : G+ → V ∗[[�]] defined as a composition
Π = �

−1pΠ̄ satisfies the 1-cocycle relation Π(aa′) = a ∗ Π(a′) + Π(a).1

Let ε : X → C[X]∗ be the evaluation map. Restriction of its values to V gives
a map ε̃ : X → V ∗.

For x, y ∈ X we define x ◦ y = ρ(Π−1(−ε̃(x)))y (the right hand side is a
map of the formal disk to X). Define a homomorphism of algebras R :
C[X × X] → C[X × X][[�]] by the formula

(RF )(x, y) = F ((y◦)−1x, ((y◦)−1x) ◦ y),(2.1)

where (y◦)−1 denotes the inverse operator to the action of y by ◦. It is easy to
see that R = 1 + O(�).

Now we will use the following result from [ESS], Section 2.4.
Proposition. Let G be a group acting on a set X on the right via a map
ρ : G → Aut(X). Let A be an abelian group with a left G-action, and π : G → A
a bijective 1-cocycle. Let φ : X → A be a G-antiinvariant map, i.e for any
g ∈ G, x ∈ X gφ(x) = φ(ρ(g−1)x). Define R : X × X → X × X by

R(x, y) = ((y◦)−1x, ((y◦)−1x) ◦ y),(2.2)

where x ◦ y = ρ(π−1(φ(x)))y. Then R satisfies the unitarity condition and the
quantum Yang-Baxter equation.
Remark. [ESS] dealt with a left action of the group G on X. The above propo-
sition is a reformulation of the corresponding result from Section 2.4 of [ESS] in
terms of the right G-action on X.

This proposition (or, more precisely, its version for formal groups) implies
that R is a geometric quantum R-matrix.

It is easy to compute directly that R = 1 + �r + O(�2). Thus, R is a quanti-
zation of r. The theorem is proved.

3. Example

Let us show that for Examples 1 and 2, the procedure of the previous section
gives the same quantizations as in Examples 3 and 4.

For Example 1, this is clear: the Lie algebra g+ is 1-dimensional, and the
computation is trivial. So let us consider Example 2.

We have: X is a finite dimensional algebra, and rc(x, y) = (xcy,−ycx). In
this case it is easy to check that g+ is the right ideal cX generated by c, with

1Note that this definition of a 1-cocycle differs from the one used in [ESS] by the transfor-
mation Π(a) → Π(a−1).
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commutator given by [a, b] = ab − ba. The representation V ∗ of g+ is g+ itself,
with a ∗ b = −ba. The bijective 1-cocycle π has the form π(a) = a. Let us
exponentiate the cocycle π. We have π̄(a) = (a, a), and

Π̄(e�a) = e�(a,a) = (e�a,
e�a − 1

a
∗ a) = (e�a, 1 − e−�a).

Thus, Π(A) = �
−1(1 − A−1).

The map ε̃ has the form ε̃(x) = cx. Thus, x ◦ y = ρ(Π−1(−cx))y = ρ((1 +
�cx)−1)y = y(1 + �cx)−1. Therefore, we get

(RF )(x, y) = F (x(1 + �cy), y(1 + �cx + �
2cxcy)−1),

which coincides with the geometric quantum R-matrix of Example 4.

4. Geometric classical r-matrices on the line and their quantization

Theorem 4.1. Let r be a geometric classical r-matrix on the affine line, which
is not a permutation r-matrix. Then r reduces to r(n) = xyn ∂

∂x − yxn ∂
∂y for

some n ≥ 1, after a linear change of variables.

Proof. Let g+ be the Lie algebra in C[x] ∂
∂x associated to r. The g+-module C[x]

has a nonzero finite dimensional submodule V . If r is not a permutation matrix,
this submodule cannot consist only of constants. This implies that g+ is a Lie
subalgebra of the 2-dimensional Lie algebra spanned by ∂/∂x and x∂/∂x (if g+

has an element (xi + ..)∂/∂x with i > 1 then it generates an infinite dimensional
space from any nonconstant polynomial). Consider two cases.

1. g+ is 2-dimensional. Then V =< 1, x >, and one can check that V ∗

is isomorphic to the adjoint representation of g+. So if r with such g+

exists, then there must exist a nondegenerate 1-cocycle from g+ to g+,
i.e. a nondegenerate derivation of g+. It is easy to check that such a
derivation does not exist, so this case is impossible.

2. g+ is 1-dimensional. Then it is spanned by an element (ax + b)∂/∂x,
such that a �= 0. After a change of variable we can assume that g+ is
spanned by x∂/∂x. Then V = g− has to be spanned by xn for some
n ≥ 1, so r = c(xyn ∂

∂x − yxn ∂
∂y ).

This proves the proposition, as c can be easily scaled out.

Now let us discuss quantization of r(n). If n = 1, this was done above:
r(1) = rc from Example 2, where X = C, and c = 1. So the quantization given
by the procedure of Section 2 is R(1)(x, y) = (x(1 + �y), y

1+�x+�2xy ).
If n > 1, let us make a change of variables x → xn, y → yn. This change

maps r(n) to r(1)/n. Applying the same change of variables to the quantum
R-matrix, we get the following quantization of r(n).

R(n)(x, y) = (x(1 + n�yn)1/n, y(1 + n�xn + n2
�

2xnyn)−1/n).

It is easy to check that the procedure of Section 2 gives the same answer.
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