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CANONICAL BASES FOR HECKE ALGEBRA QUOTIENTS
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Dedicated to Professor R.W. Carter on the occasion of his 65th birthday

Abstract. We establish the existence of an IC basis for the generalized Temperley–
Lieb algebra associated to a Coxeter system of arbitrary type. We determine this
basis explicitly in the case where the Coxeter system is simply laced and the
algebra is finite dimensional.

Introduction

An important construction in the theory of quantum groups and quantum
algebras is that of canonical bases. The original example of this construction is
the Kazhdan–Lusztig basis of the Hecke algebra associated to a Coxeter system,
which first appeared in [11]. Another well known example is the canonical basis
for U+, the “plus part” of the quantized enveloping algebra associated to a
semisimple Lie algebra over C; this was discovered independently by Kashiwara
[10] and Lusztig [12]. In each of these examples, the basis which arises has many
deep and beautiful properties, some of which have geometric interpretations.

The general theory of such bases is defined for an A-module (where A is
the ring of Laurent polynomials Z[v, v−1]) equipped with an involutive Z-linear
map that sends v to v−1. This theory was developed by Du in [2], where the
bases arising are called IC bases. The letters “IC” stand for “intersection co-
homology”; the name alludes to the fact that many of the natural examples
have interpretations in terms of perverse sheaves. However, the existence and
uniqueness of such a basis is not guaranteed.

The Temperley–Lieb algebra, a finite dimensional algebra arising in statisti-
cal mechanics [13] and knot theory [9], may be defined as a certain quotient of
the Hecke algebra of a Coxeter system of type A. It is possible to generalize
this construction to an arbitrary Coxeter system, obtaining the so-called “gen-
eralized Temperley–Lieb algebras” as quotients. In this paper, we show that IC
bases exist for these Hecke algebra quotients associated to a Coxeter system of
arbitrary type. We also determine the bases explicitly in the case of Coxeter
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systems of types A, D and E; it turns out that in each of these cases the ba-
sis coincides with a previously familiar basis for the corresponding generalized
Temperley–Lieb algebra. The situation for non-simply-laced Coxeter systems
turns out to be more complicated and surprising, as we will discuss.

It is tempting to think that IC bases for generalized Temperley–Lieb algebras
may be obtained from the well-known Kazhdan–Lusztig bases for the Hecke
algebra by projection to the quotient, but this is in fact far from clear. In
general, the kernel of the canonical map from the Hecke algebra to the generalized
Temperley–Lieb algebra is not spanned by the Kazhdan–Lusztig basis elements
which it contains, even for Coxeter systems of low rank such as type D4, and
this causes complications. However, the situation in type A is relatively simple,
as C.K. Fan and the first author have shown [4].

Our results give rise to some interesting problems concerning the general
properties of IC bases for generalized Temperley–Lieb algebras; we mention a
few of these in our remarks.

1. Generalized Temperley–Lieb algebras

Let X be a Coxeter graph, of arbitrary type, and let W (X) be the associated
Coxeter group with distinguished set of generating involutions S(X). Denote by
H(X) the Hecke algebra associated to W (X). (The reader is referred to [8, §7]
for the basic theory of Hecke algebras arising from Coxeter systems.) The A-
algebra H(X) has a basis consisting of elements Tw, with w ranging over W (X),
that satisfy

TsTw =
{

Tsw if 
(sw) > 
(w),
qTsw + (q − 1)Tw if 
(sw) < 
(w),

where 
 is the length function on the Coxeter group W (X), w ∈ W (X), and
s ∈ S(X). The parameter q is equal to v2, where A = Z[v, v−1].

We define J(X) to be the ideal of H(X) generated by all elements

∑
w∈〈si,sj〉

Tw,

where (si, sj) runs over all pairs of elements of S(X) that correspond to adjacent
nodes in the Coxeter graph. (If the nodes corresponding to (si, sj) are connected
by a bond of infinite strength, we omit the corresponding relation.)

Definition 1.1. The generalized Temperley–Lieb algebra, TL(X), is defined to
be the quotient A-algebra H(X)/J(X).

The algebra TL(X) has a basis which arises naturally from the T -basis of
H(X). To define it, we introduce some standard combinatoric notions.
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Definition 1.2. Let si and sj be elements of S(X), the set of generating invo-
lutions, such that si and sj correspond to adjacent nodes in the Coxeter graph.
Let wij be the longest element in 〈si, sj〉.

We call an element w ∈ W (X) complex if it can be written as x1wijx2, where
x1, x2 ∈ W (X) and 
(x1wijx2) = 
(x1) + 
(wij) + 
(x2).

Denote by Wc(X) the set of all elements of W (X) which are not complex.
Let tw denote the image of the basis element Tw ∈ H(X) in the quotient

TL(X).

Theorem 1.3 (Graham). The set {tw : w ∈ Wc} is an A-basis for the algebra
TL(X).

Proof. This is [5, Theorem 6.2]. �

We will call the basis of Theorem 1.3 the “t-basis” of the algebra TL(X). It
plays an important rôle in the sequel, since the canonical basis will be defined
in terms of it.

Lemma 1.4. The algebra TL(X) has a Z-linear automorphism of order 2 which
sends v to v−1 and tw to t−1

w−1 .

Note. The statement of the lemma makes sense: it is well known that the ele-
ments Tw ∈ H(W ) are invertible, from which it follows that the elements tw are
invertible also.

Proof. It is known from [11] that the Hecke algebra H(X) over Z[v, v−1] has a
Z-linear automorphism of order 2 which exchanges v and v−1 and sends Tw to
T−1

w−1 . It is therefore enough to show that this automorphism of H(X) fixes the
ideal J(X).

Given a finite Coxeter group W ′ with longest element w0, it is a standard
result that, for any w1 ∈ W ′, there exists an element w2 ∈ W ′ such that w0 =
w1w2 and 
(w0) = 
(w1) + 
(w2). It follows from this fact that

 ∑
w∈〈si,sj〉

Tw


 T−1

wij
=


 ∑

w∈〈si,sj〉
T−1

w−1


 ,

so that the right hand side of the above equation lies in the ideal J(X). We
deduce that the automorphism of H(X) given above fixes the ideal J(X) setwise,
and thus induces an automorphism of TL(X) which has the required properties.

�

Lemma 1.5. Let w ∈ W (not necessarily in Wc). Then

tw =
∑

x∈Wc
x≤w

Dx,wtx,
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where Dx,w ∈ Z[q]. Furthermore, Dw,w = 1 if w ∈ Wc.

Proof. We proceed by induction on 
(w). The proposition is trivial if w ∈ Wc,
which covers the cases where 
(w) ≤ 1, as well as the last assertion in the
statement.

Now consider the case where w = su, 
(s) = 1 and 
(u) = 
(w)− 1. Then, by
induction,

tw = tstu =
∑

x∈Wc
x≤u

Dx,utstx.

It follows from standard properties of H(X) that

tstx =
{

tsx if 
(sx) > 
(x),
qtsx + (q − 1)tx if 
(sx) < 
(x).

It is easy to see that sx ≤ w and x ≤ w for each basis element tx appearing in
the sum. If sx < w then, by induction, tsx is a Z[q]-linear combination of basis
elements tz (z ∈ Wc) where z ≤ sx ≤ w.

The only remaining case is when sx = w, w �∈ Wc. This forces x = u and
thus u ∈ Wc, so there is only one term in the sum. Since w is complex, it can
be written as x1wijx2 as in Definition 1.2. We now use the fact that in TL(X)
we have

twij = −
∑

y<wij

ty.

This enables tw = tx1twij tx2 to be expressed as a Z[q]-linear combination of
elements ty, where y < w. By induction, these elements ty are Z[q]-linear com-
binations of basis elements tz (z ∈ Wc) where z ≤ y ≤ w.

The lemma follows. �

2. IC bases

We now recall the basic properties of IC bases from [2, §1].
Let A := Z[v, v−1], where v is an indeterminate, and let A− = Z[v−1] and

A+ = Z[v]. Let ¯ be the involution on the ring A which satisfies v̄ = v−1.
Let M be a free A-module with basis {mi}i∈I and an involutive Z-linear map

¯: M −→ M such that am = ām̄ for any m ∈ M and a ∈ A. For each i ∈ I, let
ri be an integer.

Let L be the free A−-submodule with basis {m′
i}i∈I , where m′

i := vrimi. Let
π : L −→ L/v−1L be the canonical projection.

Definition 2.1. If there exists a unique basis {ci}i∈I for L such that ci = ci

and π(ci) = π(m′
i), then the basis {ci}i∈I is called an IC basis of M with respect

to the triple ({mi}i∈I , ¯,L).

Note that the existence of an IC basis for M depends only on the original
basis {mi}i∈I , the map ¯ and the integers ri.
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Theorem 2.2 (Du). Let (I,≤) be a poset such that the sets {i : i ∈ I, i ≤ j}
are finite for all j ∈ I. Suppose that

m′
j =

∑
i∈I
i≤j

aijm
′
i

with aij ∈ A such that aii = 1 for all i ∈ I. Then an IC basis of M with respect
to ({mi}, ¯ ,L) exists.

Proof. This comes from [2, Theorem 1.2, Remark 1.2.1 (1)]. �
The importance of this result for us is that the t-basis of the algebra TL(X)

fits naturally into this setup, as we now explain.
Fix a Coxeter graph X. Let I = I(X) be the set {w : w ∈ Wc}. We make

I into a poset (I,≤) by restricting the Bruhat–Chevalley order on the Coxeter
group W = W (X) to the subset I. (Standard properties of this order imply
that the poset (I,≤) has the finiteness property required by Theorem 2.2.) We
take rw = −
(w) and mw = tw, so that m′

w = v−�(w)tw, and we take ¯ to be the
automorphism of TL(X) defined in Lemma 1.4.

Maintaining this notation, we have the following central result.

Theorem 2.3. Let X be an arbitrary Coxeter graph. There exists an IC basis
for the algebra TL(X) with respect to ({mi}, ¯ ,L).

Proof. It is enough to show that the formula for m′
w (where w ∈ Wc) given

in Theorem 2.2 can be satisfied for suitable elements aij ∈ A. We proceed by
induction on 
(w), the case 
(w) = 0 being trivial (w = e and me = me).

To deal with the inductive step, we suppose that w = su, where 
(s) = 1 and

(u) = 
(w) − 1. It is clear from the definition of Wc that u ∈ Wc.

Using the fact that m′
s = v−1ts, it is easily verified that

m′
s = m′

s − (v − v−1)m′
e,

where m′
e is the identity in TL(X). Thus

m′
w = m′

sm
′
u = (m′

s − (v − v−1)m′
e)m′

u.

By induction,
m′

u =
∑

z∈Wc
z≤u

azum′
z.

For each z appearing in the sum, we have z ≤ u ≤ w and also sz ≤ w by
standard properties of the Bruhat–Chevalley order. It therefore follows from
Lemma 1.5 that

m′
w =

∑
y∈Wc
y≤w

aywm′
y
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for suitable ayw ∈ A.
It remains to show that aww = 1. Considering lengths and using Lemma 1.5,

we find that the only term in the expression for m′
sm

′
u which can contribute

to the coefficient of m′
w arises from the product m′

s × auum′
u. It is clear that

m′
sm

′
u = m′

w, and we have auu = 1 by induction, completing the proof. �

Remark 2.4.
(1) The structure constants associated to the IC basis of TL(X) lie in N[v, v−1]

if X is of type A, D or En. (This will follow from Theorem 3.6.) We do not
know an example where this positivity property fails for the IC basis, and the
property certainly holds for some non-simply-laced types, such as TL(Hn).
In [7, §4.1], the first author constructed a basis of TL(Hn) with structure
constants in N[v, v−1] using morphisms in the category of decorated tangles.
(This category was introduced in [6].) It turns out that the basis of TL(Hn)
in [7] is precisely the IC basis of TL(Hn) arising from Theorem 2.3. This
means that the results of this paper give an elementary characterisation of
the basis in [7]. We do not supply the details here, but we hope to do so in a
forthcoming paper.

(2) An interesting problem to consider is that of identifying the Coxeter graphs
X for which the IC basis of TL(X) is equal to the image of the set C of
Kazhdan–Lusztig basis elements C ′

w ∈ H(X) indexed by w ∈ Wc. Coxeter
graphs X of type A have this property, by [4, Theorem 3.8.2] and our Theorem
3.6. It seems likely that the set C projects to the IC basis in type D, as
well. This problem is closely related to the question of whether an element
v−�(w)Tw ∈ H(X) (w /∈ Wc) necessarily lies in the lattice L after passing to
TL(X). One can also express the problem in terms of a degree bound on
the polynomials Dx,w of Lemma 1.5. A significant partial result would be to
know that v−�(w)Tw ∈ H(X) projects into L when w = su, s ∈ S(X), u ∈ Wc

and w /∈ Wc. This would allow an inductive construction of the IC basis.

3. The ADE case

In §3, we restrict ourselves to the case where the Coxeter graph is of type A,
D or E. However, we allow the graphs of type E to be of arbitrary rank. This
means that a graph of type En (n ≥ 6) may consist of a straight line of nodes
numbered 1, 2, . . . , n − 1 together with a node numbered 0 which is connected
only to node 3. (Contrast this with the more familiar definition of type E which
is the same but requires n ≤ 8.)

It is known [5, Theorem 7.1] that the algebras TL(En) are finite dimensional
for all values of n. In fact, for simply laced X, the algebra TL(X) is finite
dimensional if and only if X is of type A, type D or type En for some n. If X

satisfies these hypotheses, we say it is of type ADE.



CANONICAL BASES FOR HECKE ALGEBRA QUOTIENTS 219

Definition 3.1. If s ∈ S(X), we define bs to be the element v−1ts + v−1te.
If w ∈ Wc and w = s1s2 · · · sr (reduced), we define

bw := bs1bs2 · · · bsr .

This definition may appear to depend on the reduced expression chosen for w,
but in fact it does not, because bs and bs′ commute whenever s and s′ commute,
and every reduced expression for w can be obtained from any other by a sequence
of commutation moves (see [3]).

It is well known (and follows easily from Theorem 1.3 and Lemma 1.5) that
the set {bw : w ∈ Wc} is a basis for TL(X). We call this the monomial basis.

We are particularly interested in the case where the Coxeter graph X is con-
nected and simply laced (all bonds have strength 2 or 3).

Lemma 3.2. If X is connected and simply laced then the algebra TL(X) is
generated as an associative, unital algebra by the elements bs (one for each node
of X) and defining relations

b2
s = qcbs,

bsbt = btbs, if s and t are not connected,

bsbtbs = bs, if s and t are connected,

where qc := v + v−1.

Proof. This is a standard result from [3]. �

Our aim in §3 is to prove that in types A, D and E, the monomial basis is
the IC basis. The following is a key ingredient of the proof that we will give.

Lemma 3.3. Let X be a Coxeter graph of type ADE. Let w ∈ Wc(X) and let
s1s2 · · · sr be a reduced expression for w. Then for any 1 ≤ i1 < i2 < · · · <

ik ≤ r (k < r), we have bsi1
bsi2

· · · bsik
= qm

c bx for some x ∈ Wc(X), where
m ≤ r − k − 1 and qc := v + v−1.

Proof. This result is a special case of [5, Lemma 9.13]. Let b be an arbitrary
monomial in the generators bs. The relations of TL(X) ensure that b is equal
to qm

c bx for some nonnegative integer m and some x ∈ Wc. Then [5, Lemma
9.13] shows that the removal of one generator from the monomial b results in
an expression equal to qm′

c bx′ , where x′ ∈ Wc and m′ ≤ m + 1. Furthermore,
if b = bw for some w ∈ Wc, we have m′ = m. This means that the maximum
exponent of qc which could occur after r−k generators have been removed from
bw, as in the statement, is r − k − 1. �

Remark 3.4. It is possible to prove Lemma 3.3 without appealing to the results
of [5] by using a combinatoric argument based on tom Dieck’s graphical calculus
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[1], and in fact the latter approach establishes the lemma for a slightly wider
class of Coxeter systems, including type Ẽ7. However, we do not pursue this
here.

In the following lemma we use the standard notation εx := (−1)�(x).

Lemma 3.5. Let w ∈ Wc. Then

v−�(w)tw = εw

∑
x∈Wc
x≤w

εxQ̃x,wbx,

where Q̃w,w = 1 and Q̃x,w ∈ v−1A− if x < w.

Proof. Fix w ∈ Wc and fix a reduced expression w = s1s2 · · · sr. We have

v−�(w)tw = (v−1ts1)(v
−1ts2) · · · (v−1tsr )

= (bs1 − v−1)(bs2 − v−1) · · · (bsr
− v−1).

By expanding the last product and using Lemma 3.2 and the subexpression char-
acterisation of the Bruhat–Chevalley order, we can see that all the bx occurring
in the sum satisfy x ∈ Wc and x ≤ w.

More precisely, the product expands to a sum of terms

vk−�(w)bsi1
bsi2

· · · bsik
.

If k < 
(w), Lemma 3.3 shows that this is equal to

vk−�(w)qm
c bx,

where x ∈ Wc and m ≤ 
(w)−k−1. It follows that the coefficient of bx, and hence
Q̃x,w, lies in v−1A− in this case. The other possibility is that k = 
(w), which
produces the basis element bw with coefficient 1 and no other basis elements. It
follows that Q̃w,w = 1, as required. �

We are ready to prove the main result of §3.

Theorem 3.6. Let X be a Coxeter graph of type ADE. Then the IC basis for
TL(X) defined in Theorem 2.3 is precisely the monomial basis {bw : w ∈ Wc}.

Proof. It is easily checked that the generators bs are fixed by the involution
¯, from which it follows that any monomial in these generators also has this
property, so that bw = bw.

Lemma 3.5 shows that the transfer matrix (εwεxQ̃x,w) from the monomial
basis to the m′

i-basis is upper unitriangular with respect to a total refinement
of the partial order ≤, and all the entries above the diagonal lie in v−1A−.
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Elementary linear algebra shows that the inverse of this matrix, (P̃x,w), is also
upper unitriangular with all the entries above the diagonal in v−1A−. This
shows that

bw =
∑

x∈Wc
x≤w

P̃x,w(v−�(x)tx),

and therefore that π(bw) = π(v−�(w)tw).
We have now shown that the monomial basis is the IC basis with respect to

the triple ({mi}i∈I , ¯,L), as claimed. �

Remark 3.7.
(1) It is not true that the monomial basis of TL(X) equals the IC basis for all

simply laced X. For example, take X to be the Coxeter graph of type Ã3

consisting of four nodes connected by four edges in the shape of a square. If
we number the nodes 1, 2, 3, 4 around the square, the element b1b3b2b4b1b3 is
not an IC basis element. Similar remarks hold for X of type Ãl, where l > 3
is odd.
If X is non-simply-laced, the monomial and IC bases do not agree: any ele-
ment in Wc of the form w = ss′s (where s, s′ ∈ S(X)) has the property that
bsbs′bs is not an IC basis element.

(2) Another problem to consider is that of determining the precise relationship be-
tween the elements P̃x,w in the proof of Theorem 3.6 and the Kazhdan–Lusztig
polynomials Px,w of [11]. It is natural to be curious about this relationship,
because our elements P̃x,w play a rôle analogous to that of v�(x)−�(w)Px,w

in [11]. Similarly, the elements Q̃x,w are analogous to the inverse Kazhdan–
Lusztig polynomials.
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