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SOME LOWER BOUNDS ON THE NUMBER OF
RESONANCES IN EUCLIDEAN SCATTERING

T. Christiansen

The purpose of this note is to give some new lower bounds on the number of
resonances, or scattering poles, for non-trivial, real-valued, smooth, compactly
supported potentials in dimension n ≥ 3, odd. Let N(r) be the number of
resonances, counted with multiplicity, with norm less than r. We prove that

lim sup
r→∞

N(r)
r(log r)−p

= ∞,

for any p > 1; this is the first quantitative lower bound to hold in this generality.
We give some similar results for scattering by non-trapping metric perturbations
and for scattering by certain obstacles with fractal boundaries. The non-zero
resonances are defined, equivalently, as the poles of the meromorphic continu-
ation of the resolvent or of the scattering matrix ([6]). For the situations we
consider, except, possibly, for a finite number of points, the poles of the mero-
morphic continuation of the resolvent correspond, with multiplicity, to the poles
of the determinant of the scattering matrix ([5, 22]).

Rather little is known about the poles for general potentials. Let V ∈
L∞

comp(Rn) be real-valued, n ≥ 3 odd, and let R(λ) = (∆ + V − λ2)−1 be the
resolvent of ∆ + V . We take the convention that, aside from a finite number of
λ, R(λ) is a bounded operator on L2(Rn) when Im λ < 0. It has a meromorphic
continuation to C as an operator from L2

comp(Rn) to L2
loc(R

n). Let

N(r) = #{λj : λj is a pole of R(λ), listed with multiplicity, and |λj | < r}.
In [21], for odd n ≥ 3, Zworski showed that for V ∈ L∞

comp(Rn), N(r) = O(rn),
and this bound is optimal in that there are potentials for which N(r) ≥ crn,
c > 0; in [20] he obtained asymptotics for N(r) when n = 1. Only relatively
recently has it been shown that if V is a smooth, super-exponentially decaying
potential, V 	≡ 0, then there are infinitely many poles. This was done for n = 3
([12]), for a combination of a potential and metric perturbation when n = 3
([16]), and then for potential scattering in all odd dimensions ([17]); see [17] for
a brief history of the problem.

Let S(λ) be the scattering matrix, s(λ) = detS(λ), and, for λ real, σ(λ) =
(2πi)−1

∫ λ

0
s−1(τ)s′(τ)dτ + s0± be the scattering phase, where s0± = 1 if 0 is a

resonance and is 0 otherwise. We use knowledge of s(λ) and σ(λ) near 0 and
infinity, both of which are rather well understood in the potential case, and a
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representation of s(λ) from [22] to obtain some information about N(r). Our
methods are in the spirit of what has been done for surfaces with cusps (e.g.
[13, 14]). However, since the results of [13, 14] make extensive use of the fact
that most of the resonances lie near the real axis, such precise results are not
possible here.

From [22] we know that s(λ) = ±eig(λ)P (−λ)/P (λ), where

P (λ) =
∏

λj pole, λj �=0

E(λ/λj , n), E(z, p) = (1 − z) exp(z +
z2

2
+ · · · + zp

p
),

{λj} are all the non-zero poles of the resolvent, including those corresponding to
eigenvalues, and g is a polynomial of order at most n. We take the positive sign
when 0 is not a resonance and the negative sign otherwise ([8]). Moreover, using
the fact that for real λ, |s(λ)| = 1, σ′(λ) is even, and σ(λ) is real, we obtain that
g(λ) is real when λ is real, odd, and has g(0) = 0.

In the spirit of this note, we give a different proof of the following lemma (see
[17, 15], and references). Effectively, we are using the behaviour of the scattering
phase near 0 rather than the asymptotics of the heat kernel, as was noted as a
possibility by Müller (See [22, Section 2], and also [23, Section 3].). Note that it
was observed by Melrose ([12]) that the existence of at least one pole is enough
to show that there are infinitely many.

Lemma. The resolvent of ∆+V , where V ∈ C∞
c (Rn) is real-valued, n ≥ 3 odd,

has at least one nonzero pole if V 	≡ 0.

Proof. Suppose there are no non-zero poles. Then s(λ) = ±eig(λ) and σ(λ) =
(2π)−1g(λ) + s0±. However, from results on the behaviour of the scattering
matrix near 0 ([7, 8]), under these assumptions g(λ) = αn−2λ

n−2 + αnλn where
αn−2, αn are constants. Since the coefficient of λn−4 in the expansion at infinity
of the scattering phase is a nonzero multiple of

∫
V 2(x)dx ([1, 3, 4]), it follows

that V ≡ 0.

We shall use the following notation: For f, g ≥ 0, we say that f(r) = Ω(g(r))
as r → ∞ if for any C > 0, R > 0, there is an r1 > R with f(r1) > Cg(r1).

We note that if
∑∞

m=1 |am|−p−1 < ∞, then
∏∞

1 E(z/am, p) converges; we
make use of this in the theorems and proposition below.

Theorem 1. If V ∈ C∞
c (Rn) is real-valued, V 	≡ 0, n ≥ 3 odd, then as r → ∞,

N(r) = Ω(r(log r)−p) for any p > 1.

Proof. Suppose N(r) = O(r(log r)−p) for some p > 1. Then we may write

s(λ) = ±eig(λ)
∏ λj + λ

λj − λ
,

where this g is perhaps different from the previous one, but has the same prop-
erties.
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Using the fact that if λj is a resonance with non-zero real part, then −λj is
also a resonance, we have for real λ

2πσ(λ) = g(λ) −
∑ ∫ λ

0

2 Im λj

(τ − Re λj)2 + (Im λj)2
dτ

= g(λ) − 2
∑ (

Arc tan
(

λ − Re λj

Im λj

)
− Arc tan

(−Re λj

Im λj

))
.

Again using the symmetry of the poles, we have

2πσ(λ) = g(λ) − 2
∑

Re λj=0

Arc tan
(

λ

Im λj

)

− 2
∑

Re λj>0

(
Arc tan

(
λ − Re λj

Im λj

)
+ Arc tan

(
λ + Re λj

Im λj

))
.

This could also be obtained directly. The term involving the arctangent is the
sum of the arguments of (λj+λ)(λj−λ)−1 and (−λj+λ)(−λj−λ)−1 if Reλj > 0,
minus the value of the arguments when λ = 0.

Using the fact that for x > 0,

Arc tanx + Arc tan y = Arc tan
x + y

1 − xy
+

{
0 if xy < 1
π if xy > 1

we obtain, when |λ| 	= |λj |, Re λj > 0,

(1) Arc tan
(

λ − Re λj

Im λj

)
+ Arc tan

(
λ + Re λj

Im λj

)

= Arc tan
(

2λ Im λj

|λj |2 − λ2

)
+

{
0 if |λj |2 > λ2

π if |λj |2 < λ2.

We wish to bound

(2) h(λ) = 2
∑

Re λj=0

Arc tan
(

λ

Im λj

)

+ 2
∑

Re λj>0

(
Arc tan

(
λ − Re λj

Im λj

)
+ Arc tan

(
λ + Re λj

Im λj

))
,

from above and below. From our bounds, we will then derive a contradiction to
the known asymptotics of the scattering phase.
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For the bound from above, note that

(3)
∑

Re λj=0
|λj |<2λ

Arc tan
(

λ

Im λj

)

+
∑

Re λj>0
|λj |<2λ

(
Arc tan

(
λ − Re λj

Im λj

)
+ Arc tan

(
λ + Re λj

Im λj

))

≤ π

2
N(2λ) ≤ C(1 + λ(log λ)−p).

Using the fact that |Arc tanx| ≤ |x|, we can, for large λ, bound

2
∑

Re λj=0
|λj |>2λ

Arc tan
(

λ

Im λj

)
≤ 2

∑
Re λj=0
|λj |>2λ

∣∣∣∣ λ

Im λj

∣∣∣∣(4)

≤ 2λ

∫ ∞

2λ

r−1 d

dr
N(r)dr

≤ Cλ(log λ)−p + C

∫ ∞

2λ

r−1(log r)−pdr

≤ Cλ(log λ)−ε,

for some ε > 0, where C is a positive constant whose value may change from line
to line. A similar bound can be made for the second sum in (2), showing that
h(λ) = O(λ(log λ)−ε).

For the lower bound, we use the fact that if |λj | < λ/2, Im λj > 0, and
Re λj = 0, then Arc tan(λ/ Im λj) > π/4. Since

π + Arc tan
2λ Im λj

|λj |2 − λ2
>

π

2
,

using (1) and the fact that the contribution to h of the poles with positive
imaginary part is positive, we obtain

π

2
N(

λ

2
) − 2πne ≤ h(λ),

where ne is the sum of the number of eigenvalues and zero-resonances, counted
with multiplicity. The non-zero eigenvalues correspond to the poles of the resol-
vent with negative imaginary part.

Summarizing, we have for large λ

π

2
N(

λ

2
) − 2πne ≤ h(λ) ≤ Cλ(log λ)−ε.

Therefore, h is unbounded but grows more slowly than linearly, and since
2πσ(λ) = g(λ) − h(λ), this contradicts the known asymptotics of the scattering
phase at infinity ([1, 3, 4]).



THE NUMBER OF RESONANCES IN EUCLIDEAN SCATTERING 207

Set

NI(r) = #{λj poles of R(λ), counted with multiplicity : |λj | < r,Re λj = 0}.
The following result may be compared to [18, Example 5.3], which gives sufficient
conditions for the Dirichlet or Neumann Laplacian on an exterior domain to have

N(r) − NI(r) ≥ cεr
n−1−ε,

for any ε > 0.

Theorem 2. Let V ∈ C∞
c (Rn) be real-valued, n ≥ 3 odd, and suppose NI(r) ≥

crn−1 for some c > 0. Then either N(r) − NI(r) = Ω(rn−1(log r)−p) for any
p > 1 or NI(r) = Ω(rn(log r)−p), any p > 1.

Note that the results of [9, 19] show that the class of potentials satisfying the
hypotheses of the theorem includes certain potentials of fixed sign.
Proof. Suppose that N(r) = O(rn(log r)−p), some p > 1. Then we may write
s(λ) = ±eig(λ)P (−λ)/P (λ) with

P (λ) =
∏

λjpole, λj �=0

E(λ/λj , n − 1).

Considering only the contribution of the purely imaginary poles to the scattering
phase, we will show below that for large λ,

(5) C1λ
n−1 ≤∣∣∣∣∣∣∣∣

∫ λ

0

∏
λj pole

λj �=0, Re λj=0

E(τ/λj , n − 1)
E(−τ/λj , n − 1)

∂

∂τ




∏
λj pole

λj �=0,Re λj=0

E(−τ/λj , n − 1)
E(τ/λj , n − 1)


 dτ

∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣
∑

λj pole, λj �=0
Re λj=0

∫ λ

0

2iτn−1(−1)(n−3)/2

(Im λj)n−2(τ2 + (Im λj)2)
dτ

∣∣∣∣∣∣∣∣
≤ C2λ

n(log λ)−ε,

for some C1, C2, ε > 0. If we have N(r) − NI(r) = O(rn−1(log r)−p) for some
p > 1, then we have, when λ is large,∣∣∣∣∣∣∣∣

∫ λ

0

∏
λj pole
Re λj �=0

E(τ/λj , n − 1)
E(−τ/λj , n − 1)

∂

∂τ




∏
λj pole
Re λj �=0

E(−τ/λj , n − 1)
E(τ/λj , n − 1)


 dτ

∣∣∣∣∣∣∣∣
≤ Cλn−1(log λ)−ε,

for some C, ε > 0. The proof of this estimate is very similar to that of (2)
and (5), using, of course, the bound O(rn−1(log r)−p) on the number of poles
with nonzero real part. This estimate, combined with (5) and the fact that g is
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an odd polynomial, contradicts the known asymptotics of the scattering phase
([1, 3, 4]), which has highest order term λn−2. Therefore, at least one of our
assumptions is incorrect.

We have now finished the proof, except for showing (5). To prove the lower
bound, note that, using NI(r) ≥ crn−1,

∑
λjpole,Re λj=0
Im λj>0,|λj |<λ

∫ λ

0

2τn−1

(Im λj)n−2(τ2 + (Im λj)2)
dτ

(6)

≥
∫ λ

0

∫ λ

0

2τn−1

rn−2(τ2 + r2)
dτ

d

dr
NI(r)dr − C

≥
∫ λ

0

2cλτn−1

τ2 + λ2
dτ −

∫ λ

0

∫ λ

0

d

dr

2τn−1

rn−2(τ2 + r2)
dτNI(r)dr − C

≥ 2cλ

∫ λ

0

τn−1

τ2 + λ2
dτ − C

≥ C ′λn−1 − C,

where C ′ > 0, and here and below C is a constant which may change from line
to line.

For the upper bound in (5), note that much as in (4) and (6), using the upper
bound on N(r) it suffices to bound from above

∫ ∞

2

∫ λ

0

τn−1

τ2 + r2
r(log r)−pdτdr.(7)

If we write this as the sum of two integrals, where in the first we integrate over
r ∈ (2, λ) and the second r ∈ (λ,∞), we get for the first

∫ λ

2

∫ λ

0

τn−1

τ2 + r2
r(log r)−pdτdr(8)

≤
∫ λ

2

∫ λ

0

τn−3r(log r)−pdτdr

≤ Cλn−2

∫ λ

2

r(log r)−pdr ≤ Cλn(log λ)−p,
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for large λ. For the part of the integral (7) with λ ≤ r < ∞, we obtain, after a
change of variables,

∫ ∞

1

∫ 1

0

λnτn−1r

r2 + τ2
(log(rλ))−pdτdr ≤ Cλn(log λ)−ε,

for some ε > 0.

We include several results, for scattering by metric perturbations and obsta-
cles, whose proofs are much the same. We continue to use N(r) to denote the
counting function for the poles, although we consider different kinds of pertur-
bations of the Laplacian.

Proposition. If the resolvent of the Laplacian associated to a smooth, compactly
supported, non-trapping metric perturbation of R

n, n ≥ 3 odd, has any poles,
then N(r) = Ω(r(log r)−p), any p > 1.

Proof. This proof follows just as the proof of Theorem 1, using the results of
[11] for the asymptotics of the scattering phase. The proof works because of the
existence of a complete asymptotic expansion of the scattering phase.

We note that [15, 17] have shown that if n = 3 or n = 5, then there are
infinitely many resonances for a non-flat, compactly supported metric pertur-
bation of R

n. For general odd n, [15] reduced the question of the existence of
infinitely many resonances to the question of whether the Minakshisundaram
coefficients dj , j ≥ 2, are 0.

Examples. In [10], Levitin and Vassiliev constructed examples of bounded
domains Ω̃ ⊂ R

n with interior Minkowski dimension D̃, n − 1 < D̃ < n, such
that

Nev(µ) = cn Vol Ω̃µn + c̃Ω̃,nµD̃ + o(µD̃)

([10, Theorem C]), with

Nev(µ) = #{λ2
j ≤ µ2 : λ2

j is an eigenvalue of the Laplacian on Ω̃
with Dirichlet boundary conditions, counted with multiplicity},

and c̃Ω̃,n 	= 0. (See [10] for a definition of interior and exterior Minkowski
dimension.) Using their examples and a result of [2], it is relatively easy to
construct families of obstacles Ω in R

n with exterior Minkowski dimension D̂,
n − 1 < D̂ < n, such that the Laplacian on R

n \ Ω with Dirichlet boundary
conditions has scattering phase with the asymptotics

σ(λ) = cnλn Vol(Ω)λn + ĉΩ,nλD̂ + o(λD̂),

with ĉΩ,n 	= 0 (see [2]). For such obstacles, when n ≥ 3, odd, we have N(r) =
Ω(rD̂(log r)−p) for any p > 1. Again, the proof is by contradiction. If N(r) =
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O(rD̂(log r)−p) for some p > 1, then we can write s(λ) = ±eig(λ)P (−λ)/P (λ),
with

P (λ) =
∏

0 �=λj , pole

E(λ/λj , n − 1).

Again using the bound N(r) = O(rD̂(log r)−p), we obtain, as λ → ∞, s(λ) =
αnλn + O(λD̂(log λ)−ε) for some ε > 0, a contradiction.
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