VOLUME, CHEEGER AND GROMOV

Itai Benjamini

ABSTRACT. It is shown that a manifold of bounded local geometry with Cheeger constant bigger than h and Gromov hyperbolicity constant smaller than δ has either infinite volume or it's volume is bounded by a function depending only on h and δ and the bounded geometry parameters.

1. Introduction

In this note we will restrict the discussion to the set of complete Riemannian manifolds M of some fixed dimension n, with all sectional curvatures bounded from below by say -1, and injectivity radius bigger than $r_0 > 0$. Our goal is to prove the following.

Theorem 1. Given $h, \delta > 0$, assume the Cheeger constant of M is bigger than h and the Gromov hyperbolicity constant of M is smaller than δ , then either M has infinite volume or it's diameter is bounded by $f(h, \delta) < \infty$, a function which depends only on δ and h and the bounded geometry parameters.

Since we assume bounded geometry with fixed bounds, a bound on the diameter implys a bound on the volume.

The theorem was inspired by a related result from Benjamini (1998).

We start with definitions.

Definition (Cheeger constant).

$$h(M) = \inf \frac{\operatorname{Area}(\partial A)}{\min(\operatorname{Vol}(A),\operatorname{Vol}(A^c))},$$

where A runs over open subsets of M with finite volume. A^c is the compliment of A, ∂A is the boundary of A, Area(∂A) denotes the (n-1)-dimensional volume of ∂A , and Vol denotes n-dimensional volume.

Definition (δ -hyperbolic). Let M be a manifold. Given three points $a, b, c \in M$, pick geodesics between any two to get a geodesic triangle. Denote the geodesics by [a, b], [a, c], [b, c]. Say the triangle is δ -thin if for any $p \in [a, b]$

$$\min(d(p, [a, c]), d(p, [b, c])) \le \delta,$$

and the same for $p \in [a, c]$ or [b, c]. M is said to be δ -hyperbolic if all geodesic triangles in M are δ -thin. Let

$$\delta(M) = \inf\{\delta | M \text{ is } \delta\text{-thin}\}.$$

Received May 4, 1998.

Note that the real hyperbolic spaces \mathbb{H}^n have infinite volume, strictly positive Cheeger constant and finite hyperbolicity constant.

2. Proof

Proof. Given M let h = h(M), $\delta = \delta(M)$ and assume that d is chosen so that for any ball $B(a,r) \subset M$ with radius r > 1, $Vol(B(a,r)) < d^r$. Such a d exists and depends only on the dimension and the bounded geometry conditions we assumed at the start. See for instance Chavel (1993).

From now on we will assume M has finite volume. Since M has bounded geometry it is compact. Set $R = \log_d \operatorname{Vol}(M)$ and pick C > 0 depending only on h and d such that

$$(h/2)$$
Vol $B(a, (1/2 - 2C)R) > d^{2CR},$

for any ball centered at any $a \in M$.

Let a,b be two points that realize the diameter of M, and γ a geodesic between a and b. Let m be the midpoint of γ . Pick a ball B of radius r' $CR \leq r' \leq 2CR$ around m, for which $\operatorname{Area}(\partial B) < d^{2CR}$. Such an r' exists because of the volume upper bound in terms of d and the fact that $\operatorname{Vol}(B) = \int_0^{r'} \operatorname{Area}(\partial B(m,r)) dr$. The distance from a to b is at least a. Hence the distance from a to a is at least a in a

$$d_{M\setminus B}(a,b) \ge c_{\delta}^{CR},$$

(the actual bound in Gromov (1987) is $\delta(2^{CR/\delta}-2)$). Now assume

$$\operatorname{Vol}_{M \setminus B}(B(a, d_{G \setminus B}(a, b)/2)) \le \operatorname{Vol}_{M \setminus B}(B(b, d_{G \setminus B}(a, b)/2)).$$

That is, the Volume of the ball in $M \setminus B$ centred at a of half the distance in $M \setminus B$, from a to b, is not bigger than the volume of the similar ball centered at b. Now let $A(n) = B_{M \setminus B}(a, n) \setminus B_{M \setminus B}(a, n-1)$. Thus, for any $n < d_{M \setminus B}(a, b)/2$, by integrating the areas of $\partial (B_{M \setminus B}(a, r))$, $n-1 \le r \le n$,

$$\operatorname{Vol}(A(n)) \ge h \operatorname{Vol}(B_{M \setminus B}(a, n-1)) - \operatorname{Area}(\partial B).$$

Yet C was chosen so that for $r \ge (1/2 - 2C)R$,

$$Area(\partial B) \le (h/2) VolB(a, (1/2 - 2C)R) \le (h/2) Vol(B_{G \setminus B}(a, r)).$$

(For r < (1/2 - 2C)R), $B_{M \setminus B}(a, r)$ is disjoint from B). So for $n \le d_{M \setminus B}(a, b)/2$,

$$Vol(B_{M\backslash B}(a,n)) > (1+h/2)Vol(B_{M\backslash B}(a,n-1)).$$

We get then,

$$d^{R} \ge \text{Vol}(M) \ge (1 + h/2)^{d_{M \setminus B}(a,b)/2}$$

 $\ge (1 + h/2)^{c_{\delta}^{CR}/2},$

which forces an upper bound on the diameter R in terms of d,h and δ .

Acknowledgement

As always, thanks to Oded Schramm for useful advice.

References

- [1] I. Benjamini, Expanders are not hyperbolic, Israel J. Math., to appear.
- [2] I. Chavel, Riemannian geometry, a modern introduction, Cambridge Tracts in Mathematics, 108, Cambridge University Press, Cambridge, 1993.
- [3] M. Gromov, Hyperbolic groups, Essays in group theory, pp. 75–263, Math. Sci. Res. Inst. Publ. 8, Springer, 1987.

WEIZMANN INSTITUTE, REHOVOT, ISRAEL 76100 E-mail address: itai@wisdom.weizmann.ac.il