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ENERGY SCATTERING FOR HARTREE EQUATIONS

Kenji Nakanishi

Abstract. We give an alternative proof for the result in [7] that the scattering
operators are well-defined in the whole energy space for a class of Hatree equa-
tions. Our proof allows potentials which are flat at the origin. Moreover, our
proof gives the desired global a priori space-time estimates.

1. Introduction

In this note, we study the scattering theory in the energy space for Hartree
type equations:

iu̇ − ∆u + (V ∗ |u|2)u = 0,(1.1)

where u = u(t, x), (t, x) ∈ R
1+n, with n ≥ 3, V = V (x), and u̇ = ∂u/∂t. In

[7, Proposition 4.3], it was shown that the wave operators and the scattering
operator are well-defined homeomorphisms in the energy space H1(Rn) if the
following conditions on V are fulfilled:

V ∈ Lp1 + Lp2 ,(1.2)

for some p1, p2 ∈ (max(1, n/4), n/2), and V (x) = v(|x|) for some nonnegative
nonincreasing function v satisfying

v(r1) − v(r2) ≥ C(rα
1 − rα

2 ) for 0 < r1 < r2 ≤ a,(1.3)

for some C, a, α > 0. The scattering theory has been studied also in some
weighted spaces [4, 9, 8, 12]. The scattering in the energy space has been studied
also in the case of the pointwise nonlinearity:

iu̇ − ∆u + p(u) = 0,(1.4)

where p is a complex valued function. See [5, 6, 2].
In this note, we give another proof for the main part of the above result

in [7], namely the asymptotic completeness for (1.1) in H1. We do not need
the unnatural assumption (1.3) (cf. [7, Remark 4.1]). Thus, we can deal with
potentials V which are flat around the origin, for example:

V (x) =

{
1, |x| < 1,

0, |x| > 1.
(1.5)
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Moreover, our proof gives the desired global a priori space-time estimates in
terms of the energy, which were not obtained in [7] (cf. [7, Remark 4.2]). In the
case of (1.4), such an estimate was obtained in [2]. Our arguments are similar to
those in [11] and [10], and even simpler. The main idea is a nice combination of
Morawetz-type estimates and propagation estimates (see Section 5), which may
be regarded as ‘multiplicative’ combination, whereas the argument in [7] may be
regarded as ‘additive’ combination. There is a similar argument in [2].

We can exclude the assumption (1.3) because we use new estimates of Mora-
wetz type (Lemma 3.1), which are sharper versions of the estimate derived in
[11], and a certain related Sobolev-type inequality (Lemma 3.3). The usual
Morawetz estimates exploit only the properties of ∆, but the new estimates
exploit the properties of i∂t − ∆, so that they yield more information on the
solutions peculiar to nonlinear Schrödinger equations. Such an estimate for
nonlinear wave equations was derived in [10, Proposition 4.4]. The main result
of this note is the following.

Theorem 1.1. Assume that V ∈ Lp1 + Lp2 with some p1, p2 ≥ 1 satisfying
n/2 < p1 ≤ p2 < n/4. Assume that V (x) = v(|x|) for some nonnegative non-
increasing v. Then, the wave operators and the scattering operator for (1.1)
are homeomorphisms in H1(Rn). Precisely, for any solution u of (1.1) with
u(0) ∈ H1(Rn), there exists a solution w of the free Schrödinger equation

iẇ − ∆w = 0,(1.6)

with w(0) ∈ H1(Rn) such that ‖u(t) − w(t)‖H1 → 0 as t → ∞. Moreover, the
correspondence u(0) 
→ w(0) defines a homeomorphism in H1(Rn) (we have the
same result for t → −∞).

The arguments in this note can be used also to show the asymptotic com-
pleteness for (1.4) under the conditions on the function p:

p(0) =0, |p(u) − p(v)| ≤ C|u − v|min((|u| + |v|)q1 , (|u| + |v|)q2),
for some q1, q2 ∈ (1 + 4/n, 1 + 4/(n − 2)),

∃
P : C → R, s.t. ∂zP (z) = p(z), P (0) = 0,

G(u) := �(up(u)) − P (u) ≥ 0,(1.7)

which are essentially weaker than those needed in [5, 6, 2], with respect to (1.7).
Throughout this note, we always assume (1.2) for fixed p1 and p2 satisfying

p1 =
n

2 + 2ε
, p2 = max

(
n

4 − 2ε
, 1

)
,(1.8)

for some ε > 0 small. We fix this ε ∈ (0, 1/4) also.
The rest of this paper is organized as follows. In the next section we give

several notations and basic estimates. In Section 3, we derive some new variants
of the Morawetz estimate. In Section 4, we prove a weighted global estimate for



ENERGY SCATTERING FOR HARTREE EQUATIONS 109

the space-time norm. In Section 5, we prove the desired global estimate for the
space-time norm, from which Theorem 1.1 easily follows.

2. Notations and basic estimates

In this section, we introduce several notations and basic estimates. As usual,
we denote by C auxiliary positive constants, and sometimes write as C(a, b, . . . )
to indicate that the constant depends only on a, b, . . . and that the dependence
is continuous (we will use this convention for constants which are not denoted
by ‘C’). We fix n and ε in (1.8) and ignore the dependence of constants on n, ε.
We denote by Bσ

q,r the usual inhomogeneous Besov spaces (see, e.g., [1]).
Now we will define the space-time norms used in this note. We will sometimes

abbreviate them as ‘ST-norms’.

(B̃; I) := L∞(I;B1−n/2
∞,2 (Rn)), (B; I) := L∞(I; B1−n/2−2ε

∞,∞ (Rn)),

(X̃; I) := L6(I;B1
6n/(3n−2),2(R

n)), (X; I) := L6(I;B1−2ε
6n/(3n−2−6ε),2(R

n)),

(K; I) := L3(I;B1
6n/(3n−4),2(R

n)), (K; I) := L3/2(I;B1
6n/(3n+4),2(R

n)).

(2.1)

We will sometimes omit the interval I in (2.1). We fix a smooth cut-off function
h satisfying

h ∈ C∞(R), 0 ≤ h ≤ 1, h(t) =

{
1, t ≥ 1,

0, t ≤ 0.
(2.2)

Denote by Fϕ = ϕ̃ the Fourier transform of ϕ and define the Littlewood-Paley
dyadic decomposition:

ψj := F−1h(2 − 2−j |ξ|) ∈ S(Rn), ψC
j := δ − ψj ,

ϕj :=

{
ψj − ψj−1, for j ∈ N,

ψ0, for j = 0.

(2.3)

Denote

f(u) := (V ∗ |u|2)u, F (u) := (V ∗ |u|2)|u|2,

E(u) :=
∫

Rn

|u|2 + |∇u|2 + F (u)dx,
(2.4)

where ∇u = (∂u/∂x1, . . . , ∂u/∂xn). E(u) is a conserved quantity for (1.1). The
integral equation associated to (1.1) can be written as:

u(t) = e−i∆tu(0) + i

∫ t

0

e−i∆(t−s)f(u(s))ds.(2.5)
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Now we collect several basic estimates on the space-time norms. By the Sobolev
embedding, we have for any j ∈ N,

‖u‖(B) ≤ C‖u‖
(B̃)

≤ C‖u‖L∞
t (H1),

‖ϕj ∗ u‖(B) + ‖ψC
j ∗ u‖(B) ≤ C2−2εj‖u‖

(B̃)
,

‖u‖(X) ≤ C‖u‖
(X̃)

,

‖ϕj ∗ u‖(X) + ‖ψC
j ∗ u‖(X) ≤ C2−εj‖u‖

(X̃)
.

(2.6)

By the Sobolev embedding and Hölder’s and Young’s inequalities, we have

‖f(u)‖(K) ≤ C‖u‖(K)‖u‖2
L6

t (Lq1∩Lq2 )‖V ‖Lp1+Lp2

≤ C‖u‖(K)‖u‖2
(X),

(2.7)

where q1 := 6n/(3n − 2 − 6ε) and q2 := min(6n/(3n − 8 + 6ε), 3n/2). By the
complex interpolation and the Sobolev embedding, we have

‖u‖(X) ≤ C‖u‖1/2
(K)‖u‖1/2−2ε/n

L∞
t (H1) ‖u‖2ε/n

(B) .(2.8)

By the Strichartz estimate, we have for any t > 0,

‖u(t)‖H1 + ‖u‖(K;(0,t)) + ‖u‖
(X̃;(0,t))

≤ C‖u(0)‖H1 + C‖iu̇ − ∆u‖(K;(0,t)).

(2.9)

Using the above estimates, it is easy to prove the unique global existence of the
solution and existence of the wave operators defined everywhere in H1(Rn). See
[7] for more detail. By the above estimates, we have the following lemma. The
idea is essentially due to Bourgain [3].

Lemma 2.1. Let u satisfy (1.1) on an interval I with E(u) = E < ∞ and
‖u‖(X;I) = η. There exists a constant η0(E) ∈ (0, 1) such that if η ≤ η0(E)
we have a subinterval J ⊂ I, R > 0 and c ∈ R

n satisfying |J | ≥ C(E, η),
R ≤ C(E, η) and ∫

|x−c|<R

min(|u(t)|, |u(t)|s) dx ≥ C(E, η, s),(2.10)

for any t ∈ J and any s ≥ 1.

Proof. This is almost the same as [11, Lemma 4.1], so we give a rather sketchy
proof. By (2.9) and (2.7), if η0(E) is sufficiently small, it follows that ‖u‖(K;I) <
C(E) and ‖u‖

(X̃;I)
< C(E) from ‖u‖(X;I) ≤ η0. Then, from (2.8), we have

‖u‖(B;I) > C(E, η). This means that we have some T ∈ I, c ∈ R
n and j ∈ N∪{0}

such that

|2(1−n/2−2ε)jϕj ∗ u(T, c)| ≥ C(E, η).(2.11)
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By (2.6), we have j ≤ C(E, η). Moreover, there exists some k < C(E, η) such
that

η

2
≤ ‖ψk ∗ u‖(X;I).(2.12)

On the other hand, by the Sobolev embedding and Hölder’s inequality, we have

‖ψk ∗ u‖(X;I) ≤ |I|1/6C(k)‖u‖L∞(I;H1) ≤ C(E, η)|I|1/6.(2.13)

So we have |I| ≥ C(E, η). From the equation and the Sobolev embedding, we
have

‖ϕj ∗ (u(t) − u(T ))‖L∞ ≤ C(j)‖u(t) − u(T )‖H−1 ≤ C(E, η)|t − T |.(2.14)

Thus, there is some interval J ⊂ I such that |J | ≥ C(E, η) and that we have
(2.11) for any T ∈ J . From (2.11) and Young’s inequality, we have

‖u(T )‖L1(|x−c|<R) ≥ C(E, η),(2.15)

for some large R < C(E, η). Then, by Hölder’s inequality we obtain the desired
result.

3. Morawetz-type estimates

In this section, we derive certain variants of the Morawetz estimates with
space-time weights. They are sharper versions of the estimate in [11, Lemma
5.2], where it was derived in the case of the pointwise nonlinearity.

Lemma 3.1. Assume that V (x) = v(|x|) for some nonnegative nonincreasing
v. Let u be a global solution of (1.1) with E(u) = E < ∞. Then we have for
any 0 < ν ≤ 1, ∫∫

R1+n

|2t∇u + ixu|2
|t|1−ν(|t| + |x|)2+ν

dxdt ≤ C(E, ν).(3.1)

Proof. We will use the following notations.

r = |x|, θ =
x

r
, λ =

√
t2 + r2, γ =

r

t
,

ur = θ · ∇u, uθ = ∇u − θur.
(3.2)

It suffices to consider the estimate for t > 0. We give only a formal proof
assuming that u is sufficiently smooth. It can be easily extended to general
finite energy solutions. We will use the following multiplier:

m = 2ϕ(γ)ur + g(γ)
u

t
+ iψ(γ)u,(3.3)

where

ϕ(γ) =
∫ γ

0

ds

〈s〉2+ν , ψ(γ) =
∫ γ

∞

sds

〈s〉2+ν , g = ϕ′ +
n − 1

γ
ϕ,(3.4)
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where 〈s〉 =
√

1 + s2. In the case ν = 1, m is identical with mp in [11, (5.18)].
Then we have ψ′ = γϕ′, and ϕ′ is nonnegative and nonincreasing. In particular
we have ϕ/γ ≥ ϕ′. In a way similar to [11, (5.19),(5.20)], we have

(3.5) �{(iu̇ − ∆u)m} = ∂t

{
ϕ(γ)�(uur) +

|u|2
2

ψ(γ)
}

+ ∇ · �
{
−∇ump + ϕ(γ){�(uu̇) + |∇u|2} +

|u|2
2t2

g′(γ)θ
}

+
ϕ′(γ)
2t3

|2t∇u + ixu|2 + 2
(

ϕ(γ)
γ

− ϕ′(γ)
) |uθ|2

t

− |u|2
2t3

(
∂2

γ +
n − 1

γ
∂γ

)
g(γ).

The last term is further calculated as

(3.6)
(

∂2
γ +

n − 1
γ

∂γ

)
g(γ)

=
(

∂2
γ + 2

n − 1
γ

∂γ

)
ϕ′(γ) +

(n − 1)(n − 3)
γ2

(
ϕ′(γ) − ϕ(γ)

γ

)
.

The last term is nonpositive, and the first term in the right hand side is explicitly
computated as

(
∂2

γ + 2
n − 1

γ
∂γ

)
ϕ′(γ) = −(2 + ν)

{
2n − 5 − ν

〈γ〉4+ν +
ν + 4
〈γ〉6+ν

}
≤ 0.(3.7)

Thus, the last three terms in (3.5) are all nonnegative. So, integrating (3.5) over
[S, T ] × R

n, we obtain

(3.8)
[∫

Rn

−ϕ(γ)�(uur) − |u|2
2

ψ(γ)dx

]T

S

≥
∫ T

S

∫
Rn

ϕ′(γ)
2t3

|2t∇u + ixu|2dxdt

+
∫ T

S

∫
Rn

�{f(u)m}dxdt.

Since the left hand side is bounded by the energy, it suffices to show that the
last term is nonnegative. Let h(x) := ϕ(γ)θ. Denote by (·, ·) the inner product
in L2(Rn). Then we have

�(f(u), m) = (V ∗ |u|2,�{2uh · ∇u} + |u|2∇ · h)

= (V ∗ |u|2,∇ · (h|u|2)) = −(∇V ∗ |u|2, h|u|2).(3.9)
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Then, we have

(3.10) (∇V ∗ |u|2, h|u|2) =
∫∫

v′(|x − y|) x − y

|x − y| · h(x)|u|2(x)|u|2(y)dxdy

=
1
2

∫∫
v′(|x − y|) x − y

|x − y| · (h(x) − h(y)) |u|2(x)|u|2(y)dxdy,

where in the second identity, we used the antisymmetry of the second member
for h(x) ↔ h(y). Since v′ ≤ 0, it suffices to show that

(x − y) · (h(x) − h(y)) ≥ 0,(3.11)

which is equivalent to that ∇h is everywhere nonnegative definite. Since we have

∇h =
1
t

{
ϕ′(γ) tθ θ +

ϕ(γ)
γ

(I − tθ θ)
}

,(3.12)

and ϕ/γ ≥ ϕ′ > 0, so ∇h is actually positive definite. Thus we obtain the
desired result.

Remark 3.2. There are still sharper estimates. For example, choosing ϕ′ =
〈γ〉(log(2 + γ))−2 in (3.4), we obtain∫∫ |2t∇u + ixu|2

|t|(|t|2 + |x|2)(log(2 + |x/t|))2 dxdt ≤ C(E, η).(3.13)

On the other hand, for any nontrivial solution u, we have∫∫ |2t∇u + ixu|2
|t|(|t|2 + |x|2) dxdt = ∞,(3.14)

which can be easily seen by

lim
t→0

∫ |2t∇u + ixu|2
(|t|2 + |x|2) dx =

∫
|u|2dx.(3.15)

To use the above Morawetz-type estimate, we use the following weighted
Sobolev-type inequality.

Lemma 3.3. Let n ≥ 3 and n−1
n−2 ≤ p < n. Let w(r) be a nonnegative function

which is absolutely continuous locally on (0,∞) and for some µ ∈ (0, 1),

−w′r
nw

≤ µ for a.e.r.(3.16)

Then for any smooth function ϕ(x) and any real-valued measurable function
T (x), we have∫

Rn

|ϕ|p∗
w dx ≤ C

(1 − µ)p
‖∇ϕ‖p∗−p

Lp

∫
Rn

|∇ϕ + ixTϕ|pw dx,(3.17)

where p∗ := np/(n − p). C > 0 depends only on n and p.
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Proof. Denote ϕT = ∇ϕ + ixTϕ. Using the obvious identities:

�(ϕϕr) = �(ϕθ · ϕT ),
ϕθ = ϕT − θ(θ · ϕT ),

(3.18)

we obtain in the same way as in [10, Lemma 3.8],∫
Rn

|ϕ|p∗
w dx ≤ C

(1 − µ)p
‖rνϕ‖p∗−p

L∞
r L

(n−1)/ν

θ

∫
Rn

|∇ϕ + ixTϕ|pw dx,(3.19)

where ν = (n − p)/p, and the norm of L∞
r L

(n−1)/ν
θ is the supremum of

‖ϕ(r·)‖L(n−1)/ν(Sn−1) for all r > 0. Then, by [10, Proposition 3.7], we have

‖rνϕ‖
L∞

r L
(n−1)/ν

θ

≤ C‖∇ϕ‖Lp ,(3.20)

so we obtain the desired result.

Remark 3.4. In the same way, we can improve (3.20) as

‖rνϕ‖
L

(n−1)/ν

θ
L∞

r
≤ C‖∇ϕ + ixTϕ‖Lp ,(3.21)

where T = T (x) is any real-valued measurable function. See the proof of [10,
Proposition 3.7]. Then, the above lemma is improved as∫

Rn

|ϕ|p∗
w dx ≤ C

(1 − µ)p
‖∇ϕ + ixSϕ‖p∗−p

Lp

∫
Rn

|∇ϕ + ixTϕ|pw dx,(3.22)

where S = S(x) and T = T (x) are any real-valued measurable functions. Taking
w = 1, we have in particular,

‖ϕ‖Lp∗ ≤ C‖∇ϕ + ixTϕ‖Lp .(3.23)

From the above two lemmas, we obtain the following a priori estimate.

Corollary 3.5. Assume that V (x) = v(|x|) for some nonnegative nonincreasing
v. Let u be a global solution of (1.1) with E(u) = E < ∞. Then we have for
any ν > 0, ∫∫

R1+n

|t|1+ν |u|2∗

(|t| + |x|)2+ν
dxdt ≤ C(E, ν),(3.24)

where 2∗ = 2n/(n − 2). Remark that the right hand side does not depend on V .

Proof. It is easily checked that w = (|t| + |x|)−α satisfies the condition (3.16)
with some µ ∈ (0, 1) independent of t, if 0 < α < n. Remark that (3.24) becomes
weaker as ν becomes larger.



ENERGY SCATTERING FOR HARTREE EQUATIONS 115

4. Weighted global estimate for ST-norms

Using Corollary 3.5 and an estimate for the propagation, we obtain the fol-
lowing lemma, which means a global estimate on ST-norms with 1/t-weight.

Lemma 4.1. Assume that V (x) = v(|x|) for some nonnegative nonincreasing
v. Let u be a global solution of (1.1) with E(u) = E < ∞. Let N ∈ N,
0 = T0 < · · · < TN , Ij = (Tj−1, Tj), and ‖u‖(X;Ij) = η ∈ (0, η0(E)) for any j
(η0 is as in Lemma 2.1). Then, there exists tj ∈ Ij for each j such that

N∑
j=1

1
(tj + 1)

≤ C(E, η).(4.1)

Proof. Since this is essentially the same as [11, Lemma 6.1], we give only the
outline of the proof. We combine the Morawetz type estimate (3.24) with the
approximate finite propagation property: For any closed B ⊂ R

n, we have∫
B(R)

|u(T )|2dx ≥
∫

B

|u(0)|2dx − C1(E)T/R,(4.2)

for any T, R > 0 and some C1, where B(R) := { x ∈ R
n | ∃y ∈ B, |x − y| ≤ R}.

(4.2) can be easily proved in the same way as in [11, Lemma 6.2]. By Lemma
2.1, we have, for each j, R < C(E, η), cj ∈ R

n and Jj ⊂ Ij with |Jj | > C(E, η),
such that ∫

|x−cj |<R

min(|u(t)|2∗
, |u(t)|2)dx > C2(E, η),(4.3)

for any t ∈ Jj and some C2. Now let tj = inf Jj . Let M = M(E, η) be so
large that C1(E)/M < C2(E, η)/8. Then we consider a family of fat cones
Kk = {(t, x) | |x − Xk| < M |t − Tk| + 3R, t ≥ Tk} centered at (Tk, Xk) such
that each Bj := {(tj , x) | |x − cj | < R} is included in some Kk, that any
Dk := {(Tk, x) | |x − Xk| < R} is identical with some Bj and that Dk does not
intersect with the other fat cones. Then, by (4.2), the number of the fat cones
{Kk} is estimated by the total charge ‖u‖2

L2
x

and C2(E, η). Now we consider
(3.24) with its center at each (Tk, Xk) and sum them up for all k:

∑
k

∫∫
Kk

|u|2∗

|t − Tk| + R
dxdt < C(E, M)#{Kk} < C(E, η).(4.4)

Since all Bj are covered by {Kk}, we obtain the desired result from this and
(4.3).
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5. Global space-time estimate

To obtain the scattering result, it suffices to show that for any finite energy
solution, certain space-time norms are globally bounded. So, the following is the
main result of this note.

Proposition 5.1. Assume that V (x) = v(|x|) for some nonnegative nonincreas-
ing v. Let u be a global solution of (1.1) with finite energy E(u) = E < ∞. Then
we have ‖u‖(X;R) ≤ C(E).

Proof. Let N ∈ N, 0 = T0 < T1 < · · · < TN , Ij = (Tj−1, Tj) and ‖u‖(X;Ij) = η
where η ∈ (0, η0(E)/2) will be determined later depending on E. (η0 is as in
Lemma 2.1.) By Lemma 4.1, we have

N∑
j=1

1
Tj + 1

≤ C(E, η).(5.1)

Since 1/t is not integrable on (0,∞), for any L > 0 there exists N0(L, E, η) ∈ N

such that if N > N0, then we have some j < N − 1 such that |Ij | > L. So,
repeating this argument, and applying (5.1) with suitably shifted time origin,
we deduce that for any L > 0 and any M ∈ N there exists N1(L, M, E, η) =
MN0(L, E, η) such that if N > N1, then we have M distinct indices j < N − 1
such that |Ij | > L (we will determine L and M later so large depending on E
and η). Suppose N > N1 and denote by S the totality of such indices {j}. Let
u0 be the solution of (1.6) with the same initial data as u. By the Strichartz
estimate (2.9), we have∑

j∈S

‖u0‖6
(X;Ij)

≤ ‖u0‖6
(X;(0,∞)) ≤ C‖u0(0)‖6

H1 ≤ C1(E)6,(5.2)

for some C1(E) > 0. So, there exists some j ∈ S satisfying

‖u0‖(X;Ij) ≤ C1(E)/M
1
6 .(5.3)

Now we set M = M(E, η) so large that the right hand side becomes smaller
than η/8. From (2.5), we have for t ∈ Ij+1,

u(t) = u0(t) + i

∫ t

0

e−i∆(t−s)f(u(s))ds.(5.4)

We split the integral into those on (0, Tj−1) and (Tj−1, t), and denote them
by I1 and I2, respectively. Using the decay property of the linear Schrödinger
equation, Hölder’s and Young’s inequalities and the Sobolev embedding, we have

‖e−i∆tf(ϕ)‖L2n/(n−3) ≤ C|t|−3/2‖f(ϕ)‖L2n/(n+3)

≤ C|t|−3/2‖V ‖Lp1+Lp2‖ϕ‖3
Lq1∩Lq2

≤ C|t|−3/2‖ϕ‖3
H1 ,

(5.5)
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where q1 = 6n/(3n− 1− 4ε) and q2 = min(6n/(3n− 5 + 4ε), 6n/(n + 3)). Using
the Sobolev embedding, we have

‖I1‖(B̃;Ij+1)
≤ C‖I1‖L∞(Ij+1;L2n/(n−3))

≤ C(E)
∫ Tj−1

0

|Tj − s|−3/2ds ≤ C(E)L−1/2.
(5.6)

As in the proof of Lemma 2.1, we have ‖u‖(K;Ij∪Ij+1) < C(E) from
‖u‖(X;Ij∪Ij+1) < η0(E). Then, by (2.9) and (2.7), we have

(5.7) ‖I2‖L∞(Ij+1;H1) + ‖I2‖(K;Ij+1) + ‖I2‖(X;Ij+1)

≤ C‖u‖(K;Ij∪Ij+1)‖u‖2
(X;Ij∪Ij+1)

≤ C2(E)η2,

for some C2(E) > 0. Now we set η = η(E) > 0 so small that C2(E)η2 < η/8.
By (2.8), (5.7) and (5.6), we have

‖I1‖(X;Ij+1) ≤ C(E)‖I1‖2ε/n
(B;Ij+1)

≤ C3(E)L−ε/n,(5.8)

for some C3(E) > 0. Now we set L = L(E, η) so large that C3(E)L−ε/n < η/8.
Then, from (5.3), (5.8) and (5.7), we have

‖u‖(X;Ij+1) ≤ C1(E)/M
1
6 + C3(E)L−ε/n + C2(E)η2 < 3η/8,(5.9)

This is a contradiction. So, for such small η = η(E), large M = M(E, η) and
large L = L(E, η), we can not have N > N1(L, M, E, η). Then we obtain the
desired bound

‖u‖(X;(0,∞)) ≤ C(N1)η ≤ C(E).(5.10)

From this estimate, we can easily obtain the scattering result Theorem 1.1.
See [7].
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