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ON REPRESENTATIONS OF COMPLEX HYPERBOLIC
LATTICES

MuTtao WANG

ABSTRACT. The following superrigidity type theorem for complex hyperbolic lat-
tices is proved in this paper. Let X = I'\B"™ be a compact complex ball quotient,
n = 2 or 3. Suppose HU'(X,C) N H2(X,Z) is generated by the Kihler class
of X. Then any representation of I' in GL(n + 1,C) can either be deformed to
a unitary representation or be extended to a homomorphism from SU(n, 1) into
GL(n+1,0).

1. Introduction

Let G be a connected non-compact semi-simple Lie group. Recall that a dis-
crete subgroup I' C G is called a lattice in G if I'\G is of finite volume. A lattice
should in spirit inherit a lot of characteristics of the embient group. If G, in
addition, admits some algebraic group structure, a family of discrete subgroups
called arithmetic subgroups can be constructed. It was proved by Borel and
Harish-Chandra [2] that all arithmetic subgroups are lattices. Nevertheless, it
is far from obvious that the converse could be true, though this statement for
most semisimple Lie groups was conjectured by Selberg and Piatetski-Shapiro
in the sixties.

Margulis’ celebrated arithmeticity theorem gives an affirmative answer to this
conjecture and asserts that irreducible lattices in any semisimple Lie group of
real rank greater than or equal to two are arithmetic subgroups. His theorem
left unanswered the arithmeticity of lattices in real rank one groups. There are
essentially four real rank one simple Lie groups: SO(n,1), SU(n,1), Sp(n,1)
and F4(_20). The arithmeticity of lattices in the latter two groups were finally
proved in the ninties due to the work of Corlette [4] and Gromov-Schoen [9].
While for the former two groups, it was long known that non-arithmetic lattices
do exist. In SO(n, 1), such examples were constructed by Makarov [13], Vinberg
[25], and Gromov-Piatetski-Shapiro [8] for all n.

In this article, we study lattices in SU(n,1). The first non-arithmetic lattice
in SU(2, 1) was constructed by Mostow [16], [17] as a discrete group generated by
reflections along the sides of a polyhedra in the complex two ball. In [6], a familly
of complex hyperbolic lattices were constructed by Deligne and Mostow as the
fundamental groups of certain compactifications of moduli spaces of marked
points on the Riemann sphere. Later, Thurston [23] studied the moduli spaces
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of Euclidean cone metrics on the sphere and more non-arithmetic examples were
obtained in this way.

Among their lists there are non-arithmetic lattices in SU(2,1) and SU(3,1).
It is therefore important to determine arithmetic lattices in these groups. In [20],
the author addressed a conjecture due to Rogawski, where a criterion of arith-
meticity of cocompact latttices in SU(2,1) was given in terms of the topology
of the quotient manifold. Namely,

Conjecture 1.1. Let X = I'\B?, T' C SU(2,1) be a compact ball quotient. If
b1(X) =0 and HHY(X) N H*(X,Q) = Q, then T is arithmetic.

Such examples were first given by Mumford [18] by the method of p-adic
uniformization. In particular, he constructed an arithmetic complex hyperbolic
surfaces with the same betti numbers as C P2

According to Margulis’ theorem, the arithmeticity of a lattice can be es-
tablished through the Archimedean and non-Archimedean superrigidity of the
lattice. In this paper, the following Archimedean superrigidity type theorem was
proved.

Theorem 1.2. Let X = I'\B" (n = 2,3) be a smooth compact complex ball
quotient. Suppose HV1(X,C) N H?(X,Z) is generated by the Kdihler class of
X. Then any representation of I' in GL(n 4+ 1,C) can be either deformed to
a unitary representation or extended to a homomorphism from SU(n,1) into
GL(n,C).

The case of I'\ B? was proved in [20] under an extra assumption that b (X) =
0. The argument there depends on complex variations of Hodge structures and
the stability of Higgs bundles. The key point is the restriction of Higgs bundles
to complex curves and it seems only applicable to the complex hyperbolic sur-
face case. Our proof also makes use of the idea of complex variations of Hodge
structures. The key point is replaced by a harmonic map argument. Harmonic
maps were used by Corlette and Gromov-Schoen in their work leading to arith-
meticity of lattices in Sp(n,1) and F, 4(720). This approach was also used to give
a new proof of the Margulis superrigidity in the cocompact case by Jost-Yau [10]
and independently, Mok-Siu-Yeung [15].

The present article is organized as the following. In §2 we discuss harmonic
maps and Simpson’s theory of complex variations of Hodge structures. In §3,
we prove the main theorem.

I would like to thank Professor S.-T. Yau for suggesting this problem and
constant encouragement. [ also benefitted from discussion with Z. Lu, C-L
Wang, and K. Zuo.
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2. Harmonic maps and complex variation of Hodge structures

In this section, G denotes a non-compact semi-simple Lie group without com-
pact factor. We assume G is isomorphic to the real points of a semisimple alge-
braic group over R. K denotes a maximal compact subgroup of G, so G/K is a
Riemannian symmetric space. Let X be a compact Riemannian manifold with
fundamental group 71 (X) and X the universal covering of X. Let p : 71 (X) — G
be a group homomorphism. The following theorem is well known.

Theorem 2.1. (Corlette [5], Labourie [12], Jost-Yau [11]) If the Zariski closure
of the image of p is a reductive subgroup in G, then there exists a harmonic map
f: X — G/K which is equivariant with respect to p, i.e. f(yx) = p(y)f(z) for
allz € X and v € m(X).

If X is further assumed to be Kéhler, then we can actually say more about
the harmonic map. First let’s recall Simpson’s theory of complex variations of
Hodge structures from [22].

Definition 2.2. A complex variation of Hodge structures is a smooth complex
vector bundle V' with a decomposition V. = ®,1s=,V "%, a flat connection D
satisfying Griffiths’ transversality condition

(23) D=04+0+0+0:V"" —
Al,O(V'r,s) @Ao,l(vr,s) @ALO(V?‘—l,S-l-l) @AO,I(VT+1,S—1)7

and a parallel Hermitian form which makes the Hodge decomposition orthogonal
and which on V™% is positive definite if r is even and negative definite if v is

odd.

If we fix a base point on X, then the monodromy representation of the flat
connection D gives a representation of m1 (X)) into the group U(p, ¢) with p+q =
the rank of V.

The theorem of Simpson asserts that such representations appear in every
component of the space of representions of 7 (X) in GL(n,C).

Theorem 2.4. Let X be a compact Kdahler manfold, then any representaion
p:m(X) — GL(n,C) can be deformed to a representation which comes from a
complex variation of Hodge structures.

By Corollary 4.2 in [22], the monodromy representation of the flat connection
D associated to a complex variation of Hodge structures is reductive. Therefore
it also gives an equivariant harmonic map f from X into U(p, ¢)/U(p)xU(q). On
the other hand, by Griffith’s theory [7], such a variation of Hodge structure gives
a horizontal holomorphic map f from X into the associated period domain D.
D is a homogeneous Kéhler manifold of the form U(p, q)/H, where H C U(p, q)
is a compact subgroup. There is a natural Riemannian submersion 7 : D —
U(p,q)/U(p) x U(q). According to a theorem of Borel [1], this 7 is holomorphic
since U(p, q)/U(p) x U(q) is Hermitian symmetric. As holomorphic maps on
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Kihler manifolds are harmonic, by the uniqueness of harmonic maps, 7o f = f.
We have prove the following proposition.

Proposition 2.5. Let X be a compact Kihler manifold, then any representa-
tion p : m(X) — GL(n,C) can be deformed to a new representation p' whose
associated equivariant harmonic map from X into U(p, q)/U(p) x U(q) is holo-
morphic.

3. Proof of the main theorem

Now we proceed to prove Theorem 1.2.

Proof. Let X = T'\ B? be a compact complex ball quotient. X endowed with the
canonical Kihler form wx is a compact Kéhler manifold. Suppose HY(X, C)
N H?(X,Z) is generated wx. Applying Simpson’s theorem to our case, the
representation p of I' into GL(4,C) is deformable to a new representation p’
into one of U(4), U(3,1), or U(2,2).

In the U(4) case, we are done. The infinitesimal deformation space of I" in
GL(4,C) of the new representation p’ is parametrized by the group cohomology
HY(T, gl(4,C)),where the action of " on gl(4,C) factors through the homomor-
phism of I into U(4) and the adjoint action of U(4) on gl(4, C) and is therefore a
unitary representation. If we were able to show this cohomology group is trivial,
it would implied the deformed representation is conjugate to the original repre-
sentation. This would show the original representation is also unitary. However
we are not able to achieve this at this moment. See [3] for more details on this
group cohomology.

In the U(3,1) case, we prove that the harmonic map is actually totally
geodesic.

Let wps denotes the canonical Kahler form on M = U(3,1)/U(3) x U(1). The
holomorphic map f maps X to M equivariantly. Therefore f*wjy; descends to
X. By assumption,

(3.1) Fron = kwx + C,

where k is a non-negative integer and C is an exact form. We claim that we may
assume k is non-zero. If k were zero then C' would be a non-negative hermitian
(1,1) form representing a trivial cohomology class.

By the definiteness of C', C A w;‘(_l = fuw'y for some non-negative function 3
which equals pointwise to the sum of eigenvalues of C. But [ C /\w?{1 =0, this
implies 3 is identically zero. C is indeed a zero form and f*w), is identically zero
which implies f is a constant map. Thus the image of p lies in some compact
subgroup of U(3,1). From now on we assume k > 1.

On the other hand, by Schwarz lemma, we have

(32) wx 2 f*wM.

Combining this with (3.1) and notice that k > 1, it follows that —C' is again
a non-negative (1,1) exact form. By the same reason, we get C' = 0 and k = 1,
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or wx = f*wys. It follows that f is an isometry. We apply the Bochner formula
for harmonic maps in [10] and conclude Vdf = 0. This is equivalent to saying f
is totally geodesic.

Now a totally geodesic map can be lifted to a continuous homomorphism from
SU(3,1) to U(3,1). This homomorphism is conjugate to the standard inclusion
and the new representation p’ is conjugate to the standard inclusion of T' into
U(3,1). The infinitesimal deformation space of p’ in GL(4,C) is parametrized
by the group cohomoloy H(T, gl(4, C)), where the action of I on gl(4, C) factors
through the standard incl sion of I" into U (3, 1) and the adjoint action of U(3,1)
on gl(4,C). This group cohomology is trivial by a theorem of Raghunathan [19],
see also Proposition 6.5 in [3]. This implies p is conjugate to p’.

In the U(2,2) case, we prove that the harmonic map does not exist. This is
done by a total Chern class calculation. First of all, f must be a holomorphic
immersion regarding the fact that a contracting complex curve or complex sur-
face in X represents a nontrivial homology class whose Poincare dual is different
from any multiple of the class of w3 or wx.

Now we calculate the total Chern class of U(p,q)/U(p) x U(q) using the pro-
portionality principle. The compact dual of U(p, q)/U(p) x U(q) is the complex
Grassmannian Gy, 4. The total Chern class of the complex Grassmannian can
be computed as the following. We assume p < q. Let S denote the tautological
bundle over it and @) the quotient bundle of the trivial bundle of rank p + ¢ by
S.

(3.3) 0—-S—CP1—Q—0

The tangent bundle of G, 4 is isomorphic to the bundle Hom(S, Q) = S* ® Q.
Therefore,

(34)  ¢(S*®Q) = (ST ® CPH) /e(S* @ S) = ¢(S*)PH/e(S* @ S).

¢(S*®S) can be computed using the formula of the Chern character and the fact
that ch(S*®S) = ch(S*)ch(S). Using the propotionality principle, it is not hard
to write the total Chern class of the tangent bundle of U(p, q)/U(p) xU(q) = M
in terms of the Chern classes of S.

Now we specialize to the case when p = ¢ = 2. We consider the pullback of the
total Chern class of M which again descends to X. Since the cohomology ring
of X is generated by wx. The pullback of the total Chern class of M involves
two integral variables ki, and ko, where f*c1(S) = kiwx and f*c2(S) = kaw%.
The total Chern class of the normal bundle, as a line bundle, only involves a
single integral variable k3 with ¢;(N) = kswx. The equality

(3.5) A(TX)e(N) =c(f*TM)

of total Chern classes gives an equation satisfied by the three integral variables
ki1, ko and k3. It is a straightforward calculation to check this equation does not
allow any integral solutions. O
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The case when X = I'\ B2 can be proved in a similar way and we omit it here.
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