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THE ASSOCIATED PRIMES OF INITIAL IDEALS OF
LATTICE IDEALS

Serkan Hoşten and Rekha R. Thomas

Abstract. This paper concerns the associated primes and primary decomposi-
tions of the monomial initial ideals of lattice ideals. For a fixed initial ideal, we
show that the multiplicities of its associated primes and its arithmetic degree
are the cardinalities of sets of polytopes in which the origin is the unique lattice
point. The associated primes are shown to exhibit a rare connectivity property:
each embedded prime contains an associated prime of one higher dimension. The
length of any such chain of associated primes can be bounded above by a function
that depends only on the codimension of the lattice ideal. We express the unique
irredundant irreducible decomposition of an initial ideal of a lattice ideal using
maximal lattice point free polytopes defined by the lattice and the cost vector
inducing the initial ideal.

1. Introduction and main results

Given a sublattice L of Zn of rank m, the lattice ideal of L is the (n − m)-
dimensional binomial ideal

IL := 〈xu − xv : u − v ∈ L〉 ⊆ k[x1, . . . , xn] =: k[x].

If L is saturated, i.e., (L ⊗Z Q) ∩ Zn = L then IL is prime and there exists a
matrix A ∈ Z(n−m)×n of rank n − m such that L = {u ∈ Zn : Au = 0}. In
this case, IL is the toric ideal of A [Ful],[Stu] which is denoted as IA. Let N
denote the set of non-negative integers. Throughout this paper we assume that
L ∩ Nn = {0} which implies that IL is homogeneous with respect to a degree
grading where degree(xi) = ai > 0. For simplicity we assume that ai = 1 for all
i = 1, . . . , n.

In this paper we study the associated primes and primary decompositions
of inc(IL), the initial ideal of IL with respect to a cost vector c ∈ Rn. Here
inc(IL) is the ideal generated by the initial forms of the polynomials in IL, with
respect to c. In general inc(IL) may not be a monomial ideal, but throughout
this paper we assume that it is a monomial ideal, in which case c is said to be
generic. In other words, inc(IL) = in�(IL) for some term order �, and c is a
vector that lies in the interior of the Gröbner cone corresponding to in�(IL) (see
[Stu], Chapters 1 and 2). Since L ∩ Nn = {0}, every Gröbner cone of IL has a
non-trivial intersection with the non-negative orthant of Rn, and hence we may
assume that c is a non-zero non-negative integral vector. In Section 3 we show
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84 SERKAN HOŞTEN AND REKHA R. THOMAS

that the associated primes of inc(IL) come in saturated chains which is a rare
property for an arbitrary monomial ideal.

Theorem 3.1 If P is an embedded prime of inc(IL), then P contains an asso-
ciated prime Q of inc(IL) such that dim(Q) = dim(P ) + 1.

Let Ass(inc(IL)) denote the partially ordered set (poset) of associated primes
of inc(IL) where Q ≥ P if Q ⊆ P . The minimal primes of inc(IL) are hence the
maximal elements of Ass(inc(IL)). In Section 3 we also show that the length
of a maximal chain in Ass(inc(IL)) can be bounded above by a function that
depends only on the codimension of IL and that this bound is sharp. This result
also follows from Theorem 2.3 in [PS].

Theorem 3.5 The length of a maximal chain in Ass(inc(IL)) is at most min(n−
m, 2m − (m + 1)).

The associated primes of a monomial ideal M are closely related to the stan-
dard pair decomposition [STV] of the standard monomials of M which we now
describe. Recall that a monomial xm is a standard monomial of M if xm /∈ M .
For m ∈ Nn, let the support of m be denoted by supp(m) := {i : mi 
= 0} and
let supp(xm) := supp(m). Let [n] := {1, . . . , n}.
Definition 1.1. For a monomial xm ∈ k[x] and σ ⊆ [n], we say that (xm, σ) is
an admissible pair of a monomial ideal M if: (i) supp(m) ∩ σ = ∅, and (ii)
every monomial in xm · k[xj : j ∈ σ] is a standard monomial of M .

There is a natural partial order on the set of all admissible pairs of M given
by (xm, σ) ≤ (xm′

, σ′) if and only if xm divides xm′
and supp(xm′

/xm)∪σ′ ⊆ σ.

Definition 1.2. An admissible pair (xm, σ) of M is called a standard pair of
M if it is a minimal element in the poset of all admissible pairs with respect to
the above partial order.

The standard pairs of M induce a unique covering of the set of standard mono-
mials of M which we refer to as the standard pair decomposition of M . It was
shown in [STV] that the arithmetic degree [BM] of M , denoted arithdeg(M),
equals the number of standard pairs of M . This paper gives a bound for
arithdeg(M) in terms of the degrees of the minimal generators and dimension
of M . Algebraically, arithdeg(M) =

∑
mult(P )deg(P ) where the sum is over

all homogeneous prime ideals P in k[x], and mult(P ) denotes the length of the
largest ideal of finite length in the ring k[x]P /Mk[x]P , and deg(P ) is the geo-
metric degree of the variety of P . The integer mult(P ) is positive if and only if
P is an associated prime of M . In our situation, since M is a monomial ideal,
every associated prime of M has the form pσ := 〈xj : j 
∈ σ〉 for some σ ⊆ [n]
and, deg(pσ) = 1 since deg(xi) = 1.

Theorem 1.3. [STV] Given a monomial ideal M and pσ = 〈xj : j 
∈ σ〉 for
some σ ⊆ [n]:
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(i) pσ is an associated prime of M if and only if M has a standard pair
of the form (·, σ). If pσ is an associated prime of M then mult(pσ)
equals the number of standard pairs of M of the form (·, σ). Hence,
arithdeg(M) =

∑
σ⊆[n] mult(pσ) is the number of standard pairs of M .

(ii) pσ is a minimal prime of M if and only if (1, σ) is a standard pair of
M .

Let B ∈ Zn×m be a matrix whose columns form a basis for L. By our earlier
assumptions, ker(BT ) contains a strictly positive vector and hence the rows of
B denoted as b1, . . . , bn span Rm positively, i.e., cone(b1, . . . , bn) = Rm. Given
a generic cost vector c ∈ Rn, the vector cB lies in the relative interior of a col-
lection C of m-dimensional simplicial cones whose generators are in {b1, . . . , bn}.
We identify each such cone with the set of row indices of its generators. Then
it can be shown that the complements of (the indices of the generators of) the
cones in C form the maximal faces of an (n − m)-dimensional pure simplicial
complex on [n] (see [BFS]). For a fixed lattice L this simplicial complex depends
only on c, and hence we will denote it by ∆c. In other words, τ is a face of ∆c

if and only if P τ̄
v (0) := {u ∈ Rm : −(cB) · u ≤ 0, Bτ̄u ≤ v} is a polytope (i.e.,

bounded polyhedron) for all v ∈ N |τ̄ | where τ̄ = [n]\τ and Bτ̄ is the submatrix
of B whose rows are indexed by τ̄ . In Section 2 we characterize the standard
monomials and standard pairs of inc(IL) in terms of polytopes defined by L and
c in which the origin is the unique lattice point. These characterizations are
then used to prove the results of Section 3. An important feature of our results
is that the ideal inc(IL) is never needed in explicit form (in terms of a minimal
generating set for example) in order to obtain its associated primes, irreducible
decomposition and standard pairs. The two main results of Section 2 are as
follows:

Theorem 2.3 The monomial xv is a standard monomial of inc(IL) if and only
if 0 is the unique lattice point in Pv(0) := {u ∈ Rm : Bu ≤ v,−(cB) · u ≤ 0}.

Theorem 2.5 An admissible pair (xv, τ) of inc(IL) is a standard pair if and
only if 0 is the unique lattice point in P τ̄

v (0) and all of the inequalities in the
system Bτ̄u ≤ v are essential, i.e., removing any inequality introduces a new
lattice point into the resulting polyhedron.

Theorems 2.3 and 2.5 give the following combinatorial interpretation of the
mutliplicity of an associated prime of inc(IL) and the arithmetic degree of
inc(IL).

Corollary 2.7

(i) The multiplicity of pτ is the number of polytopes of the form P τ̄
v (0) where

v ∈ N |τ̄ |, 0 is the unique lattice point in P τ̄
v (0) and all inequalities in

Bτ̄u ≤ v are essential.
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(ii) The arithmetic degree of inc(IL) is the total number of such polytopes
P τ̄

v (0) as τ ranges over the subsets of [n].

We conclude in Section 4 with an explicit formula for an irreducible primary
decomposition of inc(IL) in terms of the maximal lattice point free polytopes
[BSS], [Lov] of the form P τ̄

v (0). The crucial idea here is to prove a bijection
between the socle elements in the localization of inc(IL) at the associated prime
pτ and the maximal lattice point free polytopes of the form P τ̄

v (0).

2. Multiplicity of associated primes and arithmetic degree

Two lattice points v, u ∈ Nn are congruent modulo L if v − u ∈ L. The
congruence classes of Nn modulo L are called the fibers of L. Since L∩Nn = {0},
each fiber C ∈ Nn/L is finite, and since the cost vector c is generic, each fiber
contains a unique lattice point that minimizes the linear functional c ·x (follows
from Section 5 in [SWZ]). These optimal solutions define inc(IL).

Proposition 2.1. [SWZ] A monomial xv is a standard monomial of inc(IL) if
and only if v minimizes the linear functional c · x in its fiber.

Given a fiber C of L and v ∈ C we can identify this fiber with the lattice
points in the polytope

Pv := {u ∈ Rm : Bu ≤ v},(1)

via the map Pv ∩ Zm → Nn such that u → v − Bu. In particular, 0 ∈ Pv

maps to v ∈ C. If v, v′ ∈ C, then Pv and Pv′ are lattice translates of each other
and hence we may represent C by any of the polytopes Pv where v ∈ C. This
representation of a fiber of L was introduced in [PS].

Proposition 2.2. Let v be an element of a fiber C. Then the monomial
x(v−Bu∗) is a standard monomial of inc(IL) if and only if u∗ is the optimal
solution to the integer program

minimize{−(cB) · u : u ∈ Pv ∩ Zm}.(2)

Proof. By Proposition 2.1, the monomial xv∗
is a standard monomial of inc(IL)

if and only if the lattice point v∗ ∈ C minimizes c · x over C. This happens:
⇐⇒ there exists u∗ ∈ Zm such that v∗ = v − Bu∗ ≥ 0 and c(v − Bu∗) <

c(v − Bu) for all u 
= u∗ ∈ Zm with v − Bu ≥ 0
⇐⇒ there exist u∗ ∈ Pv ∩ Zm such that −(cB) · u∗ < −(cB) · u for all

u ∈ Pv ∩ Zm and u 
= u∗

⇐⇒ u∗ is the optimal solution of the integer program (2).

Using the optimal solution u∗ to the program (2), we define the following
subpolytope of Pv which plays an important role in this paper:

Pv(u∗) := {u ∈ Rm : Bu ≤ v,−(cB) · u ≤ −(cB) · u∗}.(3)
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Theorem 2.3. Let v ∈ Nn be a lattice point in a fiber C. Then xv−Bu∗
is

a standard monomial of inc(IL) if and only if u∗ is the unique lattice point in
Pv(u∗). In particular, xv is a standard monomial of inc(IL) if and only if 0 is
the unique lattice point in Pv(0) = {u ∈ Rm : Bu ≤ v,−(cB) · u ≤ 0}.
Proof. Since c is assumed to be generic, each integer program (2) has a unique
optimal solution. By Proposition 2.2, u∗ ∈ Zm is the optimal solution to (2) if
and only if u∗ is in Pv and there is no u 
= u∗ in Pv ∩Zm such that −(cB) · u ≤
−(cB) · u∗. This is equivalent to u∗ being the unique lattice point in Pv(u∗).
The second statement follows immediately.

Example 2.4. Consider the lattice L of rank two which is generated by the
rows of

BT =
[

5 2 −6 5 −6
−1 1 −1 0 1

]
.

The codimension two lattice ideal IL is homogeneous with respect to the usual
total degree grading. Let c = (6 2 1 1 7) and consider the fiber C of v =
(2, 0, 5, 2, 3). The polytope Pv = {u ∈ R2 : Bu ≤ v} is defined by the five in-
equalities whose normal vectors are the columns b1, . . . , b5 of BT (see Figure 1).
Observe that there are three lattice points in Pv: (0, 0), (0,−1), (0,−2). They
correspond to the vectors (2, 0, 5, 2, 3), (1, 1, 4, 2, 4), (0, 2, 3, 2, 5) in C, respec-
tively. If we add the constraint −(cB) · u ≤ 0 to Pv where −(cB) = (9,−2)
we get Pv(0). Figure 1 shows that 0 is the unique lattice point in Pv(0), and
Theorem 2.3 implies that xv is a standard monomial of inc(IL). Indeed, the
reduced Gröbner basis of IL with respect to c is Gc = {x4
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2
4x

3
5 is a stan-

dard monomial. �

For τ ⊆ [n], let P τ̄
v := {u ∈ Rm : Bτ̄u ≤ vτ̄} be the polyhedron obtained

from Pv by removing the inequalities indexed by τ . Here we use vτ̄ to denote
the truncation of v obtained by restricting to the coordinates indexed by τ̄ (vτ̄

lies in N |τ̄ |). Let P τ̄
v (0) := {u ∈ Rm : (−cB) ·u ≤ 0, Bτ̄u ≤ vτ̄} which is gotten

from P τ̄
v by adding the additional constraint (−cB) · u ≤ 0. For a polyhedron

P = {x ∈ Rp : Tix ≤ ti, i = 1, . . . , q} we say that an inequality Tix ≤ ti
is essential if the relaxation of the polyhedron obtained by removing Tix ≤ ti
contains a new lattice point.

Theorem 2.5. An admissible pair (xv, τ) of inc(IL) is a standard pair if and
only if 0 is the unique lattice point in P τ̄

v (0) and all of the inequalities in the
system Bτ̄u ≤ vτ̄ are essential.

Proof. An admissible pair (xv, τ) of M := inc(IL) is a standard pair if and only
if all monomials in xv · k[xj : j ∈ τ ] are standard monomials, and for every i ∈ τ̄
there exists mi > 0 such that xmi

i · xv ∈ M . By Theorem 2.3, this is the case if
and only if for every v′ with support in τ , the origin is the unique lattice point in
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Figure 1. Pv and Pv(0) of Example 2.4.

P(v+v′)(0) = {u ∈ Rm : Bτ̄u ≤ vτ̄ , Bτu ≤ v′τ , (−cB) · u ≤ 0} and for each i ∈ τ̄
there exists mi > 0 such that P(vi+v′)(0) where vi = v + (0, . . . , 0, mi, 0, . . . , 0)
contains an extra lattice point. This is equivalent to saying that P τ̄

v (0) contains
the origin as the unique lattice point, and each inequality in this polytope is
essential.

Example 2.6. Example 2.4 continued. If we examine Pv(0) in this example, we
see that removing the inequalities corresponding to τ = {1, 3, 4} keeps 0 as the
unique lattice point in the resulting polytope. But we cannot take a superset of
τ and maintain the same property. Hence (x3

5, τ) is a standard pair of inc(IL).
�

Using Theorem 2.5 we obtain a combinatorial interpretation for mult(pτ ) and
arithdeg(inc(IL)).

Corollary 2.7.

(i) The multiplicity of pτ is the number of polytopes of the form P τ̄
v (0) :=

{u ∈ Rm : Bτ̄u ≤ vτ̄ , −(cB) · u ≤ 0} where v ∈ Nn, 0 is the unique
lattice point in P τ̄

v (0) and all inequalities in Bτ̄u ≤ vτ̄ are essential.
(ii) The arithmetic degree of inc(IL) is the total number of such polytopes

P τ̄
v (0) as τ ranges over the subsets of [n].
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In the rest of this section we will relate the faces of the simplicial complex
∆c from the introduction to the associated primes of inc(IL). We start with the
maximal faces of ∆c.

Theorem 2.8. The prime ideal pσ is a minimal prime of inc(IL) if and only if σ
is a maximal face of ∆c. The multiplicity of such a minimal prime is |det(Bσ̄)|.
Proof. If σ is a maximal face of ∆c, by the definition of this simplicial complex,
the vector cB is in the interior of the full-dimensional simplicial cone generated
by the rows of Bσ̄. Therefore P σ̄

v (0) is a polytope for all v ∈ Nn defined by m+1
inequalities (P σ̄

v (0) is a full dimensional simplex in Rm), and if we omit any one
of these inequalities the resulting polyhedron will be unbounded. In particular,
when v = 0 the polytope P σ̄

v (0) is just the origin itself and each inequality is
essential. This proves that (1, σ) is a standard pair of inc(IL), and by Theorem
1.3 (ii) pσ is a minimal prime. Conversely, if pσ is a minimal prime then (1, σ)
is a standard pair. Hence P σ̄

0 (0) is bounded, and therefore there exists a strictly
positive linear relation on −(cB) and the rows of Bσ̄, i.e, s(−cB)+

∑
i/∈σ sibi = 0

for some s, si > 0. This means that the vector cB is in the relative interior of
the cone generated by the rows of Bσ̄, and hence σ ⊆ τ for a maximal face τ of
∆c. By the first part of the proof, pτ is a minimal prime and hence σ = τ .

For the second claim, first note that Bσ̄ is an m×m nonsingular matrix since
its rows generate a full-dimensional simplicial cone in Rm. Since the lattice L′

generated by the columns of Bσ̄ has index |det(Bσ̄)| in Zm , and since such
a lattice will always contain a strictly positive vector, the number of fibers of
Nm/L′ is equal to this index. Hence for each such fiber there exists v ∈ Nn

with support in σ̄ such that P σ̄
v (0) contains the origin as the unique lattice point.

Since omitting any inequality defining this polytope gives rise to an unbounded
set, we conclude that (xv, σ) is a standard pair. Using Corollary 2.7 (i) we see
that |det(Bσ̄)| is the multiplicity of pσ.

Corollary 2.9. The radical of inc(IL) is the Stanley-Reisner ideal of the sim-
plicial complex ∆c. Moreover, if pτ is an associated prime of inc(IL), then τ is
a face of ∆c.

Proof. The Stanley-Reisner ideal of a finite simplicial complex is the ideal
generated by all monomials xi1 · · ·xik

such that {i1, . . . , ik} is a non-face of the
complex. By Theorem 2.8 the radical of inc(IL) is the intersection of pσ as σ
runs through the maximal faces of ∆c.

The above corollary also shows the well known fact that inc(IL) is an equidi-
mensional ideal (all minimal primes have the same dimension n − m). This
follows from the fact that ∆c is a pure simplicial complex whose maximal faces
have dimension n − m.

When the lattice ideal IL is the toric ideal IA, the simplicial complex ∆c is
the regular triangulation of A induced by c, and Theorem 2.8 and Corollary 2.9
for the toric case can be found in Chapter 8 of [Stu]. To illustrate Theorem



90 SERKAN HOŞTEN AND REKHA R. THOMAS

a

b

c

d

e

4

2

39

14

24

33

Figure 2. The bold faces of ∆c index the embedded primes of inc(IL).

2.5 and Theorem 2.8 we give the following example in which the lattice ideal is
toric.

Example 2.10. Consider

A =


 1 1 1 1 1

0 4 5 2 0
0 1 4 5 2


 ,

and c = (17, 21, 0, 0, 0). We let a, b, z, d, e be the variables indexing the five
columns of A. Then L = ker(A) ∩ Z5 is generated by the rows of

BT =
[ −8 7 −6 1 6

−13 10 −8 0 11

]
,

and −(cB) = (−11, 11). Since the columns of A lie on the hyperplane x1 = 1,
we can draw (the regular triangulation) ∆c as a triangulation of a pentagon as
in Figure 2. Recall that ∆c is a triangulation of the cone in R3 generated by the
five columns of A, and the pentagon in Figure 2 is the intersection of this cone
with the hyperplane {x ∈ R3 : x1 = 1}. The minimal primes of inc(IL) are in
bijection with the three maximal faces of ∆c. The simplices τ ∈ ∆c such that pτ

is an embedded prime of inc(IL) are the faces of ∆c indicated by bold lines. The
multiplicity of each embedded prime is given next to the corresponding face. In
particular, all embedded primes of inc(IL) have dimension two and p{2,5} is not
an embedded prime.

Consider τ = {3, 5} in ∆c. We group the monomials appearing in the 33
standard pairs of the form (·, {3, 5}) into two groups depending on the exponent
of the variable d:
Group 1: (exponent of d is one) a2bd, a2b2d, a2b3d, a2b4d, a2b5d, a2b6d, a3bd,
a3b2d, a3b3d, a3b4d, a3b5d, a3b6d, a4bd, a4b2d, a4b3d, a4b4d, a4b5d, a4b6d, b4d, ab4d,
b5d, ab5d, b6d, ab6d, a4b6d.
Group 2:(exponent of d is two) a2bd2, a3bd2, a4bd2, a2b2d2, a3b2d2, a4b2d2,
a2b3d2, a3b3d2, a4b3d2.
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Figure 3. The polytopes P τ̄
v (0) for the monomials in Group 1.
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Figure 4. The polytopes P τ̄
v (0) for the monomials in Group 2.
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We first consider Group 1. The shaded polytope in Figure 3 is P τ̄
v (0) for

the monomial a2bd. Each inequality is labeled by a monomial in the variable
indexing the inequality. The exponent of this monomial is the component of v
in the slot indexed by this variable. In Figure 3, the inequality indexed by d is
fixed at right hand side value one. Notice that 0 is the unique lattice point in
the shaded polytope and that all the three inequalities (indexed by a, b, d) are
essential for the shaded polytope (if you remove inequality d, the lattice point
(3,−2) enters the relaxation). By Theorem 2.5, Figure 3 can be used to compute
all the monomials in Group 1 by translating inequalities a and b to all positions
that will keep P τ̄

v (0) lattice point free except for the origin and all inequalities
essential. For instance, for any right hand side value of inequality b between one
and six and any right hand side value of inequality a between two and four P τ̄

v (0)
has the properties of Theorem 2.5. This shows that the first 18 monomials in
Group 1 appear in standard pairs with τ = {3, 5}. At the right hand side values
between four and six for inequality b, you can decrease the right hand side of
inequality a from two to zero while still maintaining the required properties for
P τ̄

v (0). This takes care of the last six monomials in Group 1. Figure 4 illustrates
Theorem 2.5 for the monomials in Group 2. �

3. The poset of associated primes

We now establish a structural result for Ass(inc(IL)), the poset of associated
primes of inc(IL) where for P, Q ∈ Ass(inc(IL)), we write P ≤ Q if P ⊇ Q.
Corollary 2.9 implies that Ass(inc(IL)) is a subposet of the face lattice of ∆c,
both posets having the same maximal elements.

Theorem 3.1. Let τ be a non-maximal face of ∆c such that pτ is an embedded
prime of inc(IL). Then there exists a τ ′ ∈ ∆c such that τ ′ ⊃ τ , |τ ′| = |τ | + 1
and pτ ′ is an associated prime of inc(IL).

Proof. Since pτ is an embedded prime, inc(IL) has a standard pair of the
form (xv, τ) where v 
= 0 and supp(v) ⊆ τ̄ . By Theorem 2.5, the origin is the
unique lattice point in P τ̄

v (0) = {u ∈ Rm : Bτ̄u ≤ vτ̄ ,−(cB) · u ≤ 0} and
all the inequalities of Bτ̄u ≤ vτ̄ are essential. For each i ∈ τ̄ , let Ri be the
relaxation of P τ̄

v (0) obtained by removing the ith inequality bi · u ≤ vi, i.e.,
Ri := {u ∈ Rm : Bτ∪{i}u ≤ vτ∪{i}, −(cB) ·u ≤ 0}. Let Ei := Ri\P τ̄

v (0) = {u ∈
Rm : Bτ∪{i}u ≤ vτ∪{i}, bi · u > vi, −(cB) · u ≤ 0}. Clearly, Ei ∩ P τ̄

v (0) = ∅,
and since the removal of each inequality introduces at least one lattice point
into Ri we have Ei ∩ Zm 
= ∅. Let u∗

i be the optimal solution to the integer
program min{−(cB) · u : u ∈ Ei ∩Zm}. This integer program is always feasible
since Ei ∩ Zm 
= ∅, but it may not have a finite optimal value. However, there
exists at least one i ∈ τ̄ for which the above integer program is bounded. To
see this, pick a maximal simplex σ ∈ ∆c such that τ ⊂ σ. The polytope
{u ∈ Rm : Bσ̄u ≤ vσ̄,−(cB) · u ≤ 0} is a simplex and hence bounded. This
polytope contains all Ei for i ∈ σ\τ and hence all these Ei are bounded and have



THE ASSOCIATED PRIMES OF INITIAL IDEALS OF LATTICE IDEALS 93

finite optima with respect to −(cB). We may assume that the inequalities in
Bτ̄u ≤ vτ̄ are labeled so that the finite optimal values are ordered as −(cB)·u∗

1 ≥
−(cB) · u∗

2 ≥ · · · ≥ −(cB) · u∗
p where τ̄ ⊇ {1, 2, . . . , p}.

Claim. Let N1 := {u ∈ Rm : Bτ∪{1}u ≤ vτ∪{1},−(cB) ·u ≤ −(cB) ·u∗
1}. Then

u∗
1 is the unique lattice point in N1 and all inequalities are essential.

Proof. Since u∗
1 lies in R1, 0 = −(cB) ·0 ≥ −(cB) ·u∗

1. However, 0 > −(cB) ·u∗
1

since otherwise, both u∗
1 and 0 would be optimal solutions to min{−(cB)·u : u ∈

R1} contradicting that c is generic. Therefore, N1 = R1∩{u ∈ Rm : −(cB) ·u ≤
−(cB) · u∗

1} = (E1 ∪ P τ̄
v (0)) ∩ {u ∈ Rm : −(cB) · u ≤ −(cB) · u∗

1} = (E1 ∩ {u ∈
Rm : −(cB) · u ≤ −(cB) · u∗

1})
⋃

(P τ̄
v (0) ∩ {u ∈ Rm : −(cB) · u ≤ −(cB) · u∗

1}).
Since c is generic, u∗

1 is the unique lattice point in the first polytope and the
second polytope is free of lattice points. Hence u∗

1 is the unique lattice point
in N1. The relaxation of N1 got by removing bj · u ≤ vj is the polyhedron
N1 ∪ (Ej ∩ {u ∈ Rm : −(cB) · u ≤ −(cB) · u∗

1}) for j ∈ τ̄ and j 
= 1. Either
this is unbounded, in which case there is a lattice point u in this relaxation such
that −(cB) · u∗

1 ≥ −(cB) · u or (if j ≤ p), we have −(cB) · u∗
1 ≥ −(cB) · u∗

j and
u∗

j lies in this relaxation which shows that bj · u ≤ vj is essential for N1.

Translating N1 by −u∗
1 we get P

τ∪{1}
v′ (0) := {u ∈ Rm : −(cB)·u ≤ 0, Bτ∪{1} ·

u ≤ v′} where v′ = vτ∪{1}−Bτ∪{1} ·u∗
1 ≥ 0 since u∗

1 is feasible for all inequalities

except the first one. Now P
τ∪{1}
v′ (0) contains only the origin as an integral vector

and hence (xv′
, τ ∪ {1}) is a standard pair of inc(IL).

Remark 3.2. Theorem 3.1 fails for general monomial ideals. The associated
primes of the monomial ideal 〈x2yz, xy2z, xyz2〉 ⊂ k[x, y, z] are 〈x〉, 〈y〉, 〈z〉,
and 〈x, y, z〉 and each has multiplicity one. However, there is no associated
prime generated by a pair of variables.

Remark 3.3. Theorem 3.1 may fail when the cost vector is not generic. We
thank David Eisenbud and Sorin Popescu for pointing us to the following exam-
ple. Consider the toric ideal IA where

A =


 3 2 2 1 1 0 0 0 0

0 1 0 2 0 3 2 1 0
0 0 1 0 2 0 1 2 3


 ,

and the cost vector ω = (1, 1, 1, 1, 1, 1, 1, 1, 0). Then inω(IA) = 〈h2, gh, ch, eg, e2,
ce, aeh, g2 − fh, cg − bh, ef − dh, cf − bg, de − bh, be − ah, d2 − bf, cd − ag, bd −
af, c2 − ae, b2 − ad〉 which shows that ω is not generic. Here, the variables
a, b, c, d, e, f, g, h, i have been associated with the columns of A. The associated
primes of inω(IA) are P1 = 〈c, e, g, h, d2−bf, bd−af, b2−ad〉 of dimension three
and P2 = 〈a, b, c, d, e, f, g, h〉 of dimension one. The embedded prime P2 contains
the minimal prime P1. However, there is no embedded prime of dimension two
for this initial ideal.
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Since the dimension of inc(IL) is n − m, the length of a maximal chain in
Ass(inc(IL)), which we denote as length(Ass(inc(IL))), is at most n − m. How-
ever, when m which is the codimension of inc(IL) is small compared to the
dimension of inc(IL), length(Ass(inc(IL))) has a stronger upper bound as shown
below. We need the following result (Corollary 16.5a in [Sch]).

Theorem 3.4. Let Ax ≤ b be a system of linear inequalities in n variables,
and let c ∈ Rn. If max {c · x : Ax ≤ b, x ∈ Zn} is a finite number, then max
{c · x : Ax ≤ b, x ∈ Zn} = max {c · x : A′x ≤ b′, x ∈ Zn} for some subsystem
A′x ≤ b′ of Ax ≤ b with at most 2n − 1 inequalities.

Theorem 3.5. The length of a maximal chain in Ass(inc(IL)) is at most
min(n − m, 2m − (m + 1)).

Proof. As we noted before we have length(Ass(inc(IL))) ≤ (n − m). Suppose
xv is a standard monomial of inc(IL). Then the origin is the optimal solution
to the integer program (2): min {−(cB) · u : Bu ≤ v, u ∈ Zm}. By Theorem
3.4, we need at most 2m − 1 inequalities to describe the same integer program.
This means we can remove at least n − (2m − 1) inequalities from Bu ≤ v
without changing the optimal solution. After removing these inequalities the
corresponding polytope P τ̄

v (0) will meet the conditions in Theorem 2.5 for some
τ ∈ ∆c. Therefore τ is of size at least n−(2m−1). This implies that the maximal
length of a chain in Ass(inc(IL)) is at most (n−m)−(n−(2m−1)) = 2m−(m+1).

Corollary 3.6. The dimension of an associated prime of inc(IL) is at least
max(0, n − (2m − 1)) and the codimension is at most min(n, 2m − 1).

Corollary 3.7. If L has rank two, then length(Ass(inc(IL))) ≤ 1.

Proof. In this situation, 2m − (m + 1) = 4 − (4 − 2 + 1) = 4 − 3 = 1.

Remark 3.8. In [HT] we describe a non-Buchberger algorithm to construct
inc(IL) when IL is toric. The algorithm proceeds by building inc(IL) from lo-
calizations of inc(IL) at its associated primes starting at the top level of ∆c (i.e.
at the minimal primes) and then working down the poset one level at a time.
Theorems 3.1 and 3.5 provide stopping criteria and bounds for this algorithm.

We conclude this section with a family of lattice ideals of codimension m for
which the length of Ass(inc(IL)) attains the bound in Theorem 3.5. This family
was used in [PS] to give lattice ideals with maximal projective dimension.

Proposition 3.9. For each m > 1, there is a codimension m lattice ideal and
a cost vector c ∈ Rn where n = 2m − 1 such that length(Ass(inc(IL))) = 2m −
(m + 1).
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Proof. Given m > 1, let B = (bij) ∈ Z(2m−1)×m be the matrix whose
rows are all possible vectors in Rm that use 1 and −1 as entries except v =
(−1,−1, . . . ,−1). The lattice generated by the columns of B has rank m, and
therefore we can find a cost vector c ∈ Rn (where n = 2m−1) such that −cB = v.
For each row bi we set ri := |{bij : bij = 1}|, and let r be the vector of all ri’s.
By construction, the polytope P := {u ∈ Rm : Bu ≤ r,−(cB) · u ≤ 0} has
no lattice points in its interior and each of its 2m facets has exactly one vertex
of the unit cube in Rm in its relative interior. If we let wi = ri − 1, then the
polytope {u ∈ Rm : Bu ≤ w,−(cB) · u ≤ 0} is P

[n]
w (0). The origin is the only

lattice point in P
[n]
w (0) and all the inequalities are essential. By Theorem 2.5,

(xw, ∅) is a standard pair of inc(IL). Since a maximal face of ∆c is (2m−1−m)-
dimensional, Theorem 3.1 implies that length(Ass(inc(IL))) = 2m − 1−m.

4. Irreducible primary decomposition

Definition 4.1. A polyhedron is maximal lattice point free if and only if it
contains no interior lattice points but every facet of it contains an interior lattice
point.

In Section 2 we saw that a standard pair (xv, τ) of inc(IL) gives the polytope
P τ̄

v (0) = {u ∈ Rm : Bτ̄u ≤ vτ̄ , (−cB) · u ≤ 0} in which the origin is the
only lattice point and all inequalities are essential. Suppose we now increase the
coordinates of vτ̄ by integral amounts until P τ̄

v (0) becomes maximal lattice point
free. Then P τ̄

v (0) is a full dimensional polytope in which every row of Bτ̄u ≤ vτ̄

gives rise to a facet of P τ̄
v (0).

Theorem 4.2. The ideal inc(IL) has the irreducible primary decomposition

inc(IL) =
⋂

P τ̄
q (0)

(xqi

i : i ∈ τ̄)

where the intersection is over all maximal lattice point free polytopes of the form
P τ̄

q (0).

For an arbitrary monomial ideal M , let Mτ denote its localization at the
associated prime pτ . We identify Mτ with its projection in k[xτ̄ ] := k[xi : i ∈ τ̄ ]
under the map πτ : k[x1, . . . , xn] → k[xτ̄ ] such that xi �→ 1 if i ∈ τ and xi �→ xi

otherwise. Under this projection, the standard pairs of M of the form (xv, τ)
are in bijection with the standard pairs of Mτ of the form (xv, ∅). For a set
J ⊆ τ̄ , let eJ denote the vector in N |τ̄ | with one in the positions indexed by J
and zero otherwise. Let q ∈ N |τ̄ | be such that q := p + eτ̄ where xp is a socle
element modulo Mτ . i.e., xpxi ∈ Mτ for all i 
∈ τ . (Mτ has finitely many socle
elements and each such p gives a standard pair (xp, ∅) of Mτ .) We now recall
the following result from [STV].
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Lemma 4.3. [STV] A monomial ideal M admits the irreducible primary de-
composition

M =
⋂

(xqi

i : i ∈ τ̄)

where the intersection is over all τ ⊂ [n] and all q ∈ N |τ̄ | such that q = p + eτ̄

and xp is a socle element modulo the localization of M at the associated prime
pτ .

Proof. A monomial xm does not lie in M if and only if there is a standard pair
(xv, τ) of M such that xm = xv ·xt

τ for some t ∈ N |τ |. Let xp be a socle element
of Mτ such that v ≤ p. Then xm = xv · xt

τ if and only if xm 
∈ (xpi+1
i : i ∈ τ̄).

In order to prove Theorem 4.2 we establish a bijection between the socle
elements of inc(IL)τ and the maximal lattice point free polytopes of the form
P τ̄

v (0). We assume that pτ ∈ Ass(inc(IL)).

Lemma 4.4. Let xp be a socle element of inc(IL)τ . Then, for J ⊆ τ̄ , the
polytope P τ̄

p+eJ
(0) has no lattice points in its relative interior, but it contains

lattice points on all of its facets indexed by J .

Proof. The polytope P τ̄
p+eJ

(0) is obtained by relaxing each constraint bi ·x ≤ pi

in P τ̄
p (0) to bi ·x ≤ pi +1 for i ∈ J . Suppose the non-zero lattice point z is in the

relative interior of P τ̄
p+eJ

(0). This implies that bi · z < pi + 1 for all i ∈ J , which
in turn implies that bi ·z ≤ pi for all i ∈ J . However, this contradicts that P τ̄

p (0)
has no non-zero lattice points. Since the monomial xp · xi ∈ inc(IL)τ for each
i ∈ J , the polytope P τ̄

p+ei
(0) contains lattice points that satisfy bi · x = pi + 1.

This shows that P τ̄
p+eJ

(0) contains lattice points on all of its facets indexed by
J .

Proposition 4.5. The polytope P τ̄
q (0) where q ∈ N |τ̄ | has full support is max-

imal lattice point free if and only if q = p + eτ̄ where xp is a socle element of
inc(IL)τ .

Proof. Suppose q = p + eτ̄ where xp is a socle element of inc(IL)τ . Since
xq ∈ inc(IL)τ , P τ̄

q (0) has non-zero lattice points in it but by the above lemma,
all of these points lie on the boundary. Since qi > 0 for all i ∈ τ̄ , no inequality
in Bτ̄x ≤ q is binding at the origin which implies that the origin lies in the
interior of the facet defined by the cost vector. Suppose for some i ∈ τ̄ , the facet
bi · x = pi + 1 of P τ̄

q (0) has no lattice point in its interior. Then by tightening
all of the inequalities bj · x ≤ pj + 1 back to bj · x ≤ pj for all j 
= i, you get
a polytope with no nonzero lattice points. However, this polytope is P τ̄

p+ei
(0)

which does contain nonzero lattice points since xp · xi ∈ inc(IL)τ .
Conversely, suppose P τ̄

q (0) is maximal lattice point free. Notice first that the
origin can be the only lattice point in the interior of the facet defined by the cost
vector. Else, after tightening each of the inequalities bi · x ≤ qi to bi · x ≤ qi − 1
we get an integer program with two optimal solutions which contradicts that
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c is generic. Since P τ̄
q (0) is maximal lattice point free, the body P τ̄

q−eτ̄
(0) has

no lattice points other than the origin. Therefore, xp = xq−eτ̄ is a standard
monomial of inc(IL)τ . Also, since there are lattice points in the interior of every
facet, every intermediate body got by tightening a subset of the inequalities in
Bτ̄x ≤ q contains non-zero lattice points. This implies that xp is a socle element
of inc(IL)τ .
Proof of Theorem 4.2: The result follows from Lemma 4.3 and Proposition 4.5.
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[Stu] B. Sturmfels, Gröbner Bases and Convex Polytopes, Amer. Math. Soc., Providence,
RI, 1995.

[STV] B. Sturmfels, N. Trung and W. Vogel, Bounds on projective schemes, Math. Ann. 302
(1995), 417–432.

[SWZ] B. Sturmfels, R. Weismantel and G. Ziegler, Gröbner bases of lattices, corner polyhedra
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