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MIXED MOTIVES AND ALGEBRAIC CYCLES III

Masaki Hanamura

In this paper we will define a category which is a candidate for the abelian
category of mixed motives over a field k. The category is a full subcategory of
the triangulated category of mixed motives D(k) constructed in [Ha 2] (referred
to as Part II in the sequel).

According to Grothendieck, the category of pure homological motives over a
field k is a semi-simple abelian Q-category M(k) satisfying the following prop-
erties: there is a functor h : (Smooth Projective Varieties/k)opp → M(k); for
any Weil cohomology H∗, one has a commutative diagram,

(Smooth Proj/k)opp h−→ M(k)

H∗ ↘ ↓
Vect

where Vect is the category of finite dimensional vector spaces over the coefficient
field of H∗ andM(k)→ Vect is an exact faithful functor. The existence of such
M(k) is a consequence of his standard conjectures on cycle classes in H∗(X) for
smooth projective varieties X, see [Kl 1], [Kl 2].

Extending this one can question the existence of the abelian category of mixed
motives MM(k) that fits in the following commutative diagram.

(Q− Proj/k)opp h−→ MM(k)

H∗ ↘ ↓
Vect

where (Q−Proj/k) is the category of quasi-projective varieties and MM(k)→
Vect is again an exact faithful functor. The category MM(k) is no more semi-
simple.

The triangulated category of mixed motives D(k) was constructed using al-
gebraic cycles and does not directly fits the above picture. In this part III, we
discuss the conjectural properties of the category D(k). Specifically, we show
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the conjunction of the conjectures of Grothendieck, Murre and Soulé-Beilinson
is responsible for the existence of the appropriate t-structure on D(k). These
extended “standard conjectures” concern the algebraic part of the cohomology
and the (higher) Chow groups of smooth projective varieties. By definition the
category MM(k) is the heart of this t-structure.

Besides the pure theory, the works of Beilinson, Bloch, Deligne, Jannsen and
Murre have much influenced this paper. Shuji Saito has independently found
similar lines of arguments regarding the existence of the t-structure.

In §1 we recall the properties of the category D(k). In §2 we discuss the “stan-
dard conjectures” and their consequences about the category of pure motives.
We derive the existence of the t-structure from the conjectures in §3.

§1. The triangulated category of mixed motives D(k).

For an equi-dimensional smooth projective variety X over k, let Cr(X) be
the Q-vector space of Q-algebraic cycles of codimension r on X modulo an
adequate equivalence relation. In particular, for rational equivalence Cr(X) =
CHr(X)⊗Q. Throughout the paper we write CHr(X) for CHr(X)⊗Q.

The additive category of finite C-symbols C Symb(k) has objects are of the
form ⊕

α∈A

(Xα, rα),

where A is a finite set, Xα is an irreducible smooth projective variety over k and
rα ∈ Z. The homomorphism group is the Q-vector space

HomC Symb(k)
(⊕(Xα, rα),⊕(Yβ , sβ)) =

⊕
α,β

Cdim Xα+sβ−rα(Xα × Yβ) .

The composition of morphisms is induced by the composition of correspondences.
In the case C is the rational Chow group, we denote the corresponding category
simply by Symbfinite(k). There is a natural contravariant functor

h : (Smooth Proj/k)→ C Symb(k) .

The category CM(k) of C-motives is the pseudo-abelianization of the additive
category C Symb(k). Explicitly, CM(k) has objects(⊕

α∈A

(Xα, rα), P

)
,

where A is a finite set, Xα is irreducible smooth projective, rα ∈ Z, and

P = (Pα β) ∈
⊕
α β

Cdim Xα+rβ−rα(Xα ×Xβ) such that P ◦P = P .
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The homomorphism groups are

Hom ( (⊕(Xα, rα), P ), (⊕(Yβ , sβ), Q) )

= Q◦


⊕

α,β

Cdim Xα+sβ−rα(Xα × Yβ)


 ◦P ;

the composition of maps are given by composition of correspondences.
When C∗ is the rational Chow group (resp. algebraic cycles modulo numerical

equivalence), the resulting category we denote by CHM(k) and call the category
of Chow motives (resp. M(k), the category of Grothendieck motives ). There is
a canonical functor cano : CHM(k)→M(k).

Let H∗ : (Smooth Proj/k)opp → (Vect) be a Weil cohomology. If numeri-
cal equivalence coincides with homological equivalence for H∗, then one has a
faithful functor

H∗ :M(k)→ (Vect)

where
H∗(X, p, r) = ⊕Hi(X, p, r), Hi(X, p, r) = p∗H

i+2r(X) .

(p gives rise to p∗ ∈ End(H∗(X)).)
We recall the properties of the triangulated category of mixed motives from

Part II, particularly §4. There the category D(k) was defined so that its objects
are “diagrams” of smooth projective varieties and correspondences among them.

Let k be an arbitrary field. There is a triangulated Q-category D(k) with the
following properties:

(1) D(k) has dual, tensor product, internal Hom, the unit object Q, and the
Tate objects Q(r);

(2) There is a contravariant functor h : (Smooth Proj/k) → D(k). If X is
smooth and projective, one has

HomD(k)(Q, h(X)⊗Q(r)[2r −m]) = Km(X)(r)Q .

Here the right side is an Adams-graded piece of the K-group of X.
(3) If k′/k is an extension of fields, there is the base extension functor

D(k)→ D(k′), K �→ K ⊗k k′ .

(4) Let H∗ be one of the etale, Betti or algebraic de Rham cohomology: for
X smooth projective over k,

H∗(X) = H∗(X ⊗k k̄, Q�), H∗(X(C), Q), H∗
DR(X/k),
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and Λ = Q�, Q or k be the coefficient field. There is the corresponding
realization functor

RΓ : D(k)→ Db
f (Λ−Vect),

(the target the derived category of complexes of Λ-vector spaces with
bounded and finite dimensional cohomology) and the induced
H∗ : D(k)→ (Λ−Vect).

If k is a finite field, the etale cohomology functor Γ factors through

RΓ : D(k)→ Db
c(Spec k, Q�)

(cf. [BBD],[De 3] for the definition of the category Db
c(Spec k, Q�) for X

over a finite field). For this see the proof of Proposition (3.6).
(5) There is a triangulated subcategory Dfinite(k) ⊂ D(k) of “finite dia-

grams” satisfying all the properties (1)-(4). D(k) is the pseudo-abelian-
ization of Dfinite(k). There is a commutative diagram with arrows full
embeddings

Symb(k) → Dfinite(k)
↓ ↓

CHM(k) ↪→ D(k) .

(6) The category Dfinite(k) has the following structure. To an interval [a, b] ⊂
[−∞,+∞] where a, b ∈ Z ∪ {−∞, +∞} and an object K of Dfinite(k),
there is associated an object V[a,b]K in Dfinite(k). The following proper-
ties are to be satisfied:

(a) For a ≤ a′ and b ≤ b′ there are morphisms

V[a,b]K → V[a′,b′]K,

satisfying the transitivity, namely they give a functor from the category
of ordered pairs.

One has V[a,a]K = K−a[a] where K−a is an object of Symb(k). One
has V[−∞,b]K

∼→ V[a,b]K for a << 0, V[a,b]K
∼→ V[a,∞]K for b >> 0, and

V[−∞,∞]K = K.
(b) There are distinguished triangles

V[a,b]K → V[a,c]K → V[b+1,c]K
[1]→ .

The diagram

V[b+1,c]K → V[a,b]K[1]
↓ ↓

V[b′+1,c′]K → V[a′,b′]K[1]
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commutes where a ≤ a′, b ≤ b′ and c ≤ c′.
(c) If u : K → L is a morphism one can choose morphisms V[a,b]u :

V[a,b]K → V[a,b]L so that they commute with morphisms in (a) and (b).
(The choice is not unique so K �→ V[a,b]K is not a functor.

We refer to this structure as the V -truncation. Denote VaK =
V[−∞,a]K (an increasing “filtration”) and GrV

a K for V[a,a]K. There are
distinguished triangles

V[−∞,a−1]K → V[−∞,a]K → GrV
a K

[1]−→ ,

and
GrV

a K → V[a,+∞]K → V[a+1,+∞]K
[1]−→ .

Using the notation in [Part II, §4], the objects V[a,b]K are defined as follows.

V[a,b](Km; fm,n) =
(
(V[a,b]K)m; (V[a,b]f)m,n

)
,

where

(V[a,b]K)m =
{

Km if m ∈ [−b,−a]
0 otherwise;

and

(V[a,b]f)m,n =
{

fm,n if [m, n] ⊂ [−b,−a]
0 otherwise.

The association K �→ V[a,b]K is not a functor D(k) → D(k). (Consider, for

example the object K := [X id−→ X] placed in degrees zero and one. It is the
zero object in D(k), yet GrV

a K are not zero for a = 0,−1.) Given a morphism
u : K → L, take a representative (um,n), see the paragraph before [Part II,
(4.4)]. Then the representative induces a morphism V[a,b]K → V[a,b]L. However,
equivalent representatives can induce different morphisms.

§2. “Standard” conjectures and consequences.

We consider the three “standard” conjectures on the Chow groups and K-
groups of smooth projective varieties. The statements of the conjectures are
followed by the consequences. Then the implications of the conjectures on the
properties of the category of pure motivesM(k) and CHM(k) are discussed.

Grothendieck’s standard conjectures [Kl 1]:

These are five conjectures altogether, as stated below. We refer to these as
Conjecture (Gro) in the sequel.

Let X �→ H∗(X) be a Weil cohomology, [Kl §1], which satisfies the hard
Lefschetz “theorem”. Let X be a smooth projective variety of dimension d
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and L ∈ H2(X) the class of a hyperplane section of X; the hard Lefschetz
theorem reads: Ld−i : Hi(X) → H2d−i(X) is an isomorphism for i ≤ d. As
a consequence, one has the primitive decomposition: For i ≤ d, Hi

prim(X) :=
Ker

(
Ld−i+1 : Hi(X)→ H2d−i+2(X)

)
, the primitive part. Then

Hi(X) =
⊕

j≥max(0,i−d)

LjHi−2j
prim(X) .

For each p ≥ 0, denote by Ap(X) ⊂ H2p(X) be the Q-vector space generated
by the classes of algebraic cycles. We call an element of H2p(X) algebraic if it
is in Ap(X).

Conjecture (A). For a smooth projective variety X and a hyperplane section L,
and p ≤ d = dimX, the map

Ld−p : Ap(X)→ Ad−p(X),

is an isomorphism.

Conjecture (B). Define Λ ∈ H2d−2(X ×X) so that it induces the map H∗(X)
→ H∗−2(X) given as follows: if a ∈ Hi(X), and a =

∑
j Ljaj , aj ∈ Hi−2j

prim(X)
according to the primitive decomposition, then

Λa =
∑

j≥max (1,i−d)

Lj−1aj .

Then Λ is the class of an algebraic cycle.

Conjecture (C). Let πi ∈ H2d−i(X) ⊗ Hi(X), 0 ≤ i ≤ 2d, be the Kunneth
components of the class of the diagonal ∆X in X ×X. Then πi are algebraic.

Conjecture (D). Homological equivalence (with respect to the Weil cohomology)
coincides with numerical equivalence for algebraic cycles.

Conjecture (I). For a non-zero element a ∈ Ap(X) ∩ H2p
prim(X), the rational

number (−1)pLd−p · a · a is positive.

Theorem 2.1 [Kl 1,2].

(1) Conjecture (B) implies both Conjecture (A) and Conjecture (C). In this
case, if u ∈ H∗(X × Y ) is algebraic, and then its Kunneth components
are also algebraic. The Kunneth components πi are independent of the
cohomology theory in the sense there are algebraic cycles π̃i, independent
of cohomology theories, whose cycles classes are πi.

(2) Conjecture (A) and Conjecture (I) jointly imply Conjecture (D). In this
case, Ap(X) is independent of the cohomology theory and equals Cp

num(=
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codim p cycles modulo numerical equivalence). The dimension Hi(X)
over the coefficient field is independent of the cohomology theory.

(3) Provided all the conjecture are true, the category M(k) of Grothendieck
motives is semi-simple and abelian. The functor H∗ : M(k) → (Λ −
V ect) is faithful and exact.

The filtration conjecture by Murre [Mu] (Referred to as Conjecture (Mu)):

Let X be an irreducible smooth projective variety over a field k, and πi

(i = 0, 1, · · · 2 dimX) be the Kunneth components of the diagonal (for a Weil
cohomology).

(A) The {πi} (in Conjecture (Gro-C)) lifts to an orthogonal set of projectors
{Πi} in CHdim X(X ×X) such that

∑
Πi = ∆X .

(B) The correspondences Π0, · · · ,Πr−1 and Π2r+1, · · · ,Π2 dim X act as zero
on CHr(X).

(C) For each ν ≥ 0, let F νCHr(X) = Ker Π2r
∗ ∩Ker Π2r−1

∗ ∩· · ·∩Ker Π2r−ν+1
∗ .

Then F νCHr(X) is independent of the lifting Πi.
(D) F 1CHr(X) = CHr(X)hom, where the latter is the subspace of classes

of cycles homologically equivalent to zero ( for a Weil cohomology).

Remark. It is proved in [Ja, Theorem 5.2] that Conjecture (Mu) implies the
following (part of a conjecture of Beilinson’s on Chow groups):

(1) The filtration on CHr(X) is compatible with the product: one has
F aCHr(X) · F bCHs(X) ⊂ F a+bCHr+s(X).

(2) The filtration is respected by f∗ and f∗ for maps f : X → Y .
(3) F r+1CHr(X) = 0.

Vanishing conjecture (Conjecture (Van)):

Let (X, P ) be an object on CHM(k) whose realization is of cohomological
degrees ≥ 2r − n if n > 0 and > 2r if n = 0. Then one has

P∗CHr(X, n) = 0 .

We may distinguish the two cases as Conjecture (Van- (n > 0) ) and Conjecture
(Van-(n = 0) ).

Remark. In the case P = ∆X the conjecture is precisely the vanishing conjecture
of Soulé-Beilinson: CHr(X, n) = 0 if 2r − n ≤ 0 and n > 0 (the case n = 0
is vacuous). So Conjecture (Van) is thought of as a generalization of Soulé-
Beilinson conjecture to Chow motives.

Conjecture (Van-(n = 0)) and Conjectures (Mu- B, C) are related; see Propo-
sition ( 2.4).
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Reformulation of Conjecture (Van). In terms of extension groups in D(k), one
may state the above as follows. Let P i+2r (resp. Qj+2s) be a projector of
cohomological degree i+2r (resp. j+2s) in CHdim X(X×X) (resp. CHdim Y (Y×
Y )); then

HomD(k)((X, P i+2r, r), (Y, Qj+2s, s)[−n]) = 0

if 

− i + j ≥ −n and n > 0, or

− i + j > 0 and n = 0, or

n < 0

(Since Q◦u◦P = (tP × Q)∗u, tP = the transpose of P , the group in question
equals

(tP i+2r ×Qj+2s)∗CHdim X−r+s(X × Y, n)

and (tP i+2r ×Qj+2s) is a projector of X × Y of cohomological degree −i + j +
(2 dimX − 2r + 2s). )

For another reformulation, see Proposition (2.9).

Lemma 2.2. (Assume Conjecture (Mu).) Let {pj} be an orthogonal set of pro-
jectors in H2 dim X(X×X). It can be lifted to an orthogonal set of projectors {Pj}
in CHdim X(X×X). Any other lifting of {pj} is of the form {(1+η)−1Pj(1+η)}
where η ∈ CHdim X(X ×X)hom. If P ∈ CHdim X(X ×X) is a projector lifting∑

pj, then {Pj} can be so chosen that
∑

Pj = P . If
∑

pj = [∆X ]hom, then
necessarily

∑
Pj = [∆X ]rat.

Proof. The map CHdim X(X × X) → A2 dim X(X × X) is a surjective ring ho-
momorphism with kernel CHdim X(X ×X)hom. By (Mu) (and Remark to it) it
is the first step of the finite separated filtration F • on CHdim X(X ×X) which
is compatible with the product, so it is nilpotent. The claim follows from the
following lemma, see [Mu-2, 7.3], [Ja, Lemma 5.4]; (2) and (3) follows from (1).

Lemma. Let φ : A→ B is a surjective ring homomorphism of non-commutative
rings with nilpotent kernel. Then

(1) Any orthogonal set of idempotents {p1, · · · pm} of B (i.e. pipj = δi,jpi)
can be lifted to an orthogonal set of idempotents {P1, · · · , Pm} of A.
Moreover, any other lifting is of the form {(1 + η)−1Pj(1 + η)} where
η ∈ Kerφ.

(2) If {p1, · · · , pm} is as above and P is an idempotent of A lifting
∑

pj,
then {Pj} can be so taken that

∑
Pj = P .

(3) If
∑

pj = 1B, then
∑

Pj = 1A.
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Proposition 2.3. (Assume Conjecture (Mu).) If (X, P ) is of pure cohomolog-
ical degree 2r, then the cycle class map

P∗CHr(X)→ H2r(X),

is injective.

Proof. Take a set {Πi} as in Conjecture (Mu-A). If p is the cycle class of P ,
then {p, π2r − p} is an orthogonal set of homological projectors. By applying
Lemma (2.2) it can be lifted to an orthogonal set of projectors {P ′,Π2r − P ′}
with the prescribed sum Π2r. Since both P and P ′ lift p, by (2.2) again, there
is η ∈ CHdim X(X ×X)hom such that P = (1 + η)−1P ′(1 + η).

By (Mu-D), Ker Π2r
∗ = CHr(X)hom, so Π2r

∗ CHr(X) → H2r(X) is injective.
We have

P∗CHr(X) = P ′
∗CHr(X) ⊂ Π2r

∗ CHr(X) ↪→ H2r(X) .

Proposition 2.4. Conjectures (Gro), (Mu-A, D) and (Van- (n = 0)) imply
Conjecture (Mu-B, C).

Proof. First we show (Mu-C). If {Πi} is as in (Mu-A)

h(X) =
⊕

i

(X, Πi), and F νCHr(X) = CHr(
⊕

i≤2r−ν

(X, Πi)) .

If follows from the reformulation of (Van-(n = 0) ), that the subobject
⊕i≤2r−ν(X, Πi) ⊂ h(X) is independent of the of the choice of {Πi}. Thus,
F νCHr(X) is also independent.

To derive (Mu-B), take Πi with i > 2r; then (X, Πi, 0) is an object of
CHM(k) of cohomological degree > 2r; by (Van- (n = 0)), its Chow group
Πi

∗CHr(X) = 0. [Ja, Theorem 5.2] showed under these hypotheses, namely
(Mu-A, C, D and half of B), the following holds true: if u ∈ CH∗(X × Y )
then u∗ : CH∗(X)→ CH∗(Y ) respects the filtrations and u∗ : GrF CH∗(X)→
GrF CH∗(Y ) depends only on the homology class of u.

The following argument is taken from [Ja, §2]. Assume i < r and consider
the projection πi : H∗(X)→ Hi(X), the hard Lefschetz isomorphism Ld−i and
its inverse λ:

H∗(X)

↓ πi
α

↘

Hi(X)
Ld−i

→
←
λ

H2d−i(X)
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By (Gro), λ is algebraic; let α = Ld−i◦πi. Then λ◦α = πi. Take liftings
A ∈ CH2d−i(X × X), Λ ∈ CHi(X × X) of α, λ, respectively. Then Λ◦A and
Πi are homologically equivalent, so their actions on GrF CHr(X) are the same.
One has a commutative diagram

GrF CHr(X)

↓ Πi
A

↘

GrF CHr(X) Λ← GrF CHr+d−i(X)

Since GrF CHr+d−i(X) = 0 evidently, we have Πi
∗ = 0 on GrF CHr(X) and on

CHr(X).

Recall that there is a full embedding of categories

inCHM : CHM(k)→ D(k) .

Let M(k)deg i (resp. CHM(k)deg i) be the full subcategory of M(k) (resp.
CHM(k) consisting of objects K of pure cohomological degree i, namely those
objects with Hj(K) = 0 if j �= i.

(2.5). (We assume Conjecture (Gro).) Let X be an equi-dimensional smooth
projective variety and p ∈ Adim X(X × X) be a projector. Let p =

∑
pi, pi ∈

H2 dim X−i(X) ⊗ Hi(X), be the Kunneth decomposition; pi are algebraic by
Conjecture (Gro) and (2.1) (1). For an object (X, p, r) inM(k), one sets

Hi
(
(X, p, r)

)
:= (X, pi+2r, r) .

Note H∗(Hi(X, p, r)) = p∗Hi+2r(X) = Hi(X, p, r). By linearity this association
gives rise to a functor Hi :M(k)→M(k). We have the properties:

(1) For an object K ofM(k), one has H∗Hi(K) = Hi(K) and Hi(K(r) )
∼=

(
Hi+2r(K)

)
(r).

(2) For a smooth variety X, (X, p, r) =
⊕

i Hi(X, p, r) in M(k). More
generally,

K = ⊕Hi(K )

inM(k).
(3) If pi+2r ∈ H2 dim X(X×X) (resp. qj+2s ∈ H2 dim Y (Y ×Y )) is a projector

of pure cohomological degree i + 2r (resp. j + 2s), then

HomM(k)((X, pi+2r, r), (Y, qj+2s, s)) = 0 for i �= j.

The proposition below is a consequence of (1)–(3).
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Proposition 2.6. (Assume Conjecture (Gro).) The canonical functor

⊕
i∈Z

M(k)deg i →M(k)

is an equivalence of categories.

(2.7). (Assume Conjectures (Mu) and (Van).) Let (X, P, r) be an object of
CHM(k). One has P =

∑
P i where {P i} is an orthogonal set of projectors

with P i of cohomological degree i. Set

hi(X, P, r) = (X, P i+2r, r), τ≤i(X, P, r) :=
⊕
j≤i

(X, P j+2r, r),

and τ≥i(X, P, r) :=
⊕
j≥i

(X, P j+2r, r) .

It follows from Conjecture (Van) — see its reformulation, case n = 0 — that
the subobject τ≤i(X, P, r) of (X, P, r) is independent of the choice of the {P i};
similarly for the quotient τ≥i(X, P, r). Hence

hi(X, P, r) = τ≤i(X, P, r)/τ≤i−1(X, P, r),

is also independent. Moreover τ≤i, τ≥i, and hi are functorial for symbols.
By linearity one has functors

hi, τ≤i, τ≥i : CHM(k)→ CHM(k) .

There is a non-canonical decomposition (X, P, r) =
⊕

hi(X, P, r) and more gen-
erally

K =
⊕

i

hi(K)

for K in CHM(k).
(If Conjectures (Gro),(Mu) and (Van) are assumed) the functors hi and Hi

are compatible with the canonical functor cano : CHM(k)→M(k), namely

cano ◦hi = Hi◦ cano .

The decomposition K = ⊕hi(K) and the analogous one for cano(K) in M(k)
are compatible with cano.
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Proposition 2.8. (Assume Conjectures (Gro) and (Mu).) The canonical func-
tor

CHM(k)deg i →M(k)deg i

is an equivalence of categories.

Proof. Take (X, P, r) and (Y, Q, s), objects in CHM(k) of pure cohomological
degree i. (Assume X equi-dimensional. The general case where one has direct
sums of such symbols can be treated similarly.) One has

HomCHM(k)

(
(X, P, r), (Y, Q, s)

)
= Q◦CHdim X+s−r(X × Y )◦P

= (tP ×Q)∗ CHdim X+s−r(X × Y ) .

The image of (X, P, r) under the canonical functor is (X, p, r) where p ∈ H2 dim X

(X ×X) is the image of P ; similarly the image of (Y, Q, s) is (Y, q, s). As above,
one has HomM(k)

(
(X, p, r), (Y, q, s)

)
= (tp× q)∗Adim X+s−r(X×Y ). tP ×Q has

pure cohomology degree 2(dimX + s− r) so by (2.3)

(tP ×Q)∗ CHdim X+s−r(X × Y )→ (tp× q)∗Adim X+s−r(X × Y )

is an isomorphism. Hence the functor is fully faithful.
For the essential surjectivity take an object M(k), say (X, p, r) where p ∈

Adim X(X × X) is a projector. By Conjecture (Mu) and Lemma (2.2), p can
be lifted to a projector P ∈ CHdim X(X × X), and (X, P, r) in CHM(k) lifts
(X, p, r).

We define the full embedding of categories inMi :M(k)deg i → D(k) so that
the diagram

CHM(k)deg i inCHM(−)[i]−−−−−−−−→ D(k)

↓ ↗ inMi

M(k)deg i

is commutative. Concretely (X, p, r) of M(k)deg i is sent to (X, P, r)[i] of D(k)
where P is a lifting of p. If j �= i and (Y, q, s) is in M(k)deg j , it is sent to
(Y, Q, s)[j] by inMj and

HomD(k)((X, P, r)[i], (Y, Q, s)[j]) = 0

by (Van) – in its reformulation n = i − j �= 0. So we define then the full
embedding

inM :=
⊕

inMi : M(k) =
⊕

i

M(k)deg i → D(k) .
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This embedding is so arranged that the an object is sent to an object of pure
cohomological degree 0. Note that the digram

CHM(k) inCHM−−−−−→ D(k)

↓ ↗ inM

M(k)

is not commutative even after restricted to parts of pure cohomological degrees.
The functor inM takes the object Q(r) to Q(r), and it is compatible with the
Tate twists.

Proposition 2.9. (Assume Conjectures (Gro), (Mu) and (Van).) Let
Hj(X)(r) be an object of M(k) ↪→ D(k). Then

HomD(k)(Q, Hj(X)(r)[i]) = 0

if 


i < 0, or

i = 0 and j − 2r �= 0, or

i > 0 and i > −j + 2r .

Remark. If w := j− 2r (the weight of Hj(X)(r)), the condition reads: i < 0, or
i = 0 and w �= 0, or i > 0 and i > −w.

Proof. The object Hj(X)(r) = (X, πj , r) in M(k)j−2r is taken by inM to
(X, Πj , r)[j − 2r], so

HomD(k)(Q, Hj(X)(r)[i]) = Πj
∗CHr(X,−j + 2r − i) .

The claim is obtained by (Van).

Remark 2.10. Though we will not need in the sequel, the results in this section
hold with CHM(k) and M(k) replaced by CHMinf (k) and Minf (k), respec-
tively. (For these categories of Grothendieck motives of infinite type see [Part
II, §2].)

Conjecture(Gro) implies the category Minf (k) is semi-simple and abelian:
take any object M of Minf (k) and we have to show that it is a direct sum of
simple objects. This is the case if M = ⊕(Xα, rα) since each (Xα, rα) is a sum
of simple objects by the semi-simplicity ofM(k). Hence the same holds if M is
a direct summand of ⊕(Xα, rα).

(2.5)-(2.8) hold for CHMinf (k) andMinf (k); the proofs are the same.



74 MASAKI HANAMURA

§3. The motivic t-structure.

We refer to [BBD] for details on t-structures.

Definition 3.1. Let D be a triangulated category. A t-structure on D consists
of a pair of full subcategories D≤0 and D≥0 such that, letting D≤n = D≤0[−n]
and D≥n = D≥0[−n], one has:

(i) For X in D≤0 and Y in D>0, one has HomD(X, Y ) = 0.
(ii) One has D≤0 ⊂ D≤1 and D≥0 ⊃ D≥1.

(iii) For an object X in D, there is a distinguished triangle A → X → B
[1]→

with A ∈ D≤0 and B ∈ D>0.

Definition 3.2. Let D and D′ be triangulated categories with t-structures. A
functor F : D → D′ is t-exact if it is an exact functor of triangulated categories,
and

F (D≤0) ⊂ D′≤0 and F (D≥0) ⊂ D′≥0
.

We give two examples of triangulated categories with t-structures. Let A
be an abelian category, and D = D(A) be the derived category (of unbounded
complexes, for example). Define D≤0 (resp.D≥0) to be the full subcategory
consisting of complexes K with Hi(K) = 0 for i > 0 (resp. Hi(K) = 0 for
i < 0). This defines a t-structure on D(A), which one refers to as the natural
t-structure. Note D≥0 ∩ D≤0 is the category A fully embedded in the derived
category as complexes concentrated in degree 0.

As a second example, if X is a variety over k (k is algebraically closed or finite),
then the category Db

c(X, Q�) of “complexes of Q�-sheaves with constructible
cohomology” is defined in [BBD]. One has the perverse t-structure on Db

c(X, Q�),
the heart of which is the category of perverse sheaves on X.

3.3 Properties of a t-structure.

1. The inclusion D≤n ⊂ D has a right adjoint functor τ≤n. There is thus the
adjunction morphism τ≤nX → X for X in D. For a ≤ b, there is a functorial
morphism τ≤aX → τ≤bX compatible with the adjunction morphisms:

τ≤aX −→ τ≤bX
↘ ↙

X

Dually, the inclusion D≥n ⊂ D has a right adjoint functor τ≥n. There is the
adjunction morphism X → τ≥nX for X in D. For a ≤ b, there is a functorial
morphism τ≥bX → τ≥aX compatible with the adjunction morphisms.

We let τ[a,b]X = τ≥aτ≤bX = τ≤bτ≥aX. Also we set H0(X) := τ[0,0]X, and
Ha(X) = H0(X[a]).
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2. For any object X in D, there exists a unique morphism d : τ≥1X → τ≤0X[1]
such that the triangle

τ≤0X → X → τ≥1X
d−→

is distinguished. Up to unique isomorphism of distinguished triangles, this is the

unique distinguished triangle A→ X → B
[1]→ with A ∈ D≤0 and B ∈ D≥1.

3. Let C = D≥0 ∩D≤0, a full subcategory of D. We call this the heart of the
t-structure. The heart is an abelian category. A sequence 0→ X → Y → Z → 0

in C is exact iff there is a distinguished triangle X → Y → Z
[1]−→ in D. The

functor H0 : D → C is a cohomological functor, namely a distinguished triangle
induces a long exact sequence.

Denote by H∗ one of Betti, etale, or de Rham cohomology. Define full sub-
categories of D(k) as follows: D(k)≤p (resp.D(k)≥p ) consists of objects K in
D(k) such that Hj(K) = 0 for j > p (resp. j < p). These are independent of
the cohomology theory by comparison isomorphisms. Let

MM(k) := D(k)≤0 ∩ D(k)≥0 .

This is the candidate of the abelian category of mixed motives.

In this section we prove the following:

Theorem 3.4. (Assume Conjectures (Gro), (Mu) and (Van).) The pair of sub-
categories (D(k)≤0

,D(k)≥0) is a t-structure on D(k). MM(k) is an abelian
category. Any one of Betti, etale, or de Rham cohomology functor RΓ : D(k)→
Db(Λ− V ect) is a t-exact functor with respect to the t-structure and the natural
t-structure on Db(Λ− V ect).

Remark. On the other hand, under the presumption of Conjecture (Gro), the
existence of the t-structure implies Conjectures (Mu) and (Van). cf. [Ja].

For each K ∈ Dfinite(k), the V -truncation induces a filtration on its coho-
mology H∗(K). We put

WpH
i(K) = Im

(
Hi(Vp−iK)→ Hi(K)

)
,

the image of the map induced by the canonical morphism Vp−iK → K. Then W•
is an increasing filtration on Hi(K) as a Λ-vector space; this is called the weight
filtration. There is a convergent spectral sequence induced by the V -truncation

(4) Ea,b
1 = Ha+b(GrV

−aK) = Hb(Ka)⇒ Ea+b = Ha+b(K) .

This spectral sequence is functorial for formal symbols K. Also, the terms Er,
r ≥ 2, are functorial in K in Dfinite(k).
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Proposition 3.5. The above spectral sequence Ea,b
r is functorial in K in

Dfinite(k) for r ≥ 2. In particular, the weight filtration on H∗(K) is functorial.

Proof. Let (um,n) be a representative of the zero morphism K → L. By defini-
tions in [Part II,§4] there exist Um,n ∈ Hom(K, L)−(n−m−1) such that

um,n = (−1)n∂Um,n +
∑

m<�<n

(−1)m+�U �,n◦fm,� +
∑

m<�<n

(−1)�+ng�,n◦Um,� ;

in particular,

um,,m = (−1)m∂Um,m − Um+1,m◦fm,m+1 − gm−1,m◦Um,m−1 .

∂Um,n induces zero on cohomology. So the maps they induce between the co-
homology groups satisfy

um,,m
∗ = Um+1,m

∗ ◦fm,m+1
∗ − gm−1,m

∗ ◦Um,m−1
∗ .

Hi(Km)
fm,m+1
∗−−−−−→ Hi(Km+1)

Um,m−1
∗
↙ ↓ um,m

∗ ↙
Um+1,m

∗

Hi(Lm−1)
gm−1,m
∗−−−−−→ Hi(Lm)

Therefore um,m
∗ induces the zero map :Ker fm,m+1

∗ → Hi(Lm)/ Im gm−1,m
∗ , and

also between the E2-terms.

Proposition 3.6. The spectral sequence degenerates at E2: Ea,b
2 = Ea,b

∞ .

Proof. Consider first the case where k is a finite field and H∗ is Q�-cohomology.
The realization functor

D(k)→ Db(Q�), K �→ RΓ(K ⊗k k̄),

factors through D(k) → Db
c(Spec k, Q�). In fact, in [Part II,§5], the definitions

may be refined so that the functor RΓ takes values in Db
c(Spec k, Q�):

Ca,b(X, r) : = Ca+2b(Q�,X̄×�−b)(r),

ΓCa,b(X, r) : = Γ(X̄ ×�−b, Ca+2b(Q�,X̄×�−b)(r) )alt,

ΓC(X, r) : = the associated simple complex .

Extending by linearity to formal symbols and then to diagrams, one has the
functor K �→ ΓC(K ⊗k k̄) ∈ Db

c(Spec k, Q�).
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If k is a finite field, by [De 3], HiΓC(X, r) = Hi+2r(X̄, Q�)(r) has pure weight
i. Hence

Hi(GrV
a ΓC(Kk̄)) = Hi+aΓC(K−a

k̄
),

has pure weight a. In the spectral sequence, Ea,b
1 has weight a, so dr = 0 for

r ≥ 2.
If k is an arbitrary field, take a subfield k0 which is finitely generated over

the prime field and over which K is defined. One is reduced to the case over k0.
By a specialization argument one is then reduced to the case over a finite field.

In the case of singular cohomology or de Rham cohomology, the claim holds
as well by comparison isomorphisms.

For the rest of this section, we assume Conjectures (Gro), (Mu)
and (Van). To show that (D(k)≤0,D(k)≥0) is a t-structure, we need to verify
the three conditions in (3.1). The condition (ii) is obvious.

Proposition 3.7. To an object K of Symb(k), functorially associated are ob-
jects K �→ τ≤pK (resp. K �→ τ≥pK). The object τ≤pK (resp. τ≥pK) is in
D(k)≤p (resp. D(k)≥p). There is a distinguished triangle

τ≤pK → K → τ>pK
[1]−→,

in the category D(k), where the morphism τ>pK → τ≤pK [1] is zero.

Proof. See (2.7). For the last claim, note that K is non-canonically isomorphic
to the direct sum of τ≤pK and τ>pK.

Lemma 3.8. In the category D(k) one has

HomD(k)(K, L) ∼= HomD(k)(Q, K∨ ⊗ L) .

Proof. If K and L are in Dfinite(k), this is so by definition. In general, take
two objects of the form [K, p], [L, q] where K, L are in Dfinite(k) and p, q are
projectors. Let u : K → L and u′ : Q→ K∨⊗L be the corresponding morphism.
Then q◦u◦p = (p∨ ⊗ q)◦u′ by a formula after (4.5). Hence

q◦Hom(K, L)◦p ∼= (p∨ ⊗ q)◦Hom(Q, K∨ ⊗ L)

= Hom(Q, [K∨ ⊗ L, p∨ ⊗ q])

= Hom(Q, [K, p]∨ ⊗ [L, q]) .
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Lemma 3.9. For K, L in D(k), there is an isomorphism (Kunneth formula)

Hn(K ⊗ L) =
⊕

a+b=n

Ha(K)⊗Hb(L) .

There is a functorial isomorphism

Hn(K) ∼→ HomΛ(H−n(K∨),Λ) .

Proof. The first follows from RΓ(K ⊗ L) = RΓ(K)⊗ RΓ(L).
There is a canonical morphism K⊗K∨ → Q which corresponds to idK : K →

K under

HomD(k)(K ⊗K∨, Q) ∼= HomD(k)(Q, K∨ ⊗K) ∼= HomD(k)(K, K) .

Induced is a pairing Hn(K) ⊗ H−n(K∨) → Λ, or a map Hn(K) →
HomΛ(H−n(K∨),Λ). The latter map is functorial in K. It is shown to be
an isomorphism by using the spectral sequence (4) and reducing to the case of
a formal symbol.

3.10 Proof of HomD(k)(K, L) = 0 for K ∈ D(k)≤0 and L ∈ D(k)>0.
Since K∨ ∈ D(k)≥0 and K∨ ⊗ L ∈ D(k)>0, one may assume K = Q and

L ∈ D(k)>0. First we assume L ∈ Dfinite(k)>0. Let L = (Lm, fm,n).
Consider the spectral sequence Ea,b

1 = Ha+b(GrV
−aL) = Hb(La) ⇒ Ea+b =

Ha+b(L) . By the degeneracy of this at E2 and the assumption that Hi(L) = 0
for i ≤ 0, one has: the complex of E1-terms and d1’s

· · · → Ea−1,b
1

d1−→ Ea,b
1

d1−→ Ea+1,b
1 −→ · · ·

is exact at Ea,b
1 for a + b ≤ 0. Note that, since La is a formal symbol, Ea,b

1 =
Hb(La) comes from a Grothendieck motive, namely the object Hb(La) ofM(k).
The d1 differentials (which are induced by the morphisms fa,a+1 : La → La+1)
are morphisms of Grothendieck motives, and

(1) The complex of Grothendieck motives

· · · → Hb(La−1) d1−→ Hb(La) d1−→ Hb(La+1) −→ · · · ,

is exact at Hb(La) for a + b ≤ 0.

To calculate Hom(Q, L), consider the spectral sequence induced from the
filtered complex

(
Z0(L, ·),Z0(V−aL, ·)

)
Ea,b

1 = Ha+bZ0(GrV
−aL, •)⇒ Ha+bZ0(L, •),



MIXED MOTIVES AND ALGEBRAIC CYCLES III 79

which may be written

(2) Ea,b
1 = HomD(Q, La[b])⇒ Ea+b = HomD(Q, L[a + b]) .

Recall on HomD(Q, La[b]) there is the filtration F • whose graded quotients are

Gri+b
F HomD(Q, La[b]) = HomD(Q, Hi(La)[−i + b]) .

The map da,b
1 = fa,a+1

∗ : HomD(Q, La[b]) → HomD(Q, La+1[b]) respects the
filtrations and

Gri+b
F da,b

1 : HomD(Q, Hi(La)[−i + b])→ HomD(Q, Hi(La+1)[−i + b]),

is induced from the map Hi(fa,a+1) : Hi(La)→ Hi(La+1).
That Hom(Q, L) = 0 follows from (2) and the following claim.

(3) The complex

· · · GrF da−1,b
1−−−−−−−→ HomD(Q, Hi(La)[−i + b])

GrF da,b
1−−−−−→

HomD(Q, Hi(La+1)[−i + b])→ · · · ,

is exact at HomD(Q, Hi(La)[−i + b]) for a + b ≤ 0.

In fact, if a + b ≤ 0, either i + a ≤ 0 or i− b > 0. If i + a ≤ 0, the exactness
follows from the claim (1) and the exactness of the functor Hom(Q, (−)[j]) on
the category of Grothendieck motives, which is semi-simple abelian. If i− b > 0,
the terms in the complex are zero by the consequence (2.9) of the vanishing
conjecture.

Proposition 3.11. Let K be an object of D(k). There is an object τ≥pK in
D(k)≥p together with a morphism K → τ≥pK (resp. τ≤pK in D(k)≤p together
with τ≤pK → K) satisfying the properties:

(i) Hi(K) ∼→ Hi(τ≥pK) for i ≥ p (resp. Hi(τ≤pK) ∼→ Hi(K) for i ≤ p).
(ii) There is a unique distinguished triangle

τ≤pK → K → τ>pK
[1]−→ .

(iii) The morphism K → τ≥pK has the universal property: if u : K → L is
a morphism where L ∈ D(k)≥p, it factors uniquely through τ≥pK. The
association K �→ τ≥pK is functorial. Similarly for τ≤pK.
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Proof. Once (i) and (ii) are verified for an object K, (iii) follows using (3.10).
If u : K → L, there is a unique morphism τ≤pK → τ≤pL making the following
diagram commutative.

τ≤pK −→ K −→ τ>pK
[1]−→

↓ ↓ u

τ≤pL −→ L −→ τ>pL
[1]−→ .

Then one can also define an object Hp(K) in D(k)≤0∩D(k)≥0 with distinguished
triangles

τ≤p−1K → τ≤pK → Hp(K)[−p]
[1]→ ,

Hp(K)[−p]→ τ≥pK → τ≥p+1K
[1]→

(see [BBD, p.30]).
For an arbitrary object K, we will show (i) and (ii). The object is of the

form [K, p] with K in Dfinite(k) and p a projector. Suppose one has τ≥pK

and τ≤pK satisfying (i), (ii). Then τ≥pp is a projector of τ≥pK and one defines
τ≥p[K, p] = [τ≥pK, τ≥pp]; similarly for τ≤p[K, p]. The required properties are
satisfied.

Assume K in Dfinite(k), and m ≤ n are such that Ki = 0 for i �∈ [m, n]. We
construct τ≥pK by induction on n −m. By shifting we may assume p = 0. If
m = n, K is a formal symbol Km concentrated in degree m, so let

τ≥0K = (τ≥−mKm)[−m],

where τ≥−mKm is as in (3.7).
Assume m < n and consider the objects

K = [Km → · · · → Kn−1 → Kn],

K ′ = [Km → · · · → Kn−1 → 0] = V[−n+1,−m]K,

K ′′ = [0→ · · · → Kn → 0] = (V[−n,−n]K)[1],

(Kn concentrated in deg = n− 1)

and the distinguished triangle K → K ′ β−→ K ′′ [1]−→. By induction hypothesis,
we have objects τ≤pK

′ and τ≤pK
′′.

The image of the map that β induces on cohomology

Im = Im[H−1(K ′)→ H−1(K ′′)] ⊂ H−1(K ′′),
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comes from a Grothendieck motive. Indeed by the spectral sequence (4) for
H∗(K ′) and by (3.6) one has

Im = Im[H−1(Kn−1[−n + 1])→ H−1(K ′′)] .

Denote by Im the object of M(k) which gives Im. Consider the composite
Im[1]→ H−1(K ′′)[1]→ τ≥−1K

′′. The cone of this has cohomology as follows:

Hi Cone(Im[1]→ τ≥−1K
′′) =




0 i < −1
H−1(K ′′)/ Im i = −1

Hi(K ′′) i > −1.

One has a diagram

H−1(K ′)[1] → τ≥−1K
′ → τ≥0K

′ [1]→
↓ u ↓ v ↓ w

I−1(K ′′)[1] → τ≥−1K
′′ → Cone

(
I−1(K ′′)[1]→ τ≥−1K

′′) [1]→

where v = τ≥−1β. The left square being commutative, there is a morphism
w which makes (u, v, w) a morphism between distinguished triangles. (Since
Hom(τ≥−1K

′, I−1(K ′′)[1]) = 0, such a w is unique.) We take

τ≥0K = Cone (w)[−1] .

There is a unique morphism K[1]→ Cone(w) making the following a morphism
of distinguished triangles.

K ′ → τ≥0K
′

↓ β ↓
K ′′ → C

↓ ↓
K[1] → Cone(w)
↓ [1] ↓ [1]

One verifies Hi(τ≥0K) = Hi(K) for i ≥ 0 and = 0 for i < 0.
Define τ<0K by the distinguished triangle

τ<0K → K → τ≥0K
[1]−→ .

The properties (i) and (ii) are satisfied, and this completes the proof of the
proposition and of Theorem (3.4).
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